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�is paper investigates the properties and results of (Q,L)-fuzzy soft subhemirings ((Q,L)-FSSHR) of a hemiring R.�emotivation
behind this study is to utilize the concept of L-fuzzy soft set of a hemiring and to derive a few speci�c outcomes on (Q, L)-FSSHR.
�e concepts of strongest Q-fuzzy soft set relation, Q-isomorphism, pseudo-Q-fuzzy soft coset, and some of their related
properties are implemented while analyzing the results. Finally, the properties are veri�ed with a numerical example from the 2000
AMS subject classi�cation: 05C38, 05A15, and 15A18.

1. Introduction

�e pioneering work on fuzzy sets was presented by Zadeh
in [1]. Following this, intuitionistic fuzzy sets (IFS) were
introduced by Attansov [2] and Agarwal et al. [3] who
studied the generalized IFS with applications in decision
making. Goguen [4] generalized fuzzy sets to L-fuzzy sets.
Molodtsov introduced soft sets and Maji et al. [5] did a
combined study on fuzzy sets and soft sets and introduced
fuzzy soft sets. After that, Maji et al. [6] started a combined
work on IFS and soft sets called intuitionistic fuzzy soft sets
(IFSS). Hooda et al. [7] introduced the intuitionistic fuzzy
soft set theory and its applications in medical diagnosis.

Anjan et al. [8] introduced fuzzy soft multiset and
presented some results on this. �e concept of an

approximation space associated with each parameter in a
soft set is discussed in [9]. �e intuitionistic neutrosophic
soft set was studied in [10] and reformulated by Feng [11]
and introduced into soft semiring by means of level soft sets
and an adjustable approach to the fuzzy soft set. �e notion
of semiring was introduced by Vandiver and Anjum et al.
[12] to characterize the hemirings by falling fuzzy k-ideals.
In [13], vague sets were introduced and analyzed the various
operations. Under a vulnerability climate, the neutrosophic
soft sets [16] have been e�ectively applied, and numerical
models have been e�ectively applied in dynamic issues. By
using these de�nitions, the applications of the soft set hy-
pothesis have been concentrated progressively.

In this paper, by introducing the concepts of hemiring
and subhemiring for fuzzy soft sets along with L-fuzzy soft
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sets, the logarithmic structure of (Q, L)-fuzzy soft sub-
hemiring concept is developed and investigated for their
major properties. Fuzzy soft sets were also applied as an
operational tool of (Q, L)-fuzzy soft relation homomorphic
prepicture and synthesis activity and not many of its con-
nected properties are broken down [16]. Molodtsov [17]
presented the soft set hypothesis which draws in many
creators since it has a wide scope of utilizations in fields of
dynamic, gauging, and information examination. Presently,
many researchers attempt to hybridize the soft set with
various numerical models such as in [18], Shabir et al. [19]
studied the characterization of hemirings by the properties
of their k-ideals. Muhammed [21] discussed fuzzy ideals in
nearing with respect to t-norm and investigated quotients
near rings. Dudek [22] introduced the notion of intui-
tionistic fuzzy left k-ideals of semirings and min-max-plus
semiring connections with left k-ideals of the corresponding
semirings. Shabir et al. [23] studied on k-bi-ideals in
hemirings. *e ambiguous soft set [24] and the reluctant
fuzzy soft set [25] are presented and then further aug-
mentations of soft sets such as the span esteemed fuzzy soft
set [26], the multifuzzy soft set [27], and the trapezoidal
fuzzy soft set [28] were carried out. Xu et al. [29] presented
the vague delicate sets and their properties.

*is universe is stacked with second thoughts, impre-
cision, and vagueness. In actuality, most of the thoughts we

bargain contain muddled data in contrast to accurate.
Overseeing the second thought, vulnerability is a vital issue
in various regions, for instance, financial aspects, designing,
regular science, medicinal science, and social sciences.
Countless researchers have ended up with the same con-
clusion, exhibiting a lack of definition (Table 1).

2. Preliminaries

In this section, we provide some basic definitions those are
related to this study.

Definition 1 (see [8]). A pair is identified as a soft set⇔G is a
function K in to these to fall subset of the set U.

Example 1. Suppose U is the set of five laptops under
consideration. Here, let U � l1, l2, l3, l4, l5􏼈 􏼉 and K � p1􏼈

(good looking), p2(quality), p3(storage space),

p4(modern technology), p5(price)}

be the set of parameters.

(K, G) � p1, l2, l4( 􏼁( 􏼁, p2, l1, l3( 􏼁( 􏼁, p3, l4, l2( 􏼁( 􏼁, p4, l3, l1( 􏼁( 􏼁, p5, l1, l5( 􏼁( 􏼁􏼈 􏼉. (1)

Definition 2 (see [14]). Let X, Q ≠ ϕ. A Q-fuzzy ⊆H of X,
then H: X × Q⟶ [0, 1].

Definition 3 (see [7]). LetR be a hemiring. A L–FS ⊆(S1, J1)

of R is called a L-fuzzy soft subhemiring (LFSSHR) of R if
the following axioms hold:

(1) j(S1 ,J1)(u(S1 ,J1) + v(S1 ,J1))≥ j(S1 ,J1)(u(S1 ,J1)∧j(S1 ,J1)􏽮

(v(S1 ,J1)))},

(2) j(S1 ,J1)(u(S1 ,J1)v(S1 ,J1))≥ j(S1 ,J1)(u(S1 ,J1))∧j(S1 ,J1)(v(S1 ,􏽮

J1))}, ∀u(S1 ,J1) and v(S1 ,J1) ∈ R.

Example 2. Let R � A � Z6 � 0, 1, 2, 3, 4, 5{ }. *en, consider
F: R⟶ R(R) given by F(x) � y ∈ R, x.y � 0􏼈 􏼉. *en,
F(0) � R, F(1) � 0{ }, F(2) � 0, 3{ }, F(3) � 0, 2, 4{ },

F(4) � 0, 3{ }, and F(5) � 0{ }. All these sets are subhemirings
of R. *erefore, (S1, J1) is a soft subhemiring over R.

Definition 4 (see [10]). Let R be a hemiring. A (Q, L)–FS
⊆H ofR is called (Q, L)-fuzzy soft subhemiring (Q-FSSHR)
if the following conditions hold:

(1) j(S1 ,J1)(u(S1 ,J1) + v(S1 ,J1)), q≥ j(S1 ,J1)(u(S1 ,J1)),􏽮

q∧j(S1 ,J1)(v(S1 ,J1), q)},

(2) j(S1 ,J1)(u(S1 , J1)v(S1 ,J1)), q≥ j(S1 ,J1)(u(S1 ,J1)), q∧j(S1 ,J1)􏽮

(v(S1 ,J1), q)}, for all u(S1 ,J1) and v(S1 ,J1) inR and q ∈ Q.

