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Analyzing the stability of many control systems required solving a couple of crisp Sylvester matrix equations (CSMEs) si-
multaneously. However, there are some situations in which the crisp Sylvester matrix equations are not well equipped to deal with
the uncertainty problem during the stability analysis of control systems. This paper constructs analytical and numerical methods
for solving a couple of trapezoidal fully fuzzy Sylvester matrix equations (CTrFFSMEs) to overcome the drawbacks of the existing
crisp methods. In developing these new methods, fuzzy arithmetic multiplication is applied on the CTrFFSME to transform it into
an equivalent system of four CSMEs. Then, the fuzzy solution is obtained analytically by the fuzzy matrix vectorization method
and numerically by gradient and least square methods. The analytical method can obtain the exact solution; however, it is limited
to small-sized systems while the numerical methods can approximate the solution for large dimensional systems up to 100 x 100
with a very small error bound for any initial value. In addition, the proposed methods are applied to other fuzzy systems such as
Sylvester and Lyapunov matrix equations. The proposed methods are illustrated by solving numerical examples with different

size systems.

1. Introduction

The Sylvester matrix equation (SME) has massive applica-
tions in control theory [1, 2], system theory [3], optima
control [4], linear descriptor systems [5], sensitivity analysis
[6], perturbation theory [7], system design [8], theory of
orbits [9], design and analysis of linear control systems [10],
reduction of large-scale dynamical systems [11], restoration
of noisy images [12, 13], medical imaging data acquisition
and model reduction [14], and stochastic control, image
processing, and filtering [13]. CSME must be solved si-
multaneously in many applications, such as analyzing the
stability of control systems [15]. Researchers for many years
have proposed many analytical and numerical methods for
solving CSME with crisp numbers.

Although analytical solutions, which can be computed
using Vec-operator and Kronecker product, are important,

the computational efforts rapidly increase with the di-
mensions of the matrices to be solved. For example, it re-
quired getting the inverse of mn x mn matrix for a system of
size m x n which leads to computation complexity. There-
fore, this method is limited to systems with small coefficients
only. In addition, for some applications such as stability
analysis, it is often not necessary to compute analytical
solutions; approximate solutions or bounds of solutions are
sufficient. Also, if the parameters in system matrices are
uncertain, it is not possible to obtain analytical solutions for
robust stability results [16, 17]. Alternative ways exist which
transform the matrix equations into forms for which so-
lutions may be readily computed, such as the Jordan ca-
nonical form [18] and Hessenberg-Schur form [19].
However, these methods are computationally expensive for
large systems. In the field of matrix algebra and system
identification, iterative algorithms for large systems have
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received much attention [20]. Starke and Niethammer [21]
presented an iterative method for solutions of the SME by
using the SOR technique while Jonsson and Kagstrom
proposed recursive block algorithms for solving the coupled
Sylvester matrix equations [22]. Kagstrom derived an ap-
proximate solution of the coupled Sylvester equation [23].

Many authors studied the least square solutions of
CSME [24-31] while authors in [32] discussed the solv-
ability conditions and general solutions for mixed Sylvester
equations. Recently, a relaxed gradient-based algorithm for
solving generalized CSME was introduced by [33] in ad-
dition to the conjugate gradient least square algorithm [34]
and gradient-based approach [35] and the BCR algorithm
proposed by [36-38]. However, in many applications, some
of the system parameters are represented by fuzzy numbers
rather than crisp numbers due to uncertainty problems
such as conflicting requirements during the system process
and the distraction of any elements and noise. When all
parameters of the CSME are in the fuzzy form, then it is
called the coupled fully fuzzy Sylvester matrix equation
(CFFSME).

Definition 1. The couple fully fuzzy matrix equation can be
written as

AX+YB=E, "
CX+YD=F,
!vhere A= (a]) X1 22 = (Eé])mxn’~ Y= (5/ij)m><n’
- ( )nxn’ C = (E ) d )nxn’ = (Eij)mxn’ and
- (fl] mxn®

Equation (1) is of interest in many different applications.
However, until now, there are fewer studies for the solution
of this equation. In the fuzzy literature, most of the solution
methods are proposed for its special cases, such as fully fuzzy
Sylvester matrix equations (FFSMEs), fully fuzzy matrix
equations (FFMEs), fully fuzzy linear systems (FFLSs), and
fuzzy linear system (FLS).

The first approach of solving FLS was accomplished by
[39], which proposed a general model for solving a FLS by
transferring FLS to a linear system. Allahviranloo et al. [40]
proposed a method to obtain symmetric solutions of the FLS
based on a 1-cut expansion. They extended the same method
in [41] to obtain symmetric solutions of the FFLS. Sufficient
conditions needed for getting positive solutions of the FFLS
were discussed by Malkawi and his colleagues [42, 43]. Otadi
and Mosleh extended the FFLS to FFME in [44]. Several
analytical methods have been proposed for solving the
triangular fully fuzzy Sylvester matrix equation (TFFSME)
[45-47]. However, these methods are restricted only for
positive triangular fuzzy numbers and require a long mul-
tiplication process and consequently long computational
timing. Consequently, researchers limit the sizes of the
TFFSME to n = 2 or 3. Recently, authors in [48] considered
solution of the trapezoidal fully fuzzy Sylvester matrix
equation (TrFFSME) by transforming the TrFFESME to a
system of crisp linear matrix equations where the positive
and negative fuzzy solutions are obtained by applying
Kronecker product and Vec-operator method. However,
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these algorithms are not suitable for TrFFSME with large
sizes.

In addition, a few studies have been conducted for
solving a pair of fuzzy matrix equations. Sadeghi, Abbas-
bandy, and Abbasnejad [49] proposed a method for solving a
pair of fuzzy matrix equations in the form as follows:

AX+XB=C,
{ (2)

DXE =F.

Moreover, Daud, Ahmad, and Malkawi [50-53] pro-
posed analytical methods for solving FEFSME and a pair of
tully fuzzy matrix equations (PFFME) in the form as follows:

(3)

In that study, a direct method was proposed to solve the
PFFME by applying the Kronecker product and Vec-op-
erator. However, both methods required a long multipli-
cation process and were consequently limited to small-sized
systems. In general, the existing methods proposed for
solving PFFME, TFFSME, and TrFFSME are based on
Kronecker product and Vec-operator and therefore limited
to small systems (2 x2) or (3 x 3). Only a few researchers
considered fuzzy systems with sizes 10 x 10 [43]. Fuzzy
systems with sizes greater than 10 x 10 are not investigated
till now. In addition, the CFFSME is not investigated in the
fuzzy literature.

To deal with this shortcoming, in this paper, three
different methods are proposed for solving CFFSME with
trapezoidal fuzzy numbers (CTrFFSME) and its special
cases. The fuzzy solution to the CTrFFSME is obtained
analytically by the fuzzy matrix vectorization method and
numerically by gradient and least square methods. The fuzzy
matrix vectorization method can obtain the exact solution;
however, it is restricted to small systems. Therefore, it is
important to develop mathematical models and numerical
procedures that solve the CFFSME and special cases with big
sizes while the numerical methods can obtain the solution
for large dimensional systems up to 100 x 100 with a very
small error bound compared with the existing numerical
approaches, which were applied up to 10 x 10 fuzzy systems
[54-63]. Moreover, the proposed methods can also be ap-
plied to other fuzzy systems such as Sylvester and Lyapunov
matrix equations with triangular fuzzy numbers (TFNs) and
trapezoidal (TrFNs) fuzzy numbers.

To illustrate the effectiveness of the proposed methods
for solving the CTrFFSME in equation (1), we consider
various sizes of fuzzy systems, namely, small 2 x 2 and large
100 % 100. In addition, we compare the performance of the
proposed methods by calculating the number of iterations
(k), convergence factor («), error 8 (k), error bound (¢),
convergence rate, CPU time, real-time, and memory usage.
In add1t10n to the graphical representation of the relative
error &' (k) when the number of iterations (k) increases.

This paper is organized as follows. Section 2 introduces
preliminary arithmetic operations of trapezoidal fuzzy
numbers. In Section 3, three proposed methods for solving
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CTrFFSME are developed along with a presentation of its
algorithms. In Section 4, numerical examples are presented
to illustrate the proposed methods. Section 5 is dedicated to
the conclusion.

2. Preliminaries

The following are the basic definitions and results related to
TrFNs in fuzzy theory [64-66] and matrix theory [67-69].

Definition 2. Let X be a universal set. Then, the fuzzy subset
A of X is defined by its membership function
y~: X — [0, 1] which assigns to each element x € X a real
A

number by (x) in the interval [0, 1], where the function value
of y~ (x) represents the grade of membership of x in A. A
fuzzy set A is  written as A= {(x, by (%)),
X € X,;,t;(x) € [0,1]}.

Definition 3. A fuzzy set A, defined on the universal set of
real number R, is said to be a fuzzy number if its membership
function has the following characteristics:

(i) A is convex, i.e.,
ps (A + (1= 1), 2 min(p; (x), 45 (%))
Vxq,x, € R,VYA € [0,1].

(4)

(ii) A is normal, i.e.,
Jx, € R such that p~ (x,) = 1.

(iii) by is piecewise continuous.

Definition 4. A fuzzy number A = (a,,a,,as, a,) is a TrEN
in the general form if its membership function is as follows:

0, x<ai,
x—a,
, a;<x<a,,
a, —a;
yz(x) =41, a,<x<as, (5)
a, —x
, a;<x<ay
ay —as
L 0, xX>ay.

