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To improve the human-computer interaction (HCI) to be as good as human-human interaction, building an efficient approach
for human emotion recognition is required. These emotions could be fused from several modalities such as facial expression, hand
gesture, acoustic data, and biophysiological data. In this paper, we address the frame-based perception of the universal human facial
expressions (happiness, surprise, anger, disgust, fear, and sadness), with the help of several geometrical features. Unlike many other
geometry-based approaches, the frame-based method does not rely on prior knowledge of a person-specific neutral expression;
this knowledge is gained through human intervention and not available in real scenarios. Additionally, we provide a method to
investigate the performance of the geometry-based approaches under various facial point localization errors. From an evaluation
on two public benchmark datasets, we have found that using eight facial points, we can achieve the state-of-the-art recognition
rate. However, this state-of-the-art geometry-based approach exploits features derived from 68 facial points and requires prior
knowledge of the person-specific neutral expression. The expression recognition rate using geometrical features is adversely affected

by the errors in the facial point localization, especially for the expressions with subtle facial deformations.

1. Introduction

The human mental state could be inferred using various
modalities such as facial expressions, hand gestures, acoustic
data, and biophysiological data [1-5]. The importance of
knowing this mental state appears in different disciplines.
For example, HCI is required to be improved to be as good
as human-human interaction. Hence, recognizing human
emotions by machines is considered an important step
forward. Pantic et al. [6] argued that facial expressions are
more important than body gestures and vocal expressions
to the judgment of human behavior. For example, in our
companion-based assistant system, facial expression is con-
sidered as a complementary aspect to hand gestures and other
modalities [7]. In addition, a human emotion recognizer can
provide feedback for different services. As a case in point,
the one-to-one tutoring outperforms conventional group
methods of instruction. Consequently, adapting one-to-one
tutoring to student performance through a cognitive process

(nonverbal behavior recognition) is crucial [8]. Many other
applications are built based on facial expression recognition
[9-11]. In this paper, we propose an approach to perceive
human facial expression (happiness, surprise, anger, disgust,
fear, and sadness) from captured face images. Addition-
ally, we synthesize facial points with several uncertainties
matching facial points detected with errors. These produced
facial points are used to investigate the performance of
our approach under inaccurate facial point localization. The
errors in the facial point location are drawn from identical
independent normal distributions with zero mean and five
different standard deviation values.

To recognize the facial expressions, Ekman and Friesen
[12] broke the facial expression down into smaller action
units (AUs), where each AU codes small visible changes in
facial muscles. Then, each facial expression is defined to be
composed of several AUs simultaneously occurring with dif-
ferent intensities. Instead of explicitly building an approach
to recognize the facial expressions from their corresponding



AUs, one can use directly geometry and appearance features
for expression recognition, where those features implicitly
encode the aforementioned AUs.

By exploring the state-of-the-art approaches for human
facial expression recognition, we can sort them into two cate-
gories. The first category regards prior knowledge of person-
specific neutral expression as essential for the approach. In
other words, each facial expression is concluded by compar-
ing features from face image with those of the same face at the
neutral expression [13-15]. These approaches do have limita-
tions such as the human intervention to define the neutral
expression of the considered person. Several methods were
proposed to automatically estimate the neutral expression;
for example, the average over many frames for each person is
assumed to be person-specific neutral expression, or a model
that best fits all neutral samples is considered as a general
neutral model. However, these methods are error prone and
cannot provide hand-annotation accuracy.