Definition 5 (see [19]). If (R, +,.) and (R1, +, .) are any two
hemirings and Q is a nonempty set, then ψ: R × Q⟶ R1 ×

Q is called a (Q, L)-known as a Homomorphism if ψ(u +

v, r) � ψ(u, r) + ψ(v, r) and ψ(uv, r) � ψ(u, r)ψ(v, r) for all
u, v ∈ R and r in Q.

Definition 6 (see [17]). If (R, +,.) and (R1, +, .) are any two
hemirings and Q is a nonempty set, then ψ: R × Q⟶ R1 ×

Q is known as an anti-(Q, L)-homomorphism if
ψ(u + v, r) � ψ(v, r) + ψ(u, r) and
ψ(uv, r) � ψ(v, r)ψ(u, r), ∀ u, v ∈ R, and r in Q.

Definition 7 (see [9]). Let (S1, J1) be a (Q, L)-fuzzy soft
subset. For μ in [0, 1], the sets
Uj(s1 ,j1),μ � u(S1,J1) ∈ X: j(S1 ,J1)(u(S1 ,J1)), q≥ μ􏽮 􏽯 and is known
as (Q, L)-fuzzy soft level μ-cut.

Definition 8 (see [16]). Let (S1, J1) be a (Q, L)-fuzzy soft
subhemiring of X. For μ in [0, 1], the level subset of (S1, J1)

is the set j(S1 ,J1)μ � u(S1 ,J1) ∈ X: j(S1 ,J1)(u(S1 ,J1)), q≥ μ􏽮 􏽯. *is
is known as a (Q, L)-fuzzy soft level subset.

Definition 9 (see [18]). Let (S1, J1) be a (Q, L)-FSSHR of a
hemiring (R, +,.). *e level subhemiring j(S1 ,J1)μ, for μ in
[0, 1] with the end goal that μ≤ j(S1 ,J1)(0), μ≤ j(S1 ,J1)(1), is
known as a (Q, L)-fuzzy soft level soft subhemiring.
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3. Some Properties of (Q, L)-Fuzzy Soft
Subhemirings of a Hemiring

In this section, we provide main results using properties of
(Q, L)-FSSHR of a hemiring.

Theorem 1. If (S1, J1)is a (Q, L)-FSSHR of a hemiring R,
then H � u(S1 ,J1)/u(S1 ,J1) ∈ R: j(S1 ,J1)(u(S1 ,J1)), q � 0􏽮 􏽯 is ei-
ther empty or is a subhemiring of R.

Proof. If no elements satisfy these conditions, then H is
empty.

Let (u(S1 ,J1), v(S1 ,J1) in H, then

j S1 ,J1( ) u S1 ,J1( ) + v S1,J1( )􏼒 􏼓, q≥ j S1 ,J1( ) u S1 ,J1( ), q􏼒 􏼓∧j S1 ,J1( ) v S1 ,J1( ), q􏼒 􏼓 � 0∧0{ } � 0􏼚 􏼛. (2)

*us, j(S1 ,J1)(u(S1 ,J1) + v(S1 ,J1)), q � 0. For every u(S1 ,J1)

and v(S1 ,J1) in R and q in Q. We get u(S1 ,J1) + v(S1 ,J1) in H.

j u S1 ,J1( )v S1 ,J1( )􏼒 􏼓, q≥ j S1 ,J1( ) u S1 ,J1( ), q􏼒 􏼓∧j S1 ,J1( ) v S1 ,J1( ), q􏼒 􏼓 � 0∧0{ } � 0􏼚 􏼛. (3)

So, j(S1,J1)(u(S1 ,J1)v(S1 ,J1)), q � 0, for all u(S1 ,J1), and v(S1 ,J1)

in R and q in Q. We get u(S1 ,J1), v(S1 ,J1) in H. *us, H is a
subhemiring of R. □

Theorem 2. Let (S1, J1) be a (Q, L)-FSSHR of a hemiringR.
Cen,

(1) If j(S1 ,J1)(u(S1 ,J1) + v(S1 ,J1)), q � 1, then either
j(S1 ,J1)(u(S1 ,J1), q) � 1 or j(S1 ,J1)(v(S1 ,J1)), q � 1, for
u(S1 ,J1)and v(S1 ,J1) in R and q in Q.

(2) If j(S1 ,J1)(u(S1 ,J1)v(S1 ,J1)), q � 1, then either
j(S1 ,J1)(u(S1 ,J1)), q � 1 or j(S1 ,J1)(v(S1 ,J1), q) � 1, for
every u(S1 ,J1) and v(S1 ,J1) of R and q ∈ Q.

Proof. Let u(S1 ,J1) and v(S1 ,J1) ∈ R. By the definition,

j S1 ,J1( ) u S1 ,J1( ) + v S1 ,J1( )􏼒 􏼓, q≥ j S1 ,J1( ) u S1 ,J1( ), q􏼒 􏼓∧j S1 ,J1( ) v S1 ,J1( ), q􏼒 􏼓􏼚 􏼛. (4)

Table 1: How the person chooses the laptop.

Laptop Good-looking Quality Storage space Modern technology Price
l1 0 1 0 1 1
l2 1 0 1 0 0
l3 0 1 0 1 0
l4 1 0 1 0 0
l5 0 0 0 0 1
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We have

1≥ j S1 ,J1( ) u S1 ,J1( ), q􏼒 􏼓∧j S1 ,J1( ) v S1,J1( ), q􏼒 􏼓􏼚 􏼛. (5)

*us, whichever j(S1 ,J1)(u(S1 ,J1), q) � 1 or
j(S1 ,J1)(v(S1 ,J1), q) � 1, for every u(S1 ,J1) and v(S1 ,J1) in R and q
in Q,

j S1 ,J1( ) u S1 ,J1( )v S1 ,J1( )􏼒 􏼓, q≥ j S1 ,J1( ) u S1 ,J1( ), q􏼒 􏼓∧j S1 ,J1( ) v S1 ,J1( ), q􏼒 􏼓􏼚 􏼛. (6)

We have

1≥ j S1 ,J1( ) u S1 ,J1( ), q􏼒 􏼓∧j S1 ,J1( ) v S1,J1( ), q􏼒 􏼓􏼚 􏼛. (7)

j(S1 ,J1)(u(S1 ,J1), q) � 1 or j(S1 ,J1)(v(S1 ,J1), q) � 1, for every
u(S1 ,J1) and v(S1 ,J1) of R and q ∈ Q. □

Theorem 3. Let (S1, J1) and (R, D) be two (Q, L)-FSSHR of
a hemiring (R, +D). Cen, their intersection (S1, J1)∩ (R, D)

is a (Q, L)-FSSHR of R.