In Figure 1, the TrEN in general form is presented.

Definition 5. The sign of the TrFN A = (a,, a,, a5, a,) can be
classified as follows:

A is positive (negative) iff a; >0, (a,<0)

A is zero iff (a,,a,,a;anda, = 0)

A is near zero iff a, <0<a,

uilx) &

—» x

0 a a as ay

FIGURE 1: Representation of TrFN in a general form.

Definition 6. Operations of TrFNs.

The arithmetic operations of TrFNs are presented as
follows: let A = (ay,a,,as,a,) and B = (b;, b,, bs, b,) be two
TrFNs, then

(i) Addition:
A+B=(a,a5a5a,) + (b1, b3,b,)

(6)
=(a, +by,a, +by,a; +by,a, +b,).
(ii) Subtraction:
A-B=(ay,aya3a,)~ (b, by, b, by) )
=(a —by,a, —by,a5 —by,a, - by).
(iii) Symmetric image:
-A = (~ay, —a;, —ay,—a;). (8)

(iv) Scalar multiplication: let A € R, then
Aay, Aa,, Aas, Aay), A=0,
A@ (al)az’a3,a4) :{ ( 1 2 3 4)
(Aay, Aas, Aay, Aay), A<O.
9)
(v) Multiplication: the multiplication between fuzzy
numbers is neither commutative nor associative.

Thus, TrFNs multiplication operations can be
classified as follows:

Case.If A = (a,,ay,as,a,) and B = (b,,b,,bs,b,)
be two arbitrary TrFNs, then

AB = (a,h,m,d), (10)
where
a = min(a,b,,a,b,,a,b,,a,b,),

h = min(a,b,, a,bs, asb,, asb;),

(11)
m = max (a,b,, a,bs, asb,, asb;),
d = max(a,b,a,by, a,b;,a.b,).
Case II. If A, B> 0, then
AB = (a;by, a,b,, a3bs,a,b,). (12)



Case III. If A,B<0, then

AB = (a by, asbs, a,by,a,b,)). (13)
Case IV. If A>0 and B<0, then

AB = (ab;, asb,, a,bs,a,b,). (14)
Case V. If A<0 and B> 0, then

AB = (a,by, abs, asb,, a,b;). (15)

(vi) Equality: the fuzzy numbers A = (a,,a,,a;,a,) and
B = (b,,b,,bs,b,) are equal iff

a, =by,
a, =b,,
2 =0, (16)
a; = b,
a, =b,.

Definition 7. A matrix A = (@) yrxn 1s called a trapezoidal
fuzzy matrix if each element of A is a TrFN.

Definition 8. A fuzzy matrix A will be as follows:

(i) Positive (negative) and denoted by A>0, (A<0)if
each element of A is positive (negative) TrFN

(ii) Nonnegative (nonpositive) and denoted by A>0,
(A<0) if each element of A is nonnegative (non-
positive) TrFNs

(iii) Arbitrary if at least one element of A is near zero
TrFNs

In Remark 1, the positive trapezoidal fuzzy matrix is
written as four separated crisp matrices.

Remark 1. The positive trapezoidal fuzzy matrices
A = (@;;) yxm can be written as four separated crisp matrices
as follows:

A= (@), = (A7, AP, AP, 4T), 0 (17)

where AW, AP, A®) and A® are four crisp matrices sized
mx m.

In Remark 2, the multiplication of positive trapezoidal
fuzzy matrices is introduced.

Remark 2. The product of the two positive trapezoidal fuzzy
matrices A= @)y = (AD, AP, A AW,
Vigijj<m, and X = (Xp)un = (XU, X2, XO, xW),
V1< p<m,1<q<mn, can be represented as follows:

n
AX = Z i Xy (18)
k=1

where @; X, represent the multiplication of the fuzzy k — th
number of i — row of matrix A with g — column of matrix X.
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In addition, this product is equivalent to the product of the
following crisp matrices:

AX =(A(I)X(l),A(Z)X(Z),A(3>X(3),A(4)X(4)). (19)

Definition 9. The Vec-operator generates a column vector
from a matrix A by stacking the column vectors of A =

ap

app Ay
R . a,
Lo as Vec(A) = :
An1 *° Gy

aﬂ}’l

ay Ay
, then A = HRETE N B
a e qa
nl nn
ann

Theorem 1 (see [70]). If the crisp linear matrix equation
AX = E has g unique solution X, then thg gradient iterative
solution X (k) given by X(k) =X(k-1)+
a- (AT (E.-AX(k-1)) converges  ,to X or
lim,_ (X (k)) = X for any initial value X (0).

. In addition, if

ap

4| a
A=Vec | "2

Theorem 2 (see [71]). If the crisp linear matrix equation
AX = E has g unique solution X, then the gradient iterative
solution X (k) given, by X(k) =X(k-1)+
a- (AT -/A)_l (AT (E-AX (k-1)) conyerges to X or
lim,_ (X (k)) = X for any initial value X (0).

In Section 3, the solution to the CTrFFSME in equation (1)
is discussed.

3. The Solution of Coupled Trapezoidal Fully
Fuzzy Sylvester Matrix Equation

In this section, the solution to the positive CTrFFSME is
considered. To get the solution, the positive CTrFFSME is
converted to an equivalent system of CSME, and then the
solution to this system of CSME is obtained by three dif-
ferent methods. In Section 3.1, the positive CTrFFSME in
equation (1) is converted to an equivalent system CSME
based on the arithmetic multiplication operation in Defi-
nition 6.

3.1. Systems of CSME. In this section, the positive
CTrFFSME in equation (1) is converted to four systems of
CSME. The next theorem shows that the CIrFFSME can be
written as four systems of CSME.

Theorem 3. Fundamental theorem of the coupled trape-
zoidal fully fuzzy Sylvester matrix equation.

In the CTrFFSME in equation (1), if A = (@), = (AY,
A, A(3),A(4)) >0andC= (Eij)mxm - (C(l),c(Z), C(3),C(4))
>0, V1<i, j<m, B= (b)), = (B, B?,B®),BW)>0 and
D=(d}),,= (DV,D@, D, DW)>0,V1<i, j<n, and X =
(%ij)mxnz (X(l),X(z), X(3),X(4)) >0, Y = (yij) — (Y(l),

mxn
Y(Z),Y(3),Y(4))>O, E= (Eij) = (E(l),E(Z),E(3),E(4))>O,

mxn
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and F= (.?ij)mxn: (FO,F@ FO FW)>,
V1<i<m,1<j<n, then the positive CTrFFSME is equivalent
to the following systems of CSME:

n n _
Z A Xy + Z Vicbij = €
k=1 k=1

Vi<i<m,1<j<n,

n n
Y Xy + Y Vady; = fip V1<i<m, 1<j<n.
k=1 k=1
(20)

Proof. Since A, B, C, D, E, F, X, and Y in equation (1) are
positive trapezoidal fully fuzzy matrices, respectively,
equation (12) in Definition 6 can be used to find AX, YB,
CX, and YD in equation (1) as follows:

n
AX — Zaik%kj :(A(I)X(l)’A(Z)X(Z),A(3)X(3))A(4)X(4)))

n
CX = Y 5%, =(cWxD,c?x®,cVx®,cWx®),

T
)

n
YB — Z’)v/ikdkj (Y I)D(l Y(Z)D(z),Y(3)D(3),Y(4)D(4)),

>~
Il
—

(21)
s.t alli=1,...,mandj=1, ..., n. Combining AX and YB,
CX and YD, we get

n n
Z zk%kj + Zyikbkp VlSiSm,lSjgn,

k=
1 (22)

n

n
Zdlk'xkj-l—zyzkek]a Vi<i<m, 1<]<Yl
k=1 k=1

By Definition 1, the positive CTrFFSME is equivalent to
the following systems of CSME:

n n
Z Ay + Y Faby; =€, Vi<ism1<j<n,
k=1 (23)

n

n
Z~1kyck]+zylkdk] fl]’ VlSlSm,lS]Sn
k=1 k=1 0

Remark 3. The equivalent systems of CSME in equation (20)
to the CIrFFSME in equation (1) can also be written as
follows:

5
ADXD Ly Do) _ pO)
cWx® L yOpm _ g,
ADX® ,y@p® _ p@)
COXD , y@p®@ _ p@)

1 (24)
ADx® +Y<3>B<3> _EO)
cVx®P +y®p® = O,

CWXxW yWp®W _ p@

{ 4)X(4) + Y(4 B(4) E(4)

To solve the CTrFFSME in equation (1), we consider the
corresponding systems of CSME in equation (24).

Remark 4. The nature of the solutions of the CTrFFSME in
equation (1) depends upon the nature of the solutions of the
system of CSME in equation (24), which may be unique,
trivial, or infinitely many solutions [72]; that is, the
CTrFFSME may yield no solution, unique solution, or in-
finitely many solutions.

Since the systems of CSME obtained in equation (24) are
similar, in Remark 5, the systems of CSME are represented in
a more general form.

Remark 5. Based on equation (24), the CTrFFSME in
equation (1) can be written as follows: for 1 </<4, we have
{ A(l)X(l) +Y(I)B(l) _ E(l),

(25)
cOx® L yOp® _ pO

Based on Theorem 3, the CTrFFSME in equation (1) is
transferred to an equivalent linear system of CSME in crisp
form, which can be solved analytically and numerically by
many classical methods in linear algebra like the matrix
inversion method or Gaussian method. The main advantage
of the analytical methods is that the exact fuzzy solution to
the CTrFFSME in equation (1) can be obtained.