As a sample of the first category, Lucey et al. [13] manually
labeled 68 facial points in keyframes within each image
sequence then used a gradient descent Active Appearance
Model (AAM) to fit these points in the remaining frames.
Then, several features extracted from the displacement of
those points are fed into a multiclass support vector machine
classifier (SVM) to infer the human facial expression. In
another example in 3D facial data, Niese et al. [14] extracted
dynamic and geometrical features from facial points and
specific regions associated with the 3D face model of each
subject. These points are initially annotated or detected on
the neutral state image and tracked over the remaining
sequence. Moreover, many approaches employed spatiotem-
poral information of image sequence such as Valstar et al.
[16] who utilized the motion history inside the face image.
Zhu et al. [17] used hidden Markov model (HMM) along
with moment invariants to do facial expression recognition.
Zhang and Ji [18] used dynamic based network to model
the temporal behavior of the facial expressions. They used
IR illuminations and Kalman filtering to assist the facial
point detection and tracking. Baltrusaitis et al. [5] proposed
a dynamic system with three levels of inference on progres-
sively longer time scales to understand the human mental
states from facial expressions and upper-body gestures, where
they employed both DBN and HMM. Lorincz et al. [19] used
time-series kernels to analyze the spatiotemporal process
of the facial points, where the points movements in 3D
space are classified with kernels derived from time-warping
similarity measures. Some approaches utilized the texture
dynamics for the facial expression recognition [20-22]. Many
other approaches exploit also the facial point dynamics to
recognize the corresponding expression [23-27]. Obviously,
these corresponding approaches work with image sequences
starting usually with neutral expression.

By contrast, the second category does not require prior
knowledge of the considered person’s neutral expression. For
example, Littlewort et al. [28] convolved registered detected
face image with a filter bank of 72 Gabor filters with eight
orientations and nine spatial frequencies, where each filter
output value is considered as a feature. All those features
are the input into an individual SVM classifier for smaller
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facial action units (AUs). Finally, they built a multivariate
logistic regression classifier (MLR) on top of the output of
AU classifiers to recognize the human facial expressions.
Shan et al. [29] used the local binary patterns (LBP) for
facial expression recognition. Several modified versions of
LBP were also proposed for facial expression recognition,
for example, local normal binary patterns (LNBP) [30],
local phase quantisers (LPQ) [31], and local sign directional
pattern (LSDP) [32]. This category generates a feature vector
of larger size, which leads to an increase in the classifier test
and train time.

Our proposed approach follows the second category idea,
by not benefiting from prior knowledge about person-specific
neutral state or any temporal information. We infer the facial
expressions from features utilizing the location of just 8 facial
points inside a bounding rectangle around the detected face.
Those features represent the shape and location of three
facial components (eye, eyebrow, and mouth). The off-the-
shelf facial point detectors do not provide hand-annotated
accuracy for localizing facial parts in images. And to neu-
tralize the recognition rate analysis from using a specific
facial point detector, we provide a method to synthesize facial
expression data with different uncertainties matching the
errors from the detection of the used facial points. Finally, we
evaluate our approach on these synthesized data. This work
is an extension to our previous paper [33]. Here we further
enhance the approach performance by employing a point
distribution model (PDM) to avoid shape distortions, which
could be caused by noisy detection. In addition, more analysis
and experiments are carried out. Finally, detailed results and
comparisons are reported.

In this proposed approach, we provide a frame-level
facial expression recognition. Besides its usefulness to analyze
single images, it could be exploited in the facial expression
recognition using spatiotemporal methods. For example,
Valstar and Pantic [34] used a combined SVM and HMM to
model the facial AU temporal dynamics. They showed that
the accuracy of AU classifiers is improved by using a hybrid
of SVM and HMM, where SVM is providing frame-level
information employed as emission probabilities for HMMs.

The remainder of this paper is structured as follows. In
Section 2, we describe our proposed approach for the facial
expression recognition. Three experiments are discussed in
Section 3, where a comprehensive evaluation of the perfor-
mance of our method, including a comparison with a state-
of-the-art method, is provided. Finally, the conclusion and
future perspectives are given in Section 4.

2. Proposed Facial Expression
Recognition Approach

In this work, we investigate the ability of perceiving human
facial expression using geometrical features without any prior
knowledge of person-specific neutral expression, since the
neutral expression is usually manually annotated.
Disregarding the offered annotated neutral expression
(offered by most databases) is a step forward in the direction
of fully automatic facial expression recognition. To this
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FIGURE 1: The structure of the proposed facial expression recognition approach.
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FIGURE 2: Face detection along with selected facial points and extracted features. (a) Human face in neutral expression overlaid with 68
fiducial facial points [13]. (b, h) The detected face with the selected eight facial points. (c, i) Human face in happy expression. (d, j) Human
face in disgust expression. (e, k) Human face in surprise expression. (f) The six geometrical features; d, and d, are the average of two mirrored
values on the left and right sides of the face. (1) Human face in sadness expression. Images (a)-(e) are from Cohn-Kanade database, Jeffrey