Proof. Let u and v be in the right place to R. *en,

S1, J1( 􏼁 � 〈 u S1 ,J1( ), q􏼒 􏼓, j S1,J1( ) u S1 ,J1( ), q􏼒 􏼓〉/u S1 ,J1( )of R, q ∈ Q􏼚 􏼛,

(8)

and

(R, D) � 〈 u(R,D), q􏼐 􏼑, j(R,D) u(R,D), q􏼐 􏼑〉/u(R,D) ∈ N, q ∈ Q􏽮 􏽯.

(9)

Let (S, T) � (S1, J1)∩ (R, D) and
(S, T) � 〈(u(S,T), q), j(S,T)(u(S,T), q)〉/u(S,T) inR q inQ􏽮 􏽯,
where
j(S,T)(u(S,T), q) � j(S1 ,J1)(u(S1 ,J1), q)∧j(R,D)(u(R,D), q)􏽮 􏽯. Now,

j(S,T) u(S,T) + v(S,T), q􏼐 􏼑 � j S1 ,J1( ) u S1 ,J1( ) + v S1 ,J1( ), q􏼒 􏼓∧j(R,D) u(R,D) + v(R,D), q􏼐 􏼑􏼚 􏼛

≥
j S1 ,J1( ) u S1 ,J1( ), q􏼒 􏼓∧j S1 ,J1( ) v S1 ,J1( ), q􏼒 􏼓∧􏼚 􏼛

j(R,D) v(R,D), q􏼐 􏼑∧j(R,D) v(R,D), q􏼐 􏼑􏽮 􏽯

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭

≥
j S1 ,J1( ) u S1 ,J1( ), q􏼒 􏼓∧j(R,D)u(R,D), q􏼒 􏼓􏼚 􏼛∧

j S1 ,J1( ) u S1 ,J1( ), q􏼒 􏼓∧j(R,D) v(R,D), q􏼐 􏼑􏼚 􏼛

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

⎫⎪⎪⎪⎬

⎪⎪⎪⎭

≥ j(S,T) v(S,T), q􏼐 􏼑∧j(S,T) v(S,T), q􏼐 􏼑􏽮 􏽯,

(10)

for every u(S,T) and v(S,T) in R and q in Q. Again,

j(S,T) u(S,T) + v(S,T), q􏼐 􏼑 � j S1 ,J1( ) u S1 ,J1( ) + v S1 ,J1( ), q􏼒 􏼓∧j(R,D) u(R,D) + v(R,D), q􏼐 􏼑􏼚 􏼛

≥
j S1 ,J1( ) u S1 ,J1( ), q􏼒 􏼓∧j S1 ,J1( ) v S1 ,J1( ), q􏼒 􏼓∧􏼚 􏼛,

j(R,D) v(R,D), q􏼐 􏼑∧j(R,D) v(R,D), q􏼐 􏼑􏽮 􏽯

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭

≥
j S1 ,J1( ) u S1 ,J1( ), q􏼒 􏼓∧j(R,D)u(R,D), q􏼒 􏼓􏼚 􏼛∧,

j S1 ,J1( ) u S1 ,J1( ), q􏼒 􏼓∧j(R,D) v(R,D), q􏼐 􏼑􏼚 􏼛

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

⎫⎪⎪⎪⎬

⎪⎪⎪⎭

≥ j(S,T) v(S,T), q􏼐 􏼑∧j(S,T) v(S,T), q􏼐 􏼑􏽮 􏽯.

(11)
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*us, j(S,T)(u(S,T)v(S,T), q)≥ j(S,T)(v(S,T), q)∧j(S,T)􏽮

(v(S,T), q)}, for each u(S,T) and v(S,T) in R and q in Q. □

Theorem 4. Ce ∩ of a (Q, L)-FSSHR of a hemiring (R, +, .)
is a (Q, L)-FSSHR of R.

Proof. Consider j(S1 ,J1)i􏽮 􏽯
i∈I as a family of (Q, L)-FSSHR

of a hemiring R and j(S1 ,J1) � 􏽑
i∈I

j(S1 ,J1)i. Here, u, v ∈ R, we

have the following two cases: □

Case 1.

j S1 ,J1( ) u S1,J1( ) + v S1 ,J1( ), q􏼒 􏼓 � j S1 ,J1( )􏼒 􏼓i u S1 ,J1( ) + v S1 ,J1( )􏼒 􏼓, q􏼒 􏼓

≥ inf
i∈I

j S1 ,J1( )􏼒 􏼓i u S1 ,J1( ), q􏼒 􏼓∧j S1 ,J1( )i v S1 ,J1( ), q􏼒 􏼓􏼚 􏼛

≥ inf
i∈I

j S1 ,J1( )i u S1 ,J1( ), q􏼒 􏼓􏼒 􏼓􏼚 􏼛∧ inf
i∈I

j S1 ,J1( )i v S1 ,J1( ), q􏼒 􏼓􏼚 􏼛 � j S1 ,J1( )􏼒 􏼓i u S1 ,J1( ), q􏼒 􏼓∧j S1 ,J1( )i v S1 ,J1( ), q􏼒 􏼓􏼚 􏼛.

(12)

*erefore,

j S1 ,J1( ) u S1 ,J1( ) + v S1 ,J1( ), q􏼒 􏼓≥ j S1 ,J1( ) u S1 ,J1( ), q􏼒 􏼓∧j S1 ,J1( ) v S1 ,J1( ), q􏼒 􏼓􏼚 􏼛, (13)

for each u(S1 ,J1) and v(S1 ,J1) of R and q ∈ Q. Case 2.

j S1 ,J1( ) u S1 ,J1( ) + v S1 ,J1( ), q􏼒 􏼓 � j S1,J1( )􏼒 􏼓i u S1 ,J1( ) + v S1 ,J1( )􏼒 􏼓, q􏼒 􏼓≥ inf
i∈I

j S1 ,J1( )􏼒 􏼓i u S1 ,J1( ), q􏼒 􏼓∧j S1 ,J1( )i v S1 ,J1( ), q􏼒 􏼓􏼚 􏼛

≥ inf
i∈I

j S1 ,J1( )i u S1 ,J1( ), q􏼒 􏼓􏼒 􏼓􏼚 􏼛∧ inf
i∈I

j S1 ,J1( )i v S1 ,J1( ), q􏼒 􏼓􏼚 􏼛 � j S1 ,J1( )􏼒 􏼓i u S1 ,J1( ), q􏼒 􏼓∧j S1 ,J1( ) v S1 ,J1( ), q􏼒 􏼓􏼚 􏼛.