However, since most of the analytical methods are based
on Vec-operator and Kronecker products, the system’s size
in equation (1) is limited to small sizes (n<10). For
CTrFFSME with large dimensions (1> 10), iterative algo-
rithms to find an approximated solution are more practical
[20]. Therefore, in the following section, three different
methods are proposed for solving the CIrFFSME in equa-
tion (1). The first method aims to find the exact fuzzy so-
lution by extending the concept of matrix vectorization and
the Kronecker product. In addition, two iterative methods



are applied to approximate the fuzzy solution of the
CTrFFSME with large dimensions. In Definition 10, the
positive trapezoidal fuzzy solution is defined.

Definition 10. Trapezoidal positive fuzzy solution matrix in
a general form.

Let X = (X;j)pen = (XD, X@, X, X®) be a trape-
zoidal fuzzy matrix. If X = (X 1) X(2 X(3 X @) is an exact
solution of equation (20) such that 0<X®<
XP<Xx®P<Xx®,  vi<i,j<mmn, then X= (X,
X®,Xx® X®) s called a positive fuzzy solution of equa-
tion (1).

3.2. Proposed Analytical Method for Solving CTrFFSME.
In the following method, the analytical solution for the
CTrFFSME in equation (1) is obtained by extending the

1,eA" (B
r,ec®” (D%
n

T
1,8A? (BY) eI
1,6C? (D?
n
1,8AY (BY
n
,eC? (

T
1,8A" (BY) &I

T
[\ ,eC? (DY) &1

Step 3. By equation (25), the systems of coupled linear
matrix equations in equation (27) can be combined and
written as follows:
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method of the fuzzy matrix vectorization method (FMVM)
proposed by [48].

3.2.1. Fuzzy Matrix Vectorization Method (FMVM) for
Solving CTrFFSME. In this method, the CTrFFSME in
equation (1) is solved analytically using Vec-Operator and
Kronecker product. The following steps summarize the
methods:

BO, ¢, pi, b Fd X0 and Y<’> where
1=1,2,3,4, respectively, and convert the CTrFFSME in
equation (1) to the system of linear matrix equations in
equation (24) using Theorem 3.

Step 2. Applying Vec-operator and Kronecker product
on equation (24) gives the following:

<
o
(@}
><f\

<
[«
O
~<A

<
o
O
b
s

<
(¢
O
~
©

o}

—~
o
=

<
o
O

/N N N N
s 3
\_/\_/\_/v

Il
/_\/\/\/_\
3
—~ /-\/—\/:?/\/\/—\

~— — ~— ' ' ~——

)
)
)
)

<
o
O
~
=

(27)

where
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1,8 AY (B“))Tmm
1,8C (D(l))T@»Im
1,04 (B?) eI

1,e8Cc? (D(Z))T®I

<
o
O
>
—

<
(¢
O
~!

<
[
O
>
O
~— ~—

<
(¢
O
~
B

<
[
O
>
>
~— ~—

<
(¢
O
~
&

~— —

<
@
o
o
&
N— N~ ~— "

A
S

o
~— — ' ~— ~— ~—

N———— ~— " " ~—V

<
[0
[

<
[«
o
s

<
a
O
t
8

< <
a o
o o
s}
©

<
[«
o
"1
®

<
@
O
o
&

<
[0
AAAAAAA&AAAAAAAA

<
@
o
s
&

where the crisp matrix P is 8 mn x 8 mn, and the crisp
vectors Q and U are 8 mn x 1.

Step 4. Multiplying the system of equation in equation
(27) by matrix multiplicative inverse gives

Q=P 'U. (29)

Step 5: By Definitions 9 and 10, the obtained solution in
equation (29) can be written as follows:

7
0
0
- ,
1,8AY (BY) &1,
0
T
1,ec? (DY) eI,
T
1,eAY (BY) &1,
0
T
1,ec” (DY) eI,
(28)
(n .2 3 .4 (ny .2 .03 .4
(xll > X115 X115 X ) (xln > X1n > X1n ’xln)
X= : . : >
(n .2 3 .4 (n .2 03 .4
xml’xml’ ml’xml xmn’xmn’xmn’xmn
n 2 03 4 n @2 03 4
()’11 Y YuoYu ) (yln > Vin ’)’m’J’ln)
Y= : g :
n 2 03 4 n @2 03 4
yml’yml’yml’yml ymn’ymn’ymn’ymn
(30)



In the following remark, the system of equations in
equation (26) is written in a general form.

Remark 6. Based on equations (25) and (27), the CTrFFSME
in equation (1) is equivalent to the following system:for
1<1<4, we have

T
1,8AY (BY) &1, <Vec(X(l)) ) (Vec(E(l)) )
T N N
r,ec” (DY) o1, vec(v?) vec(F")
(31)
The sufficient conditions to have a unique fuzzy solution
to the CTrFFSME are discussed in Corollary 1.
Corollary 1. For 1<I<4, the CIrFFSME in equation (1) has
a unique solution if and only if the matrix
(O] (D\T
(I"@A (B ) &Ly ) is nonsingular. Then, this solution

1,ec? (D"N'e1,
is obtained by

vee(X)\ (1,840 (89) 1, " (vee(E”)
VCC(Y(I)) - 1n®c(1) (D(l))T®1m vec(F(l)) )
(32)

and can be written as

( 1 2 (3 .4 1 2 .3 (4
(Xu » X115 X115 X1 ) (xln > X112 X1 > X1 )
X= : : ,
1 2 (3 .4 1 2 (3 (4
J xml’xml’ ml’xml xmn’xmn’xmn’xmn
n @ 06 4 (1 () . (3) ,(4)
(J’u » Y11 Y1 Yu ) (yln > Yin > Yin > Vin )
Y= : g :
mn @ 06 4 (1 .2 . 3) 4
- yml’yml’yml’yml ymn’ymn’ymn’ymn

(33)

3.2.2. Feasibility of the Positive Fuzzy Solution to the
CTrFFSME. The obtained positive fuzzy solution in equa-
tion (30) to the CTrFFSME in equation (1) is feasible (strong
fuzzy solution) if the following conditions are satisfied: for
1<l<4,

(i) XP>0,V{1<i, j<m,n}

(i) YO >0, V{1<i, j<m,n}
(iii) XV < XP<X® < XD, v{1<i, j<m,n}
(iv) YO <Y@ <y® < yW vi1<i, j<m,n}

Remark 7. If the solution fails to satisfy the feasibility
conditions, it is infeasible (weak fuzzy solution).

The algorithm of the FMVM for solving the CTrFFMSE
in equation (1) is given in the following five steps.

Advances in Fuzzy Systems

(n .2 3 .4 (1 2 .3 .4
(xll > X115 X115 X ) (xln > X1p > X1y ’xln)
X= : : ,
1 2 3 .4 1 2 .3 .4
) X XD Xmb Xm0 X Xy Xy Xy
(1 2, 3) , (4) (1 2 3, (4)
(Yu Y YuoYu ) (yln > Yin > Vin > Vin )
Y= : g :
(1 2 ,3) , (4) (1 @2 3, (4)
yml’yml’yml’yml ymn’ymn’ymn’ymn

(34)

In Section 3.3, the positive solution to the CIrFFSME is
approximated numerically by extending the GI method in
Theorem 1 and LSI method in Theorem 2.

3.3. Proposed Numerical Methods for Solving CTrFFSME.
In this section, two numerical methods are developed: the
fuzzy gradient iterative (FGI) method and the fuzzy least
square iterative (FLSI) method. The details of the FGI
methods are discussed as follows.

3.3.1. Fuzzy Gradient Iterative (FGI) Method for CTrFFSME.
In this method, the CTrFFSME in equation (1) is solved
numerically by extending the GI method for solving the
crisp linear matrix equation AX = B in Theorem 1 to the
CTrFFSME in equation (1). The following steps summarize
the methods:

B, c®, p®, EO FO XB and Y® where
I =1,2,3,4, respectively, and convert the CTrFFSME in
equation (1) to the system of linear matrix equations in
equation (24) using Theorem 3.

Step 2. Using the hierarchical identification principle
and Remark 5, the system of CSME in equation (25) can
be decomposed into two subsystems: for 1 </<4,

o E®-y®B®
1 - b

FO _yOp0 (35)
g =(EO - A0Xx®D FO _chx0),

where the iterative positive solution to the system of
CSME in equation (25) is the average of the iterative

(O]
solution for the subsystems. Let y; = (é(”) and
b= (5 D).

From equations (25) and (35), the following can be
obtained: for 1</<4,
52(’) = yx?, (36a)

g =y, (36b)
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Step 1. Convert the CTrFFSME in equation (1) to four systems of linear matrix equations using Theorem 3
Step 2. Apply Vec-operator and Kronecker product on the systems obtained in Step 1

Step 3. Convert the obtained systems in Step 2 to a single system PQ =U

Step 4. Multiply both sides of the system obtained in Step 3 by P~!