Cohn. And the images (g)-(1) are samples from BU-4DFE.

end, our extracted geometrical features do not entail prior
knowledge of person-specific neutral expression. It is argued
that robust computer vision algorithms for face analysis
and recognition are based on configural and shape features
[35]. These features are defined as distances between facial
components (mouth, eye, eyebrow, nose, and jaw line). In
this paper, the facial expressions are inferred from the relative
location of eight facial points within the detected face besides
other geometrical features.

The structure of the proposed facial expression recog-
nition approach is pictured in Figure 1. First, a human face
is detected inside the input image. Then, we locate the
eight facial points inside the face by manually annotat-
ing/automatically detecting the points in the first frame and
then tracking them over the rest sequence (Sections 3.1 and
3.2) or altering the tracked facial points to simulate the errors
in the facial point detection stage (Section 3.3). To cope with
deficiencies in facial point localization, we project the facial
points onto facial point subspaces with the help of a trained
PDM. Hence, we assure that these points fall within the
variance of the training set. Following this, we extract two
geometrical feature types from the projected points. Finally,
we classify each normalized feature vector to one of the basic

facial expressions, where we employed two machine learning
algorithms for the facial expression recognition.

2.1. Face Detection. The human face is detected using a well-
trained Haar cascade classifier [36, 37]. This classifier employs
the Haar-like features, which are defined as the ratio of
intensities taken from adjacent rectangles. Interestingly, this
face detector does not rely on skin color and is trained with
several illuminations. On the other hand, it only detects
frontal upright human faces with approximately up to 20
degree rotation around any axis. Samples of the face detector
output are shown in Figures 2(b)-2(e) and 2(h)-2(1).

2.2. Feature Extraction. The used 2D facial points (P,) sample
three main facial components (mouth, eye, and eyebrow): two
points for eyebrows (p,.,» Piep); two points for eye’s corner

(prec’ plec); four points for mouth (Prm’ Pim> Pupm’ plom)’

Ps = {preb’pleb’ prec’Plec’prm’le’pupm’Plom} » Pi € RZ'
@
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TABLE 1: The mean (u) and standard deviation (o) of the facial point (P,) position for the six basic facial expressions, plus neutral expression
(based on CK+ database). o is square root of the average sum of the squared standard deviations in x- and y-coordinates. Each point is

positioned inside a detected face of normalized size of 1 * 1, where the upper left corner is the origin.

Facial point Happiness Surprise Anger Disgust Fear Sadness Neutral
Prec

u 0.395, 0.417 0.397,0.420 0.389, 0.402 0.392, 0.407 0.401, 0.419 0.398, 0.418 0.392, 0.410

o 0.010 0.012 0.014 0.013 0.012 0.012 0.012
Plec

u 0.603, 0.416 0.592, 0.418 0.603, 0.400 0.603, 0.404 0.597, 0.415 0.598, 0.415 0.600, 0.407

o 0.012 0.011 0.016 0.015 0.011 0.012 0.012
preb

u 0.275, 0.281 0.268, 0.242 0.281, 0.283 0.278, 0.289 0.284, 0.271 0.282, 0.278 0.275,0.273

o 0.019 0.024 0.016 0.019 0.024 0.017 0.019
Preb

u 0.713,0.278 0.711, 0.236 0.707, 0.276 0.704, 0.284 0.704, 0.268 0.704, 0.271 0.705, 0.265

o 0.018 0.023 0.017 0.020 0.023 0.021 0.018
prm

u 0.305, 0.732 0.371, 0.848 0.352,0.779 0.354, 0.764 0.318,0.798 0.346, 0.807 0.353, 0.788

o 0.019 0.026 0.023 0.021 0.027 0.025 0.021
plm

u 0.702, 0.728 0.628, 0.844 0.648, 0.775 0.653, 0.758 0.691, 0.794 0.660, 0.805 0.652, 0.782

o 0.022 0.028 0.025 0.021 0.027 0.023 0.021
Pupm

u 0.502, 0.716 0.498, 0.742 0.498, 0.746 0.503, 0.715 0.501, 0.734 0.502, 0.743 0.502, 0.743

o 0.014 0.018 0.017 0.017 0.017 0.018 0.016
Plom

u 0.505, 0.859 0.502,1.002 0.499, 0.808 0.504, 0.823 0.504, 0.875 0.502, 0.831 0.504, 0.839

o 0.023 0.044 0.025 0.025 0.026 0.023 0.023

Two feature sets are extracted from the selected facial
points. Figure 2(b) shows the eight facial points within a box
returned by the employed face detector.