(14)

*us, j(S1 ,J1)(u(S1 ,J1)

v(S1 ,J1), q)≥ j(S1 ,J1)(u(S1 ,J1), q)∧j(S1 ,J1)(v(S1 ,J1), q)􏽮 􏽯

, for each u(S1 ,J1) and v(S1 ,J1) of R and q ∈ Q.

Theorem 5. If (S1, J1) and (R, D) are any two (Q, L)-FSSHR
of a hemiring (R, +, .), then (S1, J1)∪ (R, D) is a
(Q, L)-FSSHR of R.

Proof. Consider u(S1 ,J1) and v(S1 ,J1) belonging to R and
q ∈ Q,

j S1 ,J1( ) �
〈 u(R,D), q􏼐 􏼑, j(R,D) u(R,D), q􏼐 􏼑〉

u(R,D)

inR, q inQ
⎧⎨

⎩

⎫⎬

⎭

〈 u S1,J1( ), q􏼒 􏼓, j S1 ,J1( ) u S1 ,J1( ), q􏼒 􏼓〉

u S1 ,J1( )
inR and q inQ

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
,

j(R,D) �
〈 u(R,D), q􏼐 􏼑, j(R,D) u(R,D), q􏼐 􏼑〉

u(R,D)

of R, q ∈ Q
⎧⎨

⎩

⎫⎬

⎭.

(15)

Let (S, T) � (S1, J1)∪ (R, D) and
(S, T) � 〈(u(S,T), q), j(S,T)(u(S,T), q)〉/u(S,T) inR, q inQ􏽮 􏽯,

where j(S,T)(u(S,T), q) � j(S1 ,J1)(u(S1 ,J1), q)∨j(R,D)􏽮

(u(R,D), q)}. Now,

j S1 ,J1( ) u S1 ,J1( ) + v S1 ,J1( ), q􏼒 􏼓 � j S1 ,J1( )􏼒 􏼓i u S1 ,J1( ) + v S1 ,J1( )􏼒 􏼓, q􏼒 􏼓≥ j(R,D)􏼐 􏼑i u(R,D), q􏼐 􏼑∧j(R,D)i v(R,D), q􏼐 􏼑􏽮 􏽯

≥ j S1 ,J1( )i u S1 ,J1( ), q􏼒 􏼓􏼒 􏼓􏼚 􏼛∧ j(R,D)i v(R,D), q􏼐 􏼑􏽮 􏽯 � j S1 ,J1( )􏼒 􏼓i u S1,J1( ), q􏼒 􏼓∧j(R,D) v(R,D), q􏼐 􏼑􏼚 􏼛.

(16)
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*us,
j(S,T)(u(S,T) + v(S,T), q)≥ j (S, T)(u(S,T), q)∧j(S,T)(v(S,T), q)􏽮 􏽯,
for each u(S,T) and v(S,T) in R and q in Q.

Now,

j S1 ,J1( ) u S1 ,J1( ) + v S1 ,J1( ), q􏼒 􏼓 � j S1 ,J1( )􏼒 􏼓 u S1 ,J1( ) + v S1 ,J1( )􏼒 􏼓, q􏼒 􏼓≥ j(R,D)􏼐 􏼑i u(R,D), q􏼐 􏼑∧j(R,D)i v(R,D), q􏼐 􏼑􏽮 􏽯

≥ j S1 ,J1( )i u S1 ,J1( ), q􏼒 􏼓􏼒 􏼓􏼚 􏼛∧ j(R,D)i v(R,D), q􏼐 􏼑􏽮 􏽯 � j S1 ,J1( )􏼒 􏼓i u S1 ,J1( ), q􏼒 􏼓∧j(R,D) v(R,D), q􏼐 􏼑􏼚 􏼛.

(17)

So, j(S,T)(u(S,T) + v(S,T), q)≥ j (S, T)(u(S,T), q)∧j(S,T)􏽮

(v(S,T), q)}, for each u(S,T) and v(S,T) in R and q in Q. □

Theorem 6. Ce ∪ of a (Q, L)-FSSHR of a hemiring R is a
(Q, L)-FSSHR of R.

Proof. Given as a chance consider j(S1 ,J1)i􏽮 􏽯 to be a family of
a (Q, L)-FSSHR of a hemiring R and j(S1 ,J1) � ∪ i∈Ij(S1 ,J1)i.
*en, u(S,T) and v(S,T) belong to R and q in Q,

j S1 ,J1( ) u S1 ,J1( ) + v S1 ,J1( ), q􏼒 􏼓 � supi∈I j S1 ,J1( )􏼒 􏼓i u S1 ,J1( ) + v S1 ,J1( )􏼒 􏼓, q􏼒 􏼓supi∈I ≥ j S1 ,J1( )􏼒 􏼓i u S1 ,J1( ), q􏼒 􏼓∧supi∈Ij S1 ,J1( )i v(R,D), q􏼐 􏼑􏼚 􏼛

≥ supi∈I j S1 ,J1( )i u S1 ,J1( ), q􏼒 􏼓􏼒 􏼓􏼚 􏼛∧supi∈I j S1 ,J1( )( )i v S1 ,J1( ), q􏼒 􏼓􏼚 􏼛 � j S1 ,J1( )􏼒 􏼓i u S1 ,J1( ), q􏼒 􏼓∧j S1 ,J1( ) v S1 ,J1( ), q􏼒 􏼓􏼚 􏼛.

(18)

*us, j(S1 ,J1)(u(S1 ,J1)v(S1 ,J1), q)≥ j(S1 ,􏽮 J1)(u(S1 ,J1), q)∧
j(S1 ,J1)(v(S1 ,J1), q)}, for each u(S1 ,J1) and v(S1 ,J1) inR and q inQ.

j S1 ,J1( ) u S1 ,J1( ) + v S1 ,J1( ), q􏼒 􏼓 � supi∈I j S1 ,J1( )i􏼒 􏼓 u S1,J1( ) + v S1 ,J1( )􏼒 􏼓, q􏼒 􏼓supi∈I ≥ j S1 ,J1( )i􏼒 􏼓 u S1 ,J1( ), q􏼒 􏼓∧supi∈Ij S1,J1( )i v(R,D), q􏼐 􏼑􏼚 􏼛

≥ supi∈I j S1 ,J1( )i u S1 ,J1( ), q􏼒 􏼓􏼒 􏼓􏼚 􏼛∧supi∈I j S1,J1( )( )i v S1 ,J1( ), q􏼒 􏼓􏼚 􏼛 � j S1,J1( )􏼒 􏼓i u S1 ,J1( ), q􏼒 􏼓∧j S1 ,J1( ) v S1,J1( ), q􏼒 􏼓􏼚 􏼛.