Step 5. Solve the system of matrix equations in Step 4 and write the positive fuzzy solution as follows:

ALGORITHM 1: Fuzzy matrix vectorization and Kronecker product algorithm for solving CTrFFSME

Step 3. The iterative positive solution to the system of Step 4. Substitute equations (35) into (37) as follows:
equations in equations (36a) and (36b) can be obtained

by the GI method in Theorem 1 as follows: for 1 </ <4,

we have

A A A
x (k) =% (k—1)+a - (yl)T< O _yx (k- 1)),

31 = 51 (k= 1)+ o (&0 = 51 = D, )BT
(37)

A A E(l) _ A k _ 1 B(l) A(l) /\(l)
x (k) =x;(k=1)+ o - (YI)T<< i’l( ) )‘( 0 )x (k—1)>,
FO -3, (k-1)D? C (38)

Qz(k)=%(k—1)+ocz-<(E<”—A”>9c,(k—1) FO—cP% (k-1)) - yi(k-1)(B® D(l))>(ﬁ1)T-

The obtained algorithm in equation (38) can be written
as follows: for 1<1<4, we have

E(l)_A(l)/\ k—l _/\ k_lB(l)
;\Cl(k)z’/él(k—l)Jr“l'(Yl)T( X ( )= yi( ) ’

FO —cP% (k-1) - y,(k-1)D? (39)
N A
yitk) =y (k=1 +a- (EQ - A0% (k- 1) - 5,(k— 1DB® F® —cP% (k-1)-5,(k-1)D®)(B)"-
Let r;(k—-1)=E® - A(”)/é, (k-1)- 3\/1 (k-1)B® and where the convergence factor (step size) is given by

s(k=1)=FD —CW% (k-1) -y, (k- 1)D?,  then
for 1 <1< 4, the approximated solution in equation (39)
can be written in reduced form as follows:

A A T (k—l)

f’z(k) =§’l(k— D+a-(rk=1) sk~ U)(ﬁl)T’
(40)

2

0<“’<A [(A(l))TA(l)]+)L [B”)(B”’)T]+A [(C(l))TC(l)]+A [D(D(D(l))T]' (41a)
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It can also be obtained as follows:
2

T R T B

where AP = tr[AD . (AD)T].

At step k —th of the iteration, the following relative
error is considered:

[0 - 2= o + 500 - 51 e 0

& (k) =
[l + ool

(42)

Step 5. By Definition 10, the approximated fuzzy so-
lutions obtained by the previous step to the CTrFFSME
in equation (1) can be written as follows:

A (Au) A2) A0) A(4>)
X=X » X > X > X 5

N /\(1) /\(2) /\(3) /\(4)
y: y ’y ’y ,)/ .

It can also be written in matrix form as

(43)

A AR) AGB) A4 A A2 AB) A@
XX XX ) | X X Xy s X1
%= ,
A AR) AB) A4 A AR AB) A4
] xml’xml’xml’xml xmn’xmn’xmn’xmn
A AQ2) AB) A(4) A AQ2) A A(4)
YusYu-Yu>Yu | 0\ YoV Yin Y
A
y: . .
A AQR) AB) A(4) A AQ2) AB) A(4)
yml’yml’yml’yml ymn’ymn’ymn’ymn

(44)
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In Theorem 4, we prove that the iterative solution ob-
tained by the FGI method converges to the positive solution
of the positive CTrFFSME for any initial value.

Theorem 4. If the system of CSME in equation (25) has a
unique positive solution (X, YD), then the iterative solu-

INO) N0
tion (x (k),y (k)) in equation (43) converges to
(0 D
(XD, YD) for any initial values x  (0),y (0) for 1<1<4
[0 (0
(ie., if k —> 00, then XD =% (k) and YD =y (k).

Proof. Let y (k) be the error at each k, for k =1,...,n and
1<l<4.

v (k) =y (k) + v, (k), (45)
v, (k) = x® - 3/}(1) (k), (46a)
y, (k) =y ® - 9(0 (k). (46b)

From equations (24), (39), (46a), and (46b), the fol-
lowing is obtained:

AN [ APy, (k- 1) -y, (k - 1)B”
Y () =y, (k=1 +a- 1 ’
c® ) \ ¢, (k-1) -y, (k- D (47)

y () =y, (k=D + g (AP, (k= 1) -y, (k- 1)B? -CPy, (k=1) -y, (k- )D? ) (B® DO)".

Taking | - I?> to both sides of equation (47) gives the
following:

”1//1 (k)”Z =

wl(k—1)+(xl-< o

AON" [ —ADy, (k= 1) =y, (k= )BO
C -CWy, (k=1) -y, (k- 1)D®

2

>

(48)

la R =[vs (k= 1) + - (~AOy, (k= 1) =y, (k- DBD ~COy, (k—1) - y, (k- HDP ) (B® DO’

Remark 8. The following steps in the proof are long;
therefore, the system in equation (48) needs to be separated
into two equations in the following steps of the proof.

It is not hard to prove that A+ B> = tr ((A+

B)' (A + B)) = |A|> + 2tr (ATB) + || B|*. Thus, equation (48)

can be written as
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Lo GO = kD + Zaltr[wlT - 1)< < A0 >T< ~A%y, (k= 1) -y, (k- 1)BY ))]
c® ) \ -, (k-1) -y, (k-1)D"

AON" [ —a0y (k-1) -y, (k- 1)BO \ | .
( co > ( ~COy, (k=1) -y, (k- 1)D® > ’
w2 O =l (k= DI + 200te [ (k= (=A%, (k= 1) =y, (k= DBY CPy, (k=1 =y, (k- DD ) (BO DO)")]

+a2|(~ADy, (k= 1) -y, (k= 1)BO COy, (k=1) -y, (k= 1)D®)(B® DO)'[.

(49b)
Applying norm properties and matrix multiplication
gives
Jvi GO < vy (k= D + zaltr[(A%l (k=1))" (~A%, (k= 1) -y, (k- )B®)
0 N (D 1 _1npd
H(CP, (k- 1)) (-CPy, (k= 1) =y, (k= DD )] o
2
I AN L AR
H\ co ) \ —cOy, (k-1) -y, (k-1)DO ||’
lva GO < Jlwa (k= D + 2a,tr[(w2<k ~ DB (=A%, (k- 1) -y, (k- DBY)
#(v2 0= DD) (<C P, (k= 1) =y, (k- D) (50b)
+aZ](~ADy, (k=1) -y, (k= 1)BO ~COy, (k=1) -y, (k= 1)D® ) (B® DO’
Applying norm properties on equations (50a) and (50b)
gives
vy GO <y (k= D] + 2ocltr[(A‘”w1 (k=1)" (A%, (k= 1) -y, (k- )B?)
+(CO% (k=) (< (k=D =y, (= DD | (512
+ o¢12(||A<’>||2 +||c”’||2) [H—A(”% (k= 1) =y (k= DB +]-COy, (k= 1)y (k - 1)D”’||2],
I GO <y (k= D + 2058e] (w1 (k= DB®) (A%, (k= 1) =y, (k- 1B
#(y2 = DD) (<C Py, (k= 1) =y, (k- )D)] (51b)

+ a§(||B(’>j|2 +||D”>||2) [||—A(”1/f1 (k=1) —y, (k= DB +[-CVy, (k— 1) — v (k - l)D(l)”Z].
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By the definition of the error in equation (45) and by
equations (51a) and (51b), the following is obtained:

Iy 1P <y (e = DI + 2025 (A%, (k= D) (=4", (k= D = v, (k- DB®)
H(CD, = 1) (<€ Py, (e = 1) =y (k - 1)D<”)]

ra(Ja”] +Je ) [-A%w k=1 = ya k= DBOJ 4] -CPy, e - 1=, (k- DD
(52)
v e = DI+ 2ayte| (1 (k= DBY)' (<4, (k =1) ~ y (k- 1)B")

#(y2 (k= DD) (<C Py, (k= 1) =y, (k= )D)]

wa([BOF [ )[4 = 1) = v (e DB +]-CO%, (k- 1) -y (k- D[],

which can be written as

Iy (RO < Jyry Gk = D + ]y, (k= D + zaltr[(A”)wl (k=1) (A%, (k= 1) - y, (k - )B?)
+(C%, (k=)' (-C", (k= 1) =y, (k- DD®)]
(I e A A N e R A ALK
N 2¢xltr[(1//2 (k= DBOY (=A%, (k= 1)y, (k= DB) +(y, (k = DDO) (=P, (k= 1) =y (k - 1)D<’>)]
ea([BO 4| ) -4 k= 1 = ya k= DB |0y k- -y k- 10O

Iy (I < [y (k= DI + ]y, e = DI + 205t [ (A%, (k= 1)+, (k - DB?) (AP, (k= 1) -, (k - )B?)

+(CO%, (k= 1)+ 9, (k= D) (~C P, (k= 1 =y, (k- DD ?)]

rai(Ja®f e +[BOF I )| A% k= - vtk = DB +|-c Py, e~ 1)~y k- D[]
Iy I < ||y, k= D|* +]|y2 k= D - 20c,tr[(A(l)1//1 (k=1)+y, (k= 1)B?) (A%, (k= 1)+ y, (k- )B?)

+(CO%, (k= 1)+ 9, (k= DD (CV, (k= 1) + y, (k= D)

+ af<j|A<”||2 el + O +|p® “2) [||A”>1//1 (k=1 + v, (k= DBO +]COw, (k- 1) + v, (k- 1)D”>||2],
Iy GO <y (e = DI = 20 A%, (= 0+ v (k= DB + |, (= 04y (k- DD

2_“12 0] _ _1ypO|? ) B 3 o2
v [”A vi (k= 1)+, (k= DBO| +]CPy, (k= 1) + v, (k- 1)D?) ]

(53)
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By equation (41b), the following can be obtained:
Iy GO <lly (e = DI - 2oc1(1 - %)[MA(”% (k=1)+y, (k- )BO[

ey k=1 4y (k- 1)D”>||2].
(54)

At k=1, lyMP<lyOF -2 (1— (a/
N UADY, (0) + v, (BPI + |ICPy, (0) + w, (0)DP)].