2.2.1. Facial Points Location Features. Unlike Lucey et al’s
approach [13] which used 68 facial points, we use just eight
facial points. These points have shown to perform well in
the facial expression recognition [15, 33]. Moreover, these
points represent corner and edge points that can be efficiently
detected and tracked [38]. The location and size of a detected
face in Section 2.1 are invariant to mouth deformations and
eyebrow movements, as obviously shown in Figures 2(b)-
2(e) and 2(h)-2(1). Hence, the location of the eight points
relative to the face position and size results in a useful 16-
dimensional feature vector, generated from both x- and y-
coordinates of each point. The mean and standard deviation
(0) of the position of P, for the six basic facial expressions
along with the neutral expression based on CK+ database are
summarized in Table 1.

2.2.2. Geometrical Features. Geometrical features describe
relative position of the facial points to each other. Six
distances are extracted from the eight points, as shown
in Figure 2(f). To ensure the scale invariant features, the
distances are normalized to the detected face width. The

distances d, and d, represent the average of two mirrored
values on the left and right sides of the face.

Then, the two feature sets are concatenated to produce
a vector of length 22. To remove the dominant effect of
the large valued features before passing the feature vector
into a machine learning algorithm, the feature vector f =

(fis fas-+-> fap) is normalized to £ = (f}, for..., fp) as
follows:

= ((fi—w) [20;) + 1,

fi= 5 i=1,...,22, (2)

where y; and o0; are mean and standard deviation of the ith
feature across the training data, respectively. If we assume f;
is normally distributed, (2) guarantees 95% of f; to be in the
[0, 1] range. Then, we truncate the out-of-range components
to either 0 or L

2.3. Point Distribution Model (PDM). The extracted features
from the previous section rely on the facial point location,
where state-of-the-art facial point detectors still do not
provide manually annotated accuracy, especially when the
face is not in the neutral expression. In this work, we apply
PDM to the detected facial points. Hence, we guarantee
that the facial points will fall within the variance of the
training set. The first step in building PDM is to align
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the facial points of all training samples. We consider only
frontal faces; therefore, normalizing facial point positions
to the detected face dimensions is supposed to satisfy the
PDM requirements. The normalized eight facial points are
concatenated to produce a vector of length 16. Each sample
is given as

6
7= (xpl,ypl,...,xps,yps), zeR". (3)

Then, we group all facial expression samples to one matrix as
follows:

Z)
z=|:]. (4)

z,

where n is the total number of facial expression samples. Next,
we calculate the covariance matrix over all samples:

L=E[(Z-E[Z)(Z-E[Z]))']. (5)

Following this, we apply the singular value decomposition
(SVD) to the covariance matrix 2 (5) to be written as

> =USV', (6)

where U, S, V are matrices of size 16 16. U and V are unitary
matrices. [] denotes the matrix conjugate transpose. S is
a diagonal matrix with diagonal entries (1/A,) equal to the
square root of eigenvalues from 3" And the eigenvectors of
»>" make up the columns of V. Each eigenvector describes
a principal direction of variation within the training set
with corresponding standard deviation (+/A;). Finally, each
detected facial point z should satisfy the following linear
combination of the eigenvectors:

z2=2z+ Vb, (7)

where Z represents the mean of z across all training samples
and b is a vector of scaling values for each principal compo-
nent. Simply, to guarantee that the facial points fall within the
variance of the training set, we truncate each element of b as
follows:

|b| <24/, i=1,...,16. (8)

2.4. Machine Learning Algorithms. To solve the facial expres-
sion recognition from its representing feature vector, we
employed two machine learning algorithms. In the experi-
mental results (Section 3), we reported the recognition rates
that stem from both algorithms.