(19)

*us, j(S1 ,J1)(u(S1 ,J1)v(S1 ,J1), q)≥ j(S1 ,J1)􏽮

(u(S1 ,J1), q)∧j(S1 ,J1) (v(S1 ,J1), q)} for each u(S1 ,J1) and u(S1 ,J1) of
R and q ∈ Q.

Similarly, the union of a family of a (Q, L)-FSSHR of a
hemiring R is a (Q, L)-FSSHR of R. □

Theorem 7. If (S1, J1) and (R, D) be two (Q, L)-FSSHR of
the hemirings R and S, correspondingly, then the product
(S1, J1) × (R, D) is a (Q, L)-FSSHR of R × S.

Proof. Consider (S1, J1) and (R, D) to be two (Q, L)-FSSHR
of the hemirings R and S correspondingly. Let u(S1 ,J1)1 and
u(S1 ,J1)2 be in R, and v(S1 ,J1)1 and v(R,D)2 be in S. *en,
(u(S1 ,J1)×(R,D)1, v(S1 ,J1)×(R,D)1) and
(u(S1 ,J1)×(R,D)2, v(S1 ,J1)×(R,D)2) are in R × S. Now,

j S1 ,J1( )×(R,D) u S1 ,J1( )×(R,D)1, v S1 ,J1( )×(R,D)1􏼒 􏼓 + u S1 ,J1( )×(R,D)2, v(R,D)×(R,D)2􏼒 􏼓, q􏼒 􏼓

� j S1 ,J1( )×(R,D) u S1 ,J1( )1 + u S1 ,J1( )2, v(R,D)1 + v(R,D)2􏼒 􏼓, q􏼒 􏼓

� j S1 ,J1( ) u S1 ,J1( )1 + u S1 ,J1( )2􏼒 􏼓, q􏼒 􏼓∧j(R,D)1 v(R,D)1 + v(R,D)2􏼐 􏼑, q􏼐 􏼑􏼚 􏼛

≥ j S1 ,J1( ) u S1 ,J1( )1, q􏼒 􏼓∧j S1 ,J1( ) u S1 ,J1( )2, q􏼒 􏼓􏼚 􏼛∧ j(R,D) v(R,D)1, q􏼐 􏼑∧j(R,D) v(R,D)2, q􏼐 􏼑􏽮 􏽯􏼚 􏼛.

(20)
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*us,

j S1 ,J1( )×(R,D) u S1 ,J1( )×(R,D)1, v S1 ,J1( )×(R,D)1􏼒 􏼓 + u S1 ,J1( )×(R,D)2, v(R,D)×(R,D)2􏼒 􏼓, q􏼒 􏼓

� j S1 ,J1( )×(R,D) u S1 ,J1( )1 + u S1 ,J1( )2, v(R,D)1 + v(R,D)2􏼒 􏼓, q􏼒 􏼓

� j S1 ,J1( ) u S1 ,J1( )1 + u S1 ,J1( )2􏼒 􏼓, q􏼒 􏼓∧j(R,D)1 v(R,D)1 + v(R,D)2􏼐 􏼑, q􏼐 􏼑􏼚 􏼛

≥ j S1 ,J1( ) u S1 ,J1( )1, q􏼒 􏼓∧j S1 ,J1( ) u S1 ,J1( )2, q􏼒 􏼓􏼚 􏼛∧ j(R,D) v(R,D)1, q􏼐 􏼑∧j(R,D) v(R,D)2, q􏼐 􏼑􏽮 􏽯􏼚 􏼛,

(21)

for each u(S1 ,J1)×(R,D)1 and u(S1 ,J1)×(R,D)2 in R and v(S1 ,J1)×(R,D)1
and v(S1 ,J1)×(R,D)2 in S and q in Q. Again,

j S1 ,J1( )×(R,D) u S1 ,J1( )×(R,D)1, v S1 ,J1( )×(R,D)1􏼒 􏼓 + u S1 ,J1( )×(R,D)2, v(R,D)×(R,D)2􏼒 􏼓, q􏼒 􏼓

� j S1 ,J1( )×(R,D) u S1 ,J1( )1 + u S1 ,J1( )2, v(R,D)1 + v(R,D)2􏼒 􏼓, q􏼒 􏼓

� j S1 ,J1( ) u S1 ,J1( )1 + u S1 ,J1( )2􏼒 􏼓, q􏼒 􏼓∧j(R,D)1 v(R,D)1 + v(R,D)2􏼐 􏼑, q􏼐 􏼑􏼚 􏼛

≥ j S1 ,J1( ) u S1 ,J1( )1, q􏼒 􏼓∧j S1 ,J1( ) u S1 ,J1( )2, q􏼒 􏼓􏼚 􏼛∧ j(R,D) v(R,D)1, q􏼐 􏼑∧j(R,D) v(R,D)2, q􏼐 􏼑􏽮 􏽯􏼚 􏼛.

(22)

*us,

j S1 ,J1( )×(R,D) u S1 ,J1( )×(R,D)1, v S1 ,J1( )×(R,D)1􏼒 􏼓 u S1 ,J1( )×(R,D)2, v S1 ,J1( )×(R,D)2􏼒 􏼓, q􏼒 􏼓

≥ j S1 ,J1( )×(R,D)1 u S1 ,J1( )×(R,D)1, v S1 ,J1( )×(R,D), q􏼒 􏼓∧j S1 ,J1( )×(R,D) u S1 ,J1( )×(R,D)2, v S1 ,J1( )×(R,D)2, q􏼒 􏼓􏼒 􏼓􏼚 􏼛,

(23)

for every u(S1 ,J1)×(R,D)1 and u(S1 ,J1)×(R,D)2 in R and
v(S1 ,J1)×(R,D)1 and v(S1,J1)×(R,D)2 in S and q in Q.

Similarly, the product (S1, J1) × (R, D) is a
(Q, L)-FSSHR of R × S. □ □

4. Properties of (Q, L)-Fuzzy Soft
Subhemiring of a Hemiring

Some additional properties of (Q, L)-FSSHR of a hemiring
are discussed as follows:

Theorem 8. Let (S1, J1) be a FS subset of a hemiring R and
(L1, O1) be the strongest Q-fuzzy soft relation of R. Cen,
(S1, J1) is a (Q, L)-FSSHR subhemiring of R⇔(L1, O1) is a
(Q, L)-FSSHR of R × R.