At k=2 Qy@P<ly (I - 20,1 - (a/9)
(AP, 1)+, (DBOI +IC Py, (0) + w, (0)DPJ].

At k=3, lyG)I°<llv)I* - 20 (1 = (a/9)) [IADy,
(2) +y, BOI? +ICPy, (2) + v, D).

Atk=n-1lly(n-DI*<lly(n-2)I* - 20 (1 - (e/9))
NADy, (n=2)+y,(n=2)  BOP+ICOy, (n-2)+y,
(n-2)DVJ’].

Atk =n, ly@I <y (n-DI? =20 (1 - (/) [IA?D
v, (=1 +y,(n-DBYI> + [CYy,(n-1)+y,(n -1)
DO

Therefore, the following is obtained:

ly (I < lly (k = DI - zal(l - %)[”A(”% (k=1)+y, (k- DB[

ey k-1 4y (k- 1)D<l>||2].
(55)

If the convergence factor « is chosen to satisfy equation
(41b) and k — co, then

i( [A%%, )+ v, B[ +]Cy, (0 + 4, WD) < 0.
k=1

(56)
Therefore,

Jim (A%, (k) + v, (0)BY) =

(57)
Jlim (CPy, (k) + v, (kD) =

Y1) =y (k-1)+a - (ED

(1)
Step 4. Let y, = ( ) B = (B(l ® ), r(k-1) =
ED - A0%, (k=1) - (k- 1)BY, and 5, (k - 1) =

[ AON a0\ [ a0\ [ E® -
x (k) =x(k=1) + o o ) o !
_A(l))/él(k_l)_i\/l(k_l)B(l) D _c®

(B® pO )T((Ba) D®)(B® DO )T)‘l

13
Since AV >0,BD >0,C?">0,and D® >0, then
klim v, (k) =0,
T (58)

lim y, (k) =o0.

By equations (46a) and (46b), the following is obtained:
lim <X” s (k)) =

0]
i (75" 0) <0

(O]
Consequently, if k — co, then X =x (k) and
(O]
A

YO =Yy (k).
Therefore, if the system of CSME in equation (25) has a
unique positive solution (X, Y®), then the iterative so-

(59)

lution (3/2 (k)j\/ (k)) in equation (43) converges to

(XD, YD) for any initial Values x (0) 3\/( ) (0) for 1<l<4
(ie., if kK —> o0, then X = x (k) and YO = y (k)).

The FGI algorithm is shown as Algorithm 2. This al-
gorithm can be used by different software for solving the
CTrFFSME in equation (1).

In the following method, the LSI method in Theorem 2
is extended and applied for solving the CTrFFSME in
equation (1).

3.3.2. Fuzzy Least-Square Iterative (FLSI) Method for
CTrFFSME. In this method, the least square iterative
method in Theorem 2 for solving AX = B is applied for the
CTrFFSME in equation (1). The first two steps of this method
are similar to those of the fuzzy gradient iterative method.

Step 3. The iterative positive solution to the system of
equations in equations (36a) and (36b) can be obtained by
the LSI method in Theorem 2 as follows: for 1 <1< 4, we
have

1 AD% (k-1) -y, (k- 1)BY >
k-1)- 5 (k-1D? )

xz( ) yz( ) (60)

%(k-1)-,(k-1)D?)

— CO% (k=1)-,(k—=1)D?. For 1<I<4, the ap-
proximated fuzzy solution in equation (60) can be
written as follows:
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forl=1,2,3,4
Choose a, ¢, 5\cl (0) =0, 3\/1 (0) = 0 # 0 is the Zero matrix with the same dimension as X (k) and Y ?® (k).
While k=0,1,2,...,n do
A A ) rf r(k—1)
x (k) =x;(k=1)+a;- (y) (sl(k— 1
Y,(k) =y (k1) +ay- (r(k=1) 5(k-1) B)"
r(k=1)=E® - A(l)/y\cl (k—1) -y, (k-1)BY
s;(k=1)=FY -CWx (k-1) - y;(k-1)D?

a) o 50
Y1 = C(Jz) B = (bij dij )

ij

8,k) = \ (1% (k) = &, G = DIP + 15, (k) = 5, Gk = DI U3 RIP + 15, RI)
If 6, (k) < ¢ then
print (x;(k), y;(k));
print ("number of iterations = ", k).

else
r(k—1
(k) = % (k=1) + g - <w>T(SjEk_ 13) ,
Yik) =y (k=1 +ap- (r;(k=1) s;(k—1))(B)"
update k.
k=k+1
end R R
print (x;(k), y; (k));
print (" number of iterations = ", k).
end

ArcoriTHM 2: FGI algorithm for CTrFFSME

A A - k-1
x(k)y=x,(k-1)+ oq( (YI)TYI) 1 (YI)T< g ) )

s;(k=1) (61)
-1
ViR =ik =1+ - (ri(k=1) sk =) (B) ((B)'B)
where the convergence factor (step size) is given by
0<a < 2 2
% -1 S ' 62)
Amax[al( (“I)T“I) (“z)T] + Amax[ (/31)T( (ﬂl)Tﬂl) /31] P17 (
At step k —th of the iteration, the following relative Step 5. By Definition 10, the approximated fuzzy so-
error is considered: lutions obtained by the previous step to the CTrFFSME
in equation (1) can be written as follows:
A A 2 A A 2
: ||xl(k) - x; (k- 1)“ +||)’1(k) -y (k- 1)“ A A A AB) @)
(k)= " P 3 . x:(x X LX L X ),
ol +[rce] (64

A A AQR) AB) A4
(63) y=\y >y >y >y |
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It can also be written in matrix form as

A A(2) A() A(4) A A2 AB) A(4)
X115 X115 X1 5% xln > X1 > X1 > X1p
AN
X =
/\(1) A2 AB) A(4) A AR AB) A(4)
l’x l’x l’x mn’xmn’x ’xmn
A AQ) A A4 A AQR) AB) A4
Yus>YusYu>¥Yn AT EPSPEDATED ST
A
y:
A1) /\(2) AB) A4 A AQ2) /\(3) A (4)
yml’yml’yml’yml ymn’ymn’ymn’ymn

(65)

In Theorem 5, we prove that the iterative solution ob-
tained by the FLSI method converges to the positive solution
of the positive CTrFFSME for any initial value.

Theorem 5. If the system of CSME in equation (25) has a
unique positive solution (XW,YW), then the iterative

y (k) =y, (k—1) + - (( A® >T< A0 >>1< A0 >T< -A%y, (k=1) =y, (k- 1)BY )
c® c® c® %, (k-1) -y, (k- 1)D®

1) -y, (k- 1BY

(B® DO )T((B(z) DW)(B® DO )T)‘l

‘/’z(k):lllz(k—l)+(xl.(_A(l)%(k_

Taking | - I?> to both sides of equation (68) gives the
following:

AON" [/ A0
(k=1 +a- co o)

||1//1 (k)"z =

) 2
Yrao\T ~ADy (k=1) -y, (k- 1)B®
c® —C(l)llll (k—l)—l[/z(k—l)D(Z) >

15

solution (x (k) y (k)) in equ @fion (@(]) converges to
(x0y l))for any initial valueé % (0),y (0) forl’)1<l<4
(i.e., if k — oo, then XU =x"(k)and YD =y (k).

Proof. Let y(k) be the error at each k, for k=1,...
1<l<4.

,nand

A0
y (k) = < o >w1 0+ W(BY DO),  (66)

where

v, (k) =x" - A (k), (67a)

R =1 3" (o, (67b)

From equations (24), (60), (67a), and (67b), the fol-
lowing is obtained:

68
~CY%, (k-1) -y, (k-1)D") )

(69)

2 O =[lv (k=1 + & (~ADy, (k= 1) -y, (k= DB —CDy, (k- 1) =y, (k - 1)DD)

(B DD)'((B® DO )(BO D(l))T)’1

The following steps in the proof are long; therefore, the
system in equation (69) has to be into two equations in the
following steps of the proof.

"A(X (- a

‘ | ‘

A A
<C(l) >1//1 (k) <C(l) >‘/’1 (k-1)

((2) () (

2
+ap

7o) = (Ao ay ) (a(ee(ar-a)v)) ) siaxt s au(ry)

2 T
AD ~AYy (k=1) =y, (k- 1)B?
+2aytr |yl (k—1) l l%( ) =¥k l
c® 7C()V’l(k _ 71)D()

)T< Ay, (k=1) -y, (k- )BO “

Apply the following formula to equation (69) we get

[

~COy (k-1) -y, (k-1 D(l)

(70a)
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||1/,2(k)(3<1) D(l))”Z:”%(k_l)(B(z) D(l))||2+2altr[wg(k_1)
(A%, (k= 1) =y, (k= DBY —CP%y, (k=1) -y, (k- 1)D? ) (B® D®)")]