2.4.1. Support Vector Machine (SVM). We formulate the facial
expression recognition task as a multiclass learning process,
where one class is assigned to each expression. SVM is a well-
known classifier for its generalization capability. In the case of
abinary classification task with training datax; (i = 1,..., N),
having corresponding classes y; = +1, the decision function
could be formulated as

f (x) = sign (wa + b) , 9)

@ wa1+b=1

FIGURE 3: The separating hyperplane (w'x + b = 0) splits x; vectors
into two classes, vectors labeled with y = 1 in one sideandy = -1 on
the other side. x, and x, are samples of support vectors of opposite
sign. The canonical hyperplanes pass through the support vectors.
The region between them is the margin band y.

where w'x + b = 0 denotes a separating hyperplane, b is the
bias or offset of the hyperplane from the origin in input space,
and w is a weight vector normal to the separating hyperplane.
Two hyperplanes, called canonical hyperplanes, pass through
support vectors (x,, X,) and satisfy w'x,+b = 1and w'x,+b =
—1, respectively, as shown in Figure 3. The region between the
canonical hyperplanes is called margin band:

2

= Wl (10)

4
where ||w]|| denotes 2-norm of w. Finally, choosing the optimal
values (w,b) is formulated as a constrained optimization
problem, where (10) is maximized subject to the following
constraints:

yi(w'x; +b) 21 Vi. (11)

Several one-versus-all SVM classifiers are incorporated
to handle the multiclass expression recognition. For this
purpose, we employed LIBSVM [39].

2.4.2. K-Nearest-Neighbor (kNN). kNN classification is one
of the simplest classification methods, where a test sample
is classified based on the closest previously known samples
in the feature space [40]. This classification method does
not depend on underlying joint distribution of the training
samples and their classifications. For example, the k-nearest
neighbor rule assigns the class represented the most in the
closest k neighbors to the test sample.

3. Experimental Results

To assess the reliability of our approach, we compared our
results with those of Lucey et al. [13] on the extended Cohn-
Kanade dataset (CK+). Then, we evaluated our approach
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TaBLE 2: Confusion matrix of human facial expression recognition for the CK+ database. The first row in each expression represents our
results (with SVM classifier). The other row shows the results of Lucey et al., as reported in [13].

An Di Fe Ha Sa Su Co
An 80.0 6.66 222 0.0 11.1 0.00 —
75.0 7.50 5.00 0.00 5.00 2.50 5.00
Di 6.77 83.0 3.38 0.0 6.77 0.00 —
5.30 94.7 0.00 0.00 0.00 0.00 0.00
Fe 0.00 16.0 72.0 4.0 8.00 0.00 —
4.40 0.00 65.2 8.70 0.00 13.0 8.70
Ha 0.00 0.00 0.00 100 0.00 0.00 —
0.00 0.00 0.00 100 0.00 0.00 0.00
Sa 17.8 10.7 7.14 0.00 64.2 0.00 —
12.0 4.00 4.00 0.00 68.0 4.00 8.00
Su 0.00 1.25 0.00 0.00 0.00 98.7 —
0.00 0.00 0.00 0.00 4.00 96.0 0.00

on Binghamton University 3D dynamic Facial Expression
Database (BU-4DFE) [41]. Next, we provided a method to
synthesize facial points with several uncertainties that are
supposed to simulate the facial point detector errors. Finally,
we investigated the influence of the point detection error on
our approach results.

3.1. The Extended Cohn-Kanade Dataset (CK+) [13]. We
compared our results with those of Lucey et al. approach,
which relied on features extracted from 68 fiducial points,
taken into consideration their prior knowledge of person-
specific neutral expression. The comparison was carried out
on CK+ database. This database contains 593 sequences
across 123 subjects. Each image sequence starts with onset
(neutral expression) and ends with a peak expression (last
frame). The offered peak expression is fully coded by Facial
Action Coding System using FACS investigator guide. After
applying perceptual judgment to the facial expression labels,
only 327 of the sequences were labeled for the human facial
expressions: 45 for anger (An); 18 for contempt (Co); 59 for
disgust (Di); 25 for fear (Fe); 69 for happiness (Ha); 28 for
sadness (Sa); 83 for surprise (Su). Keyframes within each
image sequence were manually labeled with 68 points, and
after that a gradient descent active appearance model (AAM)
is used to fit these points in the remaining frames.