Proof. Assume that (S1, J1) is a (Q, L)-FSSHR of R. Here,
u � ((u(S1 ,J1)1, u(S1 ,J1)2) and v � (v(S1 ,J1)1, v(S1 ,J1)2) are in
R × R. Now,
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j L1 ,O1( ) u L1 ,O1( ) + v L1 ,O1( ), r􏼒 􏼓

� j L1 ,O1( ) u L1 ,O1( )1, u L1 ,O1( )2􏼒 􏼓 + v L1 ,O1( )1, v L1 ,O1( )2, r􏼒 􏼓􏼒 􏼓

� j L1 ,O1( ) u L1 ,O1( )1, u L1 ,O1( )2􏼒 􏼓 + v L1 ,O1( )1, v L1 ,O1( )2, r􏼒 􏼓􏼒 􏼓

� j S1 ,J1( ) u S1 ,J1( )1 + v S1 ,J1( )1􏼒 􏼓, r􏼒 􏼓∧j S1 ,J1( ) u S1 ,J1( )2 + v S1 ,J1( )2􏼒 􏼓, r􏼒 􏼓􏼒 􏼓􏼚 􏼛

≥ j S1 ,J1( ) u S1 ,J1( )1, r􏼒 􏼓∧j S1 ,J1( ) v S1 ,J1( )1, r􏼒 􏼓􏼚 􏼛∧ j S1 ,J1( ) u S1 ,J1( )2, r􏼒 􏼓∧j S1 ,J1( ) v S1 ,J1( )2, r􏼒 􏼓􏼚 􏼛􏼚 􏼛

≥ j S1 ,J1( ) u S1 ,J1( )1, r􏼒 􏼓∧j S1 ,J1( ) v S1 ,J1( )1, r􏼒 􏼓􏼚 􏼛∧ j S1 ,J1( ) u S1 ,J1( )2, r􏼒 􏼓∧j S1 ,J1( ) v S1 ,J1( )2, r􏼒 􏼓􏼚 􏼛􏼚 􏼛

� j L1 ,O1( ) u L1 ,O1( )1, u L1,O1( )2􏼒 􏼓, r􏼒 􏼓∧j L1 ,O1( ) v L1 ,O1( )1, v L1 ,O1( )2􏼒 􏼓, r􏼒 􏼓􏼚 􏼛

� j L1 ,O1( ) u L1 ,O1( ), r􏼒 􏼓∧j L1 ,O1( ) v L1 ,O1( ), r􏼒 􏼓􏼚 􏼛.

(24)

*erefore, j(L1 ,O1)(u(L1 ,O1) + v(L1 ,O1), r)≥ j(L1 ,O1)􏽮

(u(L1 ,O1), r)∧ j(L1 ,O1)(v(L1 ,O1), r)} for each u(L1 ,O1) and v(L1 ,O1)

in R × R and r in Q. Again,

j L1 ,O1( ) u L1 ,O1( ) + v L1 ,O1( ), r􏼒 􏼓

� j L1 ,O1( ) u L1 ,O1( )1, u L1 ,O1( )2􏼒 􏼓 + v L1 ,O1( )1, v L1 ,O1( )2, r􏼒 􏼓􏼒 􏼓

� j L1 ,O1( ) u L1 ,O1( )1, u L1 ,O1( )2􏼒 􏼓 + v L1 ,O1( )1, v L1 ,O1( )2, r􏼒 􏼓􏼒 􏼓

� j S1 ,J1( ) u S1 ,J1( )1 + v S1 ,J1( )1􏼒 􏼓, r􏼒 􏼓∧j S1 ,J1( ) u S1 ,J1( )2 + v S1 ,J1( )2􏼒 􏼓, r􏼒 􏼓􏼒 􏼓􏼚 􏼛

≥ j S1 ,J1( ) u S1 ,J1( )1, r􏼒 􏼓∧j S1 ,J1( ) v S1 ,J1( )1, r􏼒 􏼓􏼚 􏼛∧ j S1 ,J1( ) u S1 ,J1( )2, r􏼒 􏼓∧j S1 ,J1( ) v S1 ,J1( )2, r􏼒 􏼓􏼚 􏼛􏼚 􏼛

≥ j S1 ,J1( ) u S1 ,J1( )1, r􏼒 􏼓∧j S1 ,J1( ) v S1 ,J1( )1, r􏼒 􏼓􏼚 􏼛∧ j S1 ,J1( ) u S1 ,J1( )2, r􏼒 􏼓∧j S1 ,J1( ) v S1 ,J1( )2, r􏼒 􏼓􏼚 􏼛􏼚 􏼛

� j L1 ,O1( ) u L1 ,O1( )1, u L1,O1( )2􏼒 􏼓, r􏼒 􏼓∧j L1 ,O1( ) v L1 ,O1( )1, v L1 ,O1( )2􏼒 􏼓, r􏼒 􏼓􏼚 􏼛

� j L1 ,O1( ) u L1 ,O1( ), r􏼒 􏼓∧j L1 ,O1( ) v L1 ,O1( ), r􏼒 􏼓􏼚 􏼛.

(25)

*us, j(S1 ,J1)(u(L1 ,O1)v(L1 ,O1), r)≥
j(L1 ,O1)(u(L1 ,O1), r)∧j(S1 ,J1)(v(L1 ,O1), r)􏽮 􏽯 for all u(L1 ,O1) and

v(L1 ,O1) in R × R and r in Q. Hence, (L1, O1) is a Q-fuzzy
subhemiring of R × R.

Furthermore, we consider that (L1, O1) is a Q-fuzzy
subhemiring of R × R, then u � (u(L1 ,O1)1, u(L1 ,O1)2) and v �

((v(L1 ,O1)1, v(L1 ,O1)2) are in R × R.
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j L1 ,O1( ) u L1 ,O1( ) + v L1 ,O1( ), r􏼒 􏼓

� j L1 ,O1( ) u L1 ,O1( )1, u L1 ,O1( )2􏼒 􏼓 + v L1 ,O1( )1, v L1 ,O1( )2, r􏼒 􏼓􏼒 􏼓

� j L1 ,O1( ) u L1 ,O1( )1, u L1 ,O1( )2􏼒 􏼓 + v L1 ,O1( )1, v L1 ,O1( )2, r􏼒 􏼓􏼒 􏼓

� j S1 ,J1( ) u S1 ,J1( )1 + v S1 ,J1( )1􏼒 􏼓, r􏼒 􏼓∧j S1 ,J1( ) u S1 ,J1( )2 + v S1 ,J1( )2􏼒 􏼓, r􏼒 􏼓􏼒 􏼓􏼚 􏼛