+ o |[(~ADy, (k-1) -y, (k- 1)BY ~COy, (k-1) -y, (k- 1)D?) (706)
T 12
- (B® DO)'((B® p®)(B® DO)") |l _
Applying norm properties and matrix multiplication
gives
AD 2/ A ? .
(O] (O] (O]
‘( cl) >‘V1 (k)“ < H( cl) )‘/’1 (k=1 + 2(xltr[(A vy (k- 1)) (—A yi(k—=1) -y, (k-1)B )
+(C%; (k= 1) (=P, (k= 1)~y (k - 1)D<”)] (71a)
DNT / A0\ \ n\T I N
ol AD AD AD _A()%(k_l)_%(k_l)B()
! ch ch ch —C(Z)Wl (k—1) -y, (k- DY ’
1y 0 (BO DOV <l =1 (BO DOY + 20t (- 1B (-4, = 1) -y - 1)B7)
T
+(y, (k= 1)DV) (=P (k= 1) -y, (k - I)Dw)] (71b)
+ a7 (~ADy, (k- 1) -y, (k- 1)BD ~COy, (k- 1) -y, (k-1)D®)
- (B® pW )T((B(n p®)(B® p® )T)_1||2.
Applying norm properties on equations (71a) and (71b)
gives
AD 2/ A® ’ .
(O] (O] O]
<C(l) >‘//1 (k)| < |< c >‘/’1 (k=1 + 2“ltr[(A vy (k- 1)) (_A vy (k—=1) -y, (k- 1)B )
72
+(C, (k- 1))T(—C(’)y/1 (k=1) =y (k - 1)D‘”)] (72a)
2 2
+af (90)| [~y (k= 1) =y (e = DB +]-C Oy, (k= 1) -y, (k- D[],
T
lv2 (R) (BO DD)|* < lyy (k= 1)(BO DD)|* + 2apte| (y, (k = DBP) (~AVy, (k= 1) - y, (k- 1)BY)
+(y, (k= )DV) (<€, (k- 1) -y, (k - 1>D<”)] (72b)
2 2
ra (902)[”—%\‘”% (k=1) =y, (k= DBY|" +|-cPy, (k= 1) - y, (k- DD ]
By the definition of the error in equation (66), From equation (73) and by equations (72a) and (72b),
) the following is obtained:
L | a0 ,
ly (k)| < 0 v, ()| +|v, (k) (B® DD)|". (73)
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(4 e
+(C%, (k=)' (<€, (k= 1) =y, (k- 1D ®)

+aj (9) [H—A(l)% (k=1) =y, (k- 1)B(’)“2 |-y = 1) -y (k- 1)D<z>"2]
Hya (k=1 (BO DO + 200t (k= 1B (-4, (k= 1) - vy (k- 1)B®)
#(y2 0= DD) (<C P, (k= 1) =y, (k= D)

+af (p,) [H—A“)% (k—1) =y, (k- 1)B(”“2 |- (k=1) — v, (k- 1)D® "2]

ly GOI* < lly (k = DI* + 2(xltr[(A(l)y/1 (k-1)+y, (k- 1)B(l))T(—A(1)% (k1) y, (k— 1)B")

2

ly (R < - z(xltr[(A(”wl (k=1))" (~A%, (k= 1) -y, (k- DBY)

(74)
+(CO% (k= 1)+, (k= DD®) (-C"y, (k=D =y (k- DD") |
+ 0} (9, + 2)| [Aw (k= 1) =y, (k= DB +[-C Py, (k= D =y, k= DD
ly (k)1 < llw (k = DI* - Zoc,tr[(A(l)l//l (k=1) +y, (k- 1)B<1))T(A(l)1//1 (k=1)+y,(k-1)B")
H(CP%, (k= 1)+ y, (k= )DDY (CPy, (k= 1) -y, (k - 1)D<’>)]
+0} (9, + 2)| A G- D4y (= DB ]y, G- D+ v, (k- DD,
lly (I < lly (k = DI —2«;[)]A”’w1 (k=1) +, (k= DB +]CO%, (k1) + v, (k- 1)D<’>|2]
+af (g + soz)[llA(”wl (k=1) + 5 (k= DB +[COy, (k= 1) + s (k - 1>D<’>||2].
By equation (62), the following can be obtained:
Iy GNP <ly (k= DI = 0 (2= i (g, + ) | A% (= 1)+ (k= DB s
75

+ ”C(l)yx1 (k—=1)+y, (k- 1)D(1)||2].

Atk=1, ly (DI <y O - o 2 - a (¢, + ) [IAD
¥, (0) + v, (MBI + [CDy, (0) + v, (0)D V2],

Atk =2, ly QI <lly (DI - oy (2 - o (9, + 9)) (1A
¥, (D) + y, (DBOP + 1CDy,y (1) + v, (DD O],

Atk =3, lyG)IP<ly @I - (2 - a (p, +9,)) [1AD
¥, () + v, BYI2 +1CDy, (2) + v, (D).

Iy IP <lly (k= DIP = o (2- & (9, +92)

# e (k=D 4y, (- 1))

i

If the convergence factor « is chosen to satisfy equation
(41b) and k — o0, then

i(nA“)% ®)+y, RB[ +]Cy, (0 + 9, (WD) <o,
k=1

(77)

Atk=n-1,y(n-DIP<ly(n-2)I> - (2 - a (g, +
92)) APy, (n=2) +y,(n-2)BOP +ICVy, (n-2)+
¥, (n=2)DOJ?].

At k=n, lyMIP<ly(-DIPa 2 - ap; +¢,)
APy, (n— 1)+ 9, (- DBOE + ICOy%, (n-1) + y,
(n- DDV,

Therefore, the following is obtained:

|ai(})1//1 (n-1)+y,(n- l)bi(;)“2
]

Therefore,

(76)

0:

Jdim (474,09 v, (08

(78)
lim (P, (k) + v, (D) = 0.
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forl=1,2,3,4

While k=0,1,2,...,n do

r(k=1)=EO = AV (k- 1) - y, (k- DB®
s(k—=1)=F" - CWx (k-1) - y,(k-1)D®

a;) o ;0
vi=|{ 0 Bi=(by dy)

ij

Choose a, ¢, 5\cl (0) =0, 3\/1 (0) = 0 # 0 is the Zero matrix with the same dimension as X (k) and Y ?® (k).

A A - k-~
X, (k) = %, (k= 1) + o () ) I(YI)T< :j Ek _ 3

Yi(R) =y k=D + oy (r(k=1) s (k=1)) B (BB

)

If 6, (k) <g then/\
print (x; (k), y; (k));
print ("number of iterations = ", k).
else

A A k-
x (k) =x(k=1)+a- (VI)T< Z;Ek— 3)

update k.
k=k+1
end R N
print (x;(k), y; (k));
print ("number of iterations = ", k).
end

8, k) = \ (1% (k) — & (e — DIP + 15, (k) - 5, Gk = DIPY (1%, (R + 15, (R)2)

ﬁ\/l(k):j\/l(k—l)+¢xl- (r;(k-1) sl(k—l))(ﬁ,)T

>

ALGORITHM 3: FLSI algorithm for CTrFFSME

Since AD >0,BD>0,C">0,and DY >0, then

lim y, (k) =0,
Jim y, (k) = 0.

By equations (46a) and (46b), the following is obtained:

)
lim <x(” - (k)) =0,

k—00

(O]
(705" w0) -0

Conggquently, if k — oo, then X 0= Q(l) (k) and
YO =y (k).

Therefore, if the system of CSME in equation (24) has a
unique positive solution (X?,Y ), then the iterative so-

A N
lution (x (k),y (k)) in equation (60) converges to

(80)

o AD A
(XD, YD)y for any initial values x (0),y (0) for 1<[<4

N A

(ie., if k — oo, then X® =x (k) and Y? = y (k).

Algorithm 3 summarizes the FLSI, respectively. This
algorithm can be implemented by any mathematical soft-
ware for solving the CTrFFSME in equation (1).

In Section 3.4, the three proposed methods for solving
the CTrFFSME in equation (1) are applied to different fuzzy
systems. O

3.4. Applications of the Proposed Methods to Other Fuzzy
Systems and Fuzzy Numbers. The proposed methods can
solve different positive fuzzy systems with triangular and
trapezoidal fuzzy numbers. It can be directly applied to the
following.

The fully fuzzy matrix equation is as follows:
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AX =E. (81)
The fully fuzzy Sylvester matrix equation is as follows:
AX+XD=E (82)

The fully fuzzy continuous-time Lyapunov matrix
equation is as follows:

AX+XA' =E (83)

The next section illustrates the three proposed methods
by solving two examples sized 2 x 2 and 100 x 100, followed
by the solutions verification.

4. Numerical Examples

To illustrate the accuracy and effectiveness of the proposed
methods for solving the CITrFFSME in equation (1), we
consider various sizes of CTrFFSME, namely, small (2 x 2)
and large (100 x 100). Analytical solutions are found by
Algorithm 1 for FMVM. Then, we compare the performance
of Algorithm 2 for FGI and FLSI for approximating that
solution by calculating the number of iterations (k), con-
vergence factor («), error bound (¢), convergence rate, CPU
time, real-time, and memory usage. In addition to the
graphical representation of the relative error &' (k), when k
increases, in Example 1, the proposed methods are applied to
small CTrFFSME (2 x 2).

Example 1. Solve the following 2 x 2 CTrFFSME:

{

1

b S}
>
I

feot

(84)

(@]

<

+ +
i

[/ Je~T
Il

m

Given

19

(2,3,5,7) (1,2,4,6)
((1,2,3,5) (2,4,6,9) >
(2,4,5,8) (3,6,8,10)
:( (3,5,7,9) (1,2,4,6) )
(17,48,110,252) (17,48, 114, 240)
:( (21,63,130, 293) (20, 66, 142, 289))’ (s5)
(2,4,5,7) (5,7,9,11)
C:( (5,6,7,8) (2,3,4,6) )
(1,3,4,6) (3,4,6,8)
:< (2,3,5,7) (4,5,7,9))’
. _( (22,59,121,267) (36,85,161,305) )
(32,66,128,258) (41,83,159,292)

Solution. The solution to the given positive CTrFFSME is
obtained by the proposed methods as follows.