≥ j S1 ,J1( ) u S1 ,J1( )1, r􏼒 􏼓∧j S1 ,J1( ) v S1 ,J1( )1, r􏼒 􏼓􏼚 􏼛∧ j S1 ,J1( ) u S1 ,J1( )2, r􏼒 􏼓∧j S1 ,J1( ) v S1 ,J1( )2, r􏼒 􏼓􏼚 􏼛􏼚 􏼛

≥ j S1 ,J1( ) u S1 ,J1( )1, r􏼒 􏼓∧j S1 ,J1( ) v S1 ,J1( )1, r􏼒 􏼓􏼚 􏼛∧ j S1 ,J1( ) u S1 ,J1( )2, r􏼒 􏼓∧j S1 ,J1( ) v S1 ,J1( )2, r􏼒 􏼓􏼚 􏼛􏼚 􏼛

� j L1 ,O1( ) u L1 ,O1( )1, u L1 ,O1( )2􏼒 􏼓, r􏼒 􏼓∧j L1 ,O1( ) v L1 ,O1( )1, v L1 ,O1( )2􏼒 􏼓, r􏼒 􏼓􏼚 􏼛

� j L1 ,O1( ) u L1 ,O1( ), r􏼒 􏼓∧j L1 ,O1( ) v L1 ,O1( ), r􏼒 􏼓􏼚 􏼛.

(26)

If

j S1 ,J1( ) u S1 ,J1( )1 + v S1 ,J1( )1􏼒 􏼓, r􏼒 􏼓≥ j S1 ,J1( ) u S1 ,J1( )2 + v S1 ,J1( )2􏼒 􏼓, r􏼒 􏼓, j S1 ,J1( ) u S1 ,J1( )1, r􏼒 􏼓≥ j S1 ,J1( ) u S1 ,J1( )2, r􏼒 􏼓, (27)

and

j S1 ,J1( ) v S1 ,J1( )1, r􏼒 􏼓≥ j S1 ,J1( ) v S1 ,J1( )2, r􏼒 􏼓, (28)

we get (S1, J1)((u(S1 ,J1)1 + v(S1 ,J1)1), r)≥ j(S1 ,J1)(u(S1 ,J1)1,􏽮

r)∧j(S1 ,J1)(v(S1 ,J1)1, r)} for every u(S1 ,J1)1 and v(S1 ,J1)1 inR and
r in Q. Again,

j S1 ,J1( ) u S1 ,J1( )1v S1 ,J1( )1􏼒 􏼓, r􏼒 􏼓∧j S1 ,J1( ) u S1 ,J1( )1v S1 ,J1( )1􏼒 􏼓, r􏼒 􏼓􏼚 􏼛

� j L1 ,O1( ) u L1,O1( )1v L1 ,O1( )1, u L1 ,O1( )2v L1 ,O1( )2􏼒 􏼓, r􏼒 􏼓

� j L1 ,O1( ) u L1,O1( )1, u L1 ,O1( )2􏼒 􏼓 v L1 ,O1( )1, v L1 ,O1( )2􏼒 􏼓, r􏼒 􏼓

� j L1 ,O1( ) u L1 ,O1( )v L1 ,O1( ), r􏼒 􏼓

≥ j L1 ,O1( ) u L1 ,O1( ), r􏼒 􏼓∧j L1 ,O1( ) v L1 ,O1( ), r􏼒 􏼓􏼚 􏼛

� j L1 ,O1( ) u L1 ,O1( )1, u L1 ,O1( )2􏼒 􏼓, r􏼒 􏼓∧j S1 ,J1( ) v L1 ,O1( )1, v L1 ,O1( )2, r􏼒 􏼓􏼚 􏼛

� j S1 ,J1( )1 u S1 ,J1( )1, r􏼒 􏼓∧j S1 ,J1( ) u S1 ,J1( )1, r􏼒 􏼓􏼚 􏼛∧ j S1 ,J1( ) v S1 ,J1( )1, r􏼒 􏼓∧j S1 ,J1( ) v S1 ,J1( )1, r􏼒 􏼓􏼚 􏼛􏼚 􏼛.

(29)

If

j S1 ,J1( ) u S1 ,J1( )1v S1 ,J1( ), r􏼒 􏼓≥ j S1 ,J1( )2 u S1 ,J1( )v S1 ,J1( ), r􏼒 􏼓, j S1 ,J1( )2 u S1 ,J1( ), r􏼒 􏼓

≥ j S1 ,J1( ) u S1 ,J1( )2, r􏼒 􏼓,

(30)
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and

j S1 ,J1( ) v S1 ,J1( )1, r􏼒 􏼓≥ j S1 ,J1( ) v S1 ,J1( )2, r􏼒 􏼓, (31)

we get j(S1 ,J1)(u(S1 ,J1)1v(S1 ,J1)1, r)≥ j(S1 ,J1)(u(S1 ,J1)1,􏽮

r)∧j(S1 ,J1)(v(S1 ,J1)1, r)} for every u(S1,J1)1 and v(S1,J1)1 in R and
r ∈ Q. We have (S1, J1) which is a (Q, L)-fuzzv soft sub-
hemiring of R. □

In the following theorem, we use the composition op-
eration of functions.

Suppose U(S1 ,J1), V(S2 ,J2), Z(S3 ,J3) ∈ R.

We can define a composition mapping
F: U(S1 ,J1)⟶ V(S2 ,J2), G: V(S2 ,J2)⟶ Z(S3,J3), F.G �

H: U(S1 ,J1)⟶ Z(S3 ,J3)

Also, using some properties of (Q, L)-FSSHR of a
hemiring with the and composition operation of functions
with the some more theorem are derived.

Theorem 9. Let (S1, J1) be a (Q, L)-FSSHR of a hemiring R′
and g is Q-isomorphism from a hemiring N onto R′. Cen,
(S1, J1)°ψ is a (Q, L)-FSSHR of R.