4.1. Fuzzy Matrix Vectorization Method (FMVM). By
decomposing the given positive CTrFFSME and applying
Algorithm 1 for FMVM, the analytical solution is obtained
as follows:

Step 1. Convert the given CTrFFSME to four systems of
CSME using Theorem 3.

Step 2. Apply Vec-operator and Kronecker product on
the systems obtained in Step 1.

Step 3. Convert the obtained systems in Step 2 to the
linear system PQ =U

where
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DO DD DDV N
OO OO DD DD OODODDODOODOOD OO VO ~NOO
000000000000000000000000080m0608
00000000000000000000000080w06080
OO0 000000000000V 0
DO DD DD NN O ®
SR -l N e N N = N R = R == R-R-No S N R iN- R )
SO D DD DD N NOONVWO O
DO OO0 OO NSO FONONDODODODODODODOODODO O
DO DD DD OO NN FONONODODDODDODDODODDODDOO
DO DD DD OOINOXVODFOVODODDODDODDODDODOO
DO DD DD OINODRVODIFOOVODODDODDODDODDODDODDOO
DO DD DD FOVOOANANTFOODODDODODDODOO
DO DD DD OINNOOINNNODDODDODDODODDODDOO
DO DD DD FOVODOANFTOODDODDODDODDODODDODOO
DO DD DD OIINNOOINNNODODDODDDDODDDDODDOOO
OO ODCODOONODANONOIINODODODDODODODODDODODODODODODOoOOoOoO O
SO DO INOANONOINODODODDODDODDDODDDDDDDDODDODDDDODODODO O
C OO OO FOUVONOFOODODDODDODDODDODDODDODDODDODDODODODODODO O
OO OO OO IFOUVONOFOOODODODDODDODOODODDODOOOOoODCO O
DO DD DO AFOONMNMNOODODODDDDDODDDDODDODODODOOOO
SO DD DD MNAOCOFUOVODODDODDODDODDDDDDODDODODODDODDODODODO O
DO DD DD ANFOONMNMNOODDODDODDODDODDODDODDDODDDDDDODDDDODODODO O
OO OO NAOCOFUOVODODODDODDODODDODDODOODODDODOOoOOoOCO O
OCNO IO ANOFOOODODODDODODDODODODODDODODODDODOOoOOoODOOoOODOOoOCO O
OO AN FOODODODODODODDODDODDODDODODDODDDDDDODDDDDDODDODODOOO
SANONO IO N
NONO IO NODODODODODDDODDODODDODDODDODDODDODDDDDDDDDDDDODDODDODODOO O
SO ANOOIINANODODODODODDODDODDODODODOD OO oo OoOo O
CON—HOODANODODODODODODODDODODDODDODODODOODODDODODODOCDODODOoOoOoO O
HANOOINANODODODODODODODDODDODDODDODDODODDODDDDDDDODODODDDDODODODOODOO

AN~ OO AN

Il
_y

Step 4. Multiplying both sides of the system obtained in

Step 3 by P! and solving for Q, we get
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TaBLE 1: Comparison between FEMVM, FGI, and FLSI for Example 1.
Method Analytical solution-approximated solution o € k
FMVM ;L i NA 0 NA
A (D)
4.0003146781142283762 3.0008763877876229244
x -5
FGI ( 1.9996620682548063892 3.9991059886583548709> 0.01515 10 236
FLSI 3.9994905651474607941 2.9991905860792312089 05 105 213
1.9994905651470906697 3.9991905860781175687
21
FMVM 23 NA 0 NA
A 1.9988524913049122353 1.0013283860149024908 s
y FGI ( 2.0010864923386014879 2.9987621291364226938 ) 0.01515 10 236
FLSI 2.0005343495876688624 1.0009007873088771599 05 10-5 213
2.0005343495884565574 3.0009007873076832875 ’
54
FMVM ( 3 6) NA 0 NA
A (2) 4.999864079584862688 4.0030110768713679898 s
x FGI (3.0003389970085296313 5.997280209950071278 > 0.006711 10 333
FLSI 4.9988761522873104256 3.9985435355183413819 05 10-5 184
2.9990633422322140346 5.9990330988581697249 ’
FMVM ( i : ) NA 0 NA
A2 2.9983853131430880787 3.0019716289620118953 5
y FGI ( 4.0023361161663756989 4.9968909026675074104 > 0.006711 10 333
FLSI 3.0006934360840940105 3.0016140300903587928 05 105 184
4.0008105860628660745 5.001423238975299027
76
FMVM 53 NA 0 NA
A3 6.9966176458091605751 5.9986527914727380584 s
x FGl ( 4.9980891197185313267 7.9959255849905723918 > 0.003436 10 269
6.9949554419054769516 5.9938085953915972691 _5
FLSI ( 4.9961576166547481863 7.9958332089102526017 > 05 10 367
45
FMVM 6 7 NA 0 NA
A 3.9992591622654458963 5.006245036314479103 5
y FGI ( 6.0032068410122893031 7.0014106935371849297 > 0.003436 10 269
FLSI 4.0034261490303281354 5.0060523578143844872 05 105 367
6.0032467233815930657 7.0052034740382072243 ’
FMVM 190 181 NA 0 NA
A4 9.9965893617203098369 8.0200665293211628219 s
* FGI ( 8.99879605836685188 10.978609176105587048 > 0.001831 10 >o1
9.9826328737657879555 7.9801395018407377488 s
FLSI ( 8.9911911526917516843 10.991796352652112364 > 0-5 10 >02
7 8
FMVM 9 10 NA 0 NA
6.9831466534571057456 8.0224337286592531978 5
3\,(4) FGI ( 9.0229413143636603062 9.9800757765377075115 > 0.001831 10 >3
FLSI (7.0083279806078923944 8.017488243908286638 > 05 10°5 502

9.0079819495371672092

10.015609497910344443
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TaBLE 2: Computational time and memory usage for FGI and FLSI for Example 1.

Method k CPU time (ms) Real-time (ms) Memory usage (MB)
)A{“) FGI 236 6.09 6.15 1.05
FLSI 213 8.15 9.89 1.32
Q(D FGI 236 6.29 6.15 1.05
FLSI 213 7.63 7.73 1.30
%m FGI 333 6.24 6.17 1.05
FLSI 184 7.39 7.38 1.32
§“) FGI 333 6.15 6.19 1.05
FLSI 184 7.13 7.30 1.30
%(” FGI 269 6.16 6.09 1.05
FLSI 367 7.71 7.76 1.32
§<ﬁ FGI 269 6.16 6.06 1.05
FLSI 367 8.00 7.99 1.30
<§<” FGI 551 5.98 5.99 1.05
FLSI 502 7.91 7.86 1.32
9(4) FGI 551 6.10 5.99 1.05
FLSI 502 7.66 7.71 1.30

(87)

oo\ogxluwc\u;ooc\m\lqukwc\qkwmw»—‘wquwm»

—
—

@ O

—
=]

Step 5. By Definitions 9 and 10, the obtained solution in
Step 4 can be written as follows:

P _( (4,5,7,10) (3,4,6,8) )
(2,3,5,9) (4,6,8,11)

?_< (2,3,4,7) (1,3,5,8) )
(2,4,6,9) (3,5,7,10)

(88)

This positive fuzzy solution is approximated using Al-
gorithms 2 and 3 as follows.

4.2. Fuzzy Gradient Iterative (FGI) Method and Fuzzy Least-
Square Iterative (FLSI) Method. Algorithms 2 and 3 for FGI
and FLSI ags applied g compute the approximated fuzzy
solutions x (k) and y (k) for the given CTrFFSME using

the following initial value for 1<l<4,
AD 00 A 00 .
x (0 0) andy = (0 0 ) The approximated solu-

tions X andY are shown in Table 1 with the convergence
factor («;), error bound (¢), and the total number of iter-
ation (k).

Table 2 shows the computational time and memory
usage for FGI and FLSI.

Figure 2 shows the change in the relative error &' (k)
when k increases up to k = 20.

From Tables 1 and 2 and Figure 2, the relative error S (k)
is becoming smaller as k increases. This indicates that the
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Errors Errors
(k=20) (k = 20)
n I
144 /| N
1 h
[ 5 ',‘1
1241 [
1 \ |
[ " 1
;o .
1.0 f [
| L5
g \ g .
o 0.8 4 ! © [
: | s 4
1
06| ! g 14
1
. LA
04 - ‘/ \\
0.5 1 \
0.2 - S
LI
- . _
0 5 10 15 20 0 5 10 15 20
Iteration number (k)

—— Error 1-FLSI
--- Error 1-FGI

(a)
Errors
(k=20)

Tteration number (k)

—— Error 2-FLSI

Error 6 (k)

= 2-%-90-90-06-90.0¢ o o 4

0 5 10
Iteration number (k)

—— Error 3-FLSI
--- Error 3-FGI

(0)

--- Error 2-FGI
(b)
Errors
(k =20)
)
©
-
o
=
53}
\“"“.‘.—._. > -0 -0 o o o
T T T T
20 10 15 20

Iteration number (k)

Error 4-FLSI
--- Error 4-FGI

(d)

FIGURE 2: Comparison between &' (k) of FGI and FLSI for the first 20 iterations for Example 1.

proposed methods are effective and convergent for the given
CTrFFSME. This indicates that the proposed algorithms are
effective and convergent for the given positive CTrFFSME.