Proof. Let u(S1 ,J1) and v(S1 ,J1) inR and (S1, J1) be a Q-FSSHR
of R′. *en,

bj
S1 ,J1( )

p􏼒 􏼓(u + v, r) � p(b)j S1 ,J1( ) u S1 ,J1( ) + v S1 ,J1( )􏼒 􏼓, r􏼒 􏼓≥p(b) j S1 ,J1( ) u S1 ,J1( ), r􏼒 􏼓, j S1 ,J1( ) v S1 ,J1( ), r􏼒 􏼓􏼚 􏼛

� p(b)j S1 ,J1( ) u S1 ,J1( ), r􏼒 􏼓∧p(b)j S1 ,J1( ) v S1 ,J1( ), r􏼒 􏼓􏼚 􏼛

� bj
S1 ,J1( )

p􏼒 􏼓 u S1 ,J1( ), r􏼒 􏼓∧ bj
S1 ,J1( )

p􏼒 􏼓 v S1 ,J1( ), r􏼒 􏼓􏼚 􏼛,

(32)

for each u(S1 ,J1) and v(S1 ,J1) in R and

bj
S1 ,J1( )

p􏼒 􏼓(u + v, r) � p(b)j S1 ,J1( ) u S1 ,J1( ) + v S1 ,J1( )􏼒 􏼓, r􏼒 􏼓≥p(b) j S1 ,J1( ) u S1 ,J1( ), r􏼒 􏼓, j S1 ,J1( ) v S1 ,J1( ), r􏼒 􏼓􏼚 􏼛

� p(b)j S1 ,J1( ) u S1 ,J1( ), r􏼒 􏼓∧p(b)j S1 ,J1( ) v S1 ,J1( ), r􏼒 􏼓􏼚 􏼛

� bj
S1 ,J1( )

p􏼒 􏼓 u S1 ,J1( ), r􏼒 􏼓∧ bj
S1 ,J1( )

p􏼒 􏼓 v S1 ,J1( ), r􏼒 􏼓􏼚 􏼛,

(33)

for each u(S1 ,J1) and v(S1 ,J1)≠ 0 in R. □

Theorem 10. If (S1, J1) is a (Q, L)-FSSHR of R, then the
pseudo-Q-fuzzy soft coset (bj(S1 ,J1)p) is a (Q, L)-FSSHR of R,
for each a ∈ R.

Proof. Let (S1, J1) be a (Q, L)-FSSHR of R, for each
u, v ∈ N. *en,

bj
S1 ,J1( )

p􏼒 􏼓(u + v, r) � p(b)j S1 ,J1( ) u S1 ,J1( ) + v S1 ,J1( )􏼒 􏼓, r􏼒 􏼓≥p(b) j S1 ,J1( ) u S1 ,J1( ), r􏼒 􏼓, j S1 ,J1( ) v S1 ,J1( ), r􏼒 􏼓􏼚 􏼛

� p(b)j S1 ,J1( ) u S1 ,J1( ), r􏼒 􏼓∧p(b)j S1 ,J1( ) v S1 ,J1( ), r􏼒 􏼓􏼚 􏼛

� bj
S1 ,J1( )

p􏼒 􏼓 u S1 ,J1( ), r􏼒 􏼓∧ bj
S1 ,J1( )

p􏼒 􏼓 v S1 ,J1( ), r􏼒 􏼓􏼚 􏼛.

(34)

*us, (b(j(S1 ,J1)p))(u + v, r)≥ (b(j(S1 ,J1))p)(u(S1 ,J1), r)∧􏽮

(b(j(S1 ,J1)p)) (v(S1 ,J1), r)} for every u(S1 ,J1) and v(S1 ,J1) in R

and r in Q and for every u(S1 ,J1) and v(S1 ,J1)≠ 0 in R.
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b j
S1 ,J1( )

p􏼒 􏼓 u S1 ,J1( )v S1 ,J1( ), r􏼒 􏼓 � p(b) j S1,J1( ) u S1 ,J1( )v S1 ,J1( ), r􏼒 􏼓􏼒 􏼓≥p(b) j S1 ,J1( ) u S1 ,J1( ), r􏼒 􏼓􏼒 􏼓∧j S1 ,J1( ) v S1 ,J1( ), r􏼒 􏼓􏼚 􏼛

� p(b) j S1 ,J1( ) u S1 ,J1( ), r􏼒 􏼓􏼒 􏼓∧p(b) j S1 ,J1( ) v S1 ,J1( ), r􏼒 􏼓􏼒 􏼓􏼚 􏼛

� b j
S1 ,J1( )

p􏼒 􏼓 u S1 ,J1( ), r􏼒 􏼓∧(b) j
S1 ,J1( )

p􏼒 􏼓 v S1 ,J1( ), r􏼒 􏼓􏼒 􏼓􏼚 􏼛.

(35)

*us, j(S1 ,J1)(u(S1 ,J1) + v(S1 ,J1), r)≥ j(S1 ,J1)(u(S1 ,J1), r)∧􏽮

j(S1 ,J1)(v(S1 ,J1), r)} for all u(S1 ,J1) and v(S1 ,J1)≠ 0 in R. In this
manner, (b(j(S1 ,J1)p)) is a (Q, L)-FSSHR subhemiring of a
hemiring R. □

Theorem 11. If (S1, J1) is a (Q, L)-FSSHR of a hemiring R,
then H � 〈(u(S1 ,J1), r), j(u(S1 ,J1), r)〉: 0< j(u(S1 ,J1), r)≤ 1􏽮 􏽯 is
either empty or a (Q, L)-fuzzy soft subhemiring of R.

Proof. In the event that no segment holds the axioms, by
then H is unfilled. If u(S1,J1) and v(S1 ,J1) satisfy this condition,
then

j S1,J1( ) u S1 ,J1( )v S1,J1( ), r􏼒 􏼓,

≥ j S1 ,J1( ) u S1 ,J1( ), r􏼒 􏼓∧j v S1 ,J1( ), r􏼒 􏼓􏼚 􏼛,

≥ 0∧0{ }.

(36)

*us, j(S1 ,J1)(u(S1 ,J1) + v(S1 ,J1), r)≥ j(S1 ,J1)(u(S1 ,J1), r)∧􏽮

j(S1 ,J1)(v(S1 ,J1), r)} for each u(S1 ,J1) and v(S1 ,J1) in R and in Q.

j S1 ,J1( ) u S1 ,J1( )v S1 ,J1( ), r􏼒 􏼓,

≥ j S1 ,J1( ) u S1 ,J1( ), r􏼒 􏼓∧j v S1 ,J1( ), r􏼒 􏼓􏼚 􏼛

≥ 0∧0{ }.

(37)

*us, j(S1 ,J1)(u(S1 ,J1)v(S1 ,J1)), r≥ j(S1 ,J1)(u(S1 ,J1), r),∧􏽮

j(S1 ,J1)(v(S1 ,J1), r)} for each u(S1 ,J1) and v(S1 ,J1)≠ e inR. In this
way, H is either empty or a (Q, L)-fuzzy soft subhemiring of
R. □

5. Conclusion

*e main idea of this research work is to briefly explain and
establish the results, the properties, and some theorems on
the morphism of (Q, L)-FSSHR of a hemiring.*is work can
be extended in future to ideals of (Q, L)-fuzzy soft sub-
hermiring and inter-valued (Q, L)-FSSHR of a hemiring. We
trust that this work will have a profound effect on the
forthcoming exploration in this field and other soft algebraic
investigations to open up new horizons of premium and
advancement.
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