(1)2’3) 5) (2)4’6,9)

4.3. Verification of the Solution. To verify the obtained fuzzy
solution, we first multiply AX as follows:

A% ( (2,3,5,7) (1,2,4,6))( (4,5,7,10) (3,4,6,8) ) < (10,21, 55,124) (10,24,62,122))

(2) 4) 67 9) (3’ 5’ 7’ 10)

(2’ 3’ 5’ 9) (4’ 6) 8) 11)

__ ((2,3,5,7) (1,3,5,8) )( (2,4,5,8) (3,6, 8, 10)) (
YB = _
(3,5,7,9)

(8,22,51,131) (11,32,66,139)
(7,27,55,128) (7,24,52,118) )
(13,41,79,162) (9,34,76,150) )

(89)
(1,2,4,6)
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We also multiply CX as follows:

(
(

(1,3,4,6) (3,4,6,8)\/ (4,5,7,10) (3,4,6,8)
(2,3,5,7) (4,5,7,9))( (2,3,5,9) (4,6,8,11)
(2,3,5,7) (1,3,5,8)
(2,4,6,9 (3,57, 10))(

(18,41,80,169) (26,58,102,177)
(24,39,69,134) (23,42,74,130)
(4, 18, 41, 98)  (10,27,59,128)
(8,27, 59, 124) (18,41, 85,162)

(2,4,5,7) (5,7,9,11)) ( >

(5,6,7,8) (2,3,4,6)
In Example 2, we tested the proposed method on 100 x
100 CTrFFSME, and we obtained the following results using

(90)

Therefore,

TR ( (17,48,110,252) (17,48,114,240) ) _ Maple 2019.
(21,63,130,293) (20, 66,142,289)
CX+YD =< (22,59,121,267) (36,85,161,305) ) _ Example 2. Solve the following 100 x 100 CTrFFSME:
(32,66,128,258) (41,83,159,292) AX+YB=F
oD { CX+TD-F ©
The obtained positive fuzzy solution satisfies the given )
CTrFFSME, and it is feasible (strong fuzzy solution). Given
AW = LinearAlgebra: — RandomMatrix (100, 100, generator = 1---2),
BW = LinearAlgebra: — RandomMatrix (100, 100, generator = 1---2),
cW = LinearAlgebra: — RandomMatrix (100, 100, generator = 1---2),
pW = LinearAlgebra: — RandomMatrix (100, 100, generator = 1---2),
EW = LinearAlgebra: — RandomMatrix(lOO, 100, generator = 7 X 10%...1.5x 103),
F' = LinearAlgebra: — RandomMatrix(100, 100, generator = 7 x 10% - 1.5 x 10°),
A® = LinearAlgebra: — RandomMatrix (100, 100, generator = 3-- - 4),
B®@ = LinearAlgebra: — RandomMatrix (100, 100, generator = 3---4),
c? = LinearAlgebra: — RandomMatrix (100, 100, generator = 3---4),
D? = LinearAlgebra: — RandomMatrix (100, 100, generator = 3---4),
EY = LinearAlgebra: - RandomMatrix(lOO, 100, generator = 4 x 10*--- 6 x 104),
F® = LinearAlgebra: — RandomMatrix(lOO, 100, generator = 4 x 10*...6 x 104), (93)
A® = LinearAlgebra: — RandomMatrix (100, 100, generator = 5-- - 6),
B® = LinearAlgebra: — RandomMatrix (100, 100, generator = 5---6),
c® = LinearAlgebra: — RandomMatrix (100, 100, generator = 5---6),
D¥ = LinearAlgebra: — RandomMatrix (100, 100, generator = 5---6),
E® = LinearAlgebra: — RandomMatrix(100, 100, generator = 1.1 x 10" - 1.3 x 10%),
F® = LinearAlgebra: — RandomMatrix(lOO, 100, generator = 1.1 x 10%...1.3x 1()4),
AW = LinearAlgebra: — RandomMatrix (100, 100, generator = 7-- - 8),
BW = LinearAlgebra: — RandomMatrix (100, 100, generator = 7-- - 8),
c® = LinearAlgebra: — RandomMatrix (100, 100, generator = 7-- - 8),
D' = LinearAlgebra: — RandomMatrix (100, 100, generator = 7-- - 8),
EW = LinearAlgebra: — RandomMatrix(lOO, 100, generator = 2.2 x 10°---3 x 105),
FW = LinearAlgebra: — RandomMatrix(lOO, 100, generator = 2.2 x 10°--- 3 x 105).
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TaBLE 3: Comparison between FGI and FLSI for Example 2.

25

Method k o CPU time (s) Real-time (s) Memory usage (GB)
;\c(l) FGI 10 2x 1077 7.58 6.17 1.40
FLSI 10 0.999 22.51 19.06 2.52
A FGI 10 2x1077 7.73 6.29 1.35
y FLSI 10 0.999 22.34 19.38 2.45
;\c(z) FGI 10 2x1077 7.83 6.4 1.43
FLSI 10 0.999 25.69 22.54 2.78
A2 FGI 10 2x1077 8.28 6.73 1.43
y FLSI 10 0.999 25.75 22.62 2.78
;\C(3) FGI 10 2x 1077 7.72 6.29 1.45
FLSI 10 0.999 27.32 24.24 2.91
AB) FGI 10 2x1077 8.26 6.71 1.45
y FLSI 10 0.999 27.58 24.36 3.02
5\6(4) FGI 10 2x1077 8.85 7.11 1.60
FLSI 10 0.999 28.84 25.47 3.09
A4 FGI 10 2x 1077 9.10 7.37 1.60
y FLSI 10 0.999 28.80 25.44 3.09
Errors Errors
(k=10) (k=10)
400
300 +
— —~ 300 A
S S
«< 200 A «©
: :
i 5 200 A
100
100
0 2 4 6 8 10 0 2 4 6 8 10
Iteration number (k) Iteration number (k)
—— Error 1-FLSI —— Error 2-FLSI
--- Error 1-FGI --- Error 2-FGI
(a) (b)
FiGgure 3: Continued.
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Errors
(k=10)
400 -
:‘4:, 300
2
—
£
&8 200 -
100 -
0 - T * T T == T . T
0 2 4 6 8 10

Iteration number (k)

—— Error 3-FLSI
--- Error 3-FGI
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Errors
(k=10)
400 -
g 300
©
-
I
& 200 A
100 -
0 == T * T T = T -+
0 2 4 6 8 10

Iteration number (k)

—— Error 4-FLSI
--- Error 4-FGI

(d)

FIGURE 3: Comparison between relative 8' (k) of FGI and FLSI for the first ten iterations for Example 2.

Solution. The solution for the given CTrFFSME is ob-
tained by the proposed methods as follows.

4.4. Fuzzy Matrix Vectorization Method (FMVM). To apply
FMVM, we need to find the inverse of the 10000 x 10000
matrix, which requires long computational timing and huge
memory. Thus, FMVM is not a practical approach for such a
large dimensional system.

(O]

A

4.5. Fuzzy Gradient Iterative (FGI) Method and Fuzzy Least-

Square Iterative (FLSI) Method. Algorithm 2 for FGI and

FLSI is applied to compute the approximated fuzzy solution
(O] (O]

)A( (k) and 1/> (k) for the given CTrFFSME with a; =, =

oy =y =0.999 for FLSI and a; =ty = a3 = ¢, =2 %x 1077

for FGI using the following initial value:

N
X (0) = LinearAlgebra: — RandomMatrix (100, 100, generator = 0),

(94)

Y (0) = LinearAlgebra: — RandomMatrix (100, 100, generator = 0).

In Table 3, the computational time and memory usage
for the first ten iterations for FLSI and FGI are compared.

Figure 3 shows the change in the relative error &' (k)
when k increases up to k = 10.

From Table 3 and Figure 3, the relative error 8l(k) is
becoming smaller as k increases. This indicates that the
proposed methods are effective and convergent for the given
CTrFFSME. This indicates that the proposed algorithms are
effective and convergent for the given positive CTrFFSME.

5. Conclusion

Analyzing the stability of many control systems required
solving a couple of crisp Sylvester matrix equations si-
multaneously. In this paper, we presented the solution to
the CTrFFSME and its special cases analytically by FMVM
and numerically by FGI and FLSI methods. The FMVM
aims to find the exact solution. However, it is limited to

small-sized CTrFFSME, while FGI and FLSI can find an
approximated fuzzy solution to large CTrFFSME. The
numerical example analysis and graphical representation
of the relative error indicate that the approximated solu-
tions obtained by FGI and FLSI algorithms converge to the
exact solution for any initial value and any size of the
matrix system (up to 100 x 100). In addition, the relative
error is becoming smaller as the number of iterations
increases. This indicates that the proposed methods are
effective and convergent for the given CTrFFSME re-
gardless of any size of matrices. In addition, the developed
method can find positive fuzzy solutions to the following
fuzzy equations:

(i) Couple fully fuzzy Sylvester matrix equations with
positive trapezoidal and triangular fuzzy numbers

(ii) Couple fully fuzzy Lyapunov matrix equations with
positive trapezoidal and triangular fuzzy numbers
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(iii) Couple fully fuzzy Sylvester matrix equations with
positive trapezoidal and triangular fuzzy

(iv) Couple fully fuzzy Lyapunov matrix equations with
positive trapezoidal and triangular fuzzy

(v) Couple fully fuzzy matrix equation with positive
triangular and trapezoidal fuzzy numbers

The main disadvantage of this work is that it is limited to
CTrFFSME with positive TrFNs only. As future research, the
ideas presented in this paper will be extended to CTrFFSME
with arbitrary trapezoidal fuzzy numbers.
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