In our work, we use eight points out of the offered 68
points. Each facial expression sequence is represented by only
one frame, which carries the apex of the expression, and due
to the lack of training samples, we and Lucey et al. employed a
leave-one-out subject cross-validation (LOOCYV) strategy. As
the name suggests, one subject is left out for testing, and the
rest of the samples are used for training.

The confusion matrix depicting the results obtained
by the proposed approach compared to Lucey et al. [13]
published results is shown in Table 2. We achieved an average
recognition rate of 83.01% compared to 83.15% achieved
by them, taken into consideration that removing contempt
expression (Co) from their classification algorithm can lead
to an improvement in their results. Our proposed geo-
metrical features (from eight fiducial points) provide good

0.8 4

0.6 4

0.4 1

Recognition rate

0.2 4

Disgust  Fear Happiness Sadness Surprise

Anger

Facial expression

Neutral independent
B Neutral dependent

FIGURE 4: Recognition rate of human facial expression for CK+
database. In the neutral-dependent case, each feature is normalized
to its corresponding value at the neutral expression of the same
person. The results are obtained with the help of SVM classifier.

results as well as that taken from 68 points; however, we
do not utilize prior knowledge of the considered subject
neutral expression. Similarly to Lucey et al’s approach, we
achieved high recognition rates for the expressions that
cause distinctive facial deformations (happiness, surprise,
and disgust). The recognition of other expressions (anger,
sadness, and fear) experiences confusions due to their subtle
facial deformations.

Our proposed neutral-independent approach allows us
to have a frame-based decision of the facial expressions.
Employing temporal information such as prior knowledge
of the considered person neutral expression will enhance
the recognition rate. Figure 4 shows the recognition rate
of facial expression in neutral-independent compared to
neutral-dependent case; in the latter we normalize each
feature to its corresponding value at the neutral expression.
The average recognition rate is improved by approximately
6%. Expressions with subtle facial deformations, such as
sadness and fear, are most improved compared to other ones.
Happiness and surprise are recognized with higher rate in
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TaBLE 3: The confusion matrix obtained by applying our approach on CK+ database. The first row in each expression represents results using

SVM classifier. The other row shows the results using KNN classifier.

An Di Fe Ha Sa Su Ne
An 68.88 2222 0.00 0.00 6.666 0.00 22.22
46.66 8.888 2.222 0.00 15.55 0.00 26.66
Di 1.694 62.71 1.694 0.00 1.69 4 0.00 32.20
8.474 55.93 10.16 1.694 1.694 0 22.03
Fe 0.00 4.00 64.0 4.0 0.00 0.00 28.0
0.00 8.00 68.00 4.00 12.00 0.00 8.00
Ha 0.00 0.00 0.00 98.55 0.00 0.00 1.449
0.00 1.449 4.347 92.75 0.00 0.00 1.449
Sa 3.571 0.00 3.571 0.00 32.14 0.00 60.71
0.00 10.71 14.28 0.00 28.57 0.00 46.42
Su 0.00 1.25 0.00 0.00 0.00 98.75 0.00
0.00 1.25 0.00 0.00 0.00 98.75 0.00
Ne 2.03 4.568 1.015 0.00 1.522 0.507 90.35
5.076 6.091 3.045 0.00 5.583 1.015 79.18

both cases, and this is most likely due to the bigger facial
deformations they cause, which could be easily measured by
our method.

It is not applicable to just classify images into the six basic
expressions without automatically recognizing the neutral
expression, which is a pitfall of the approaches that use
annotated prior knowledge of person-specific neutral expres-
sion. To this end, we dedicated a separate class to neutral
expression. Moreover, we use two machine learning algo-
rithms (SVM and kNN) to classify the neutral-independent
feature vector generated as shown in Section 2.1. Table 3
shows the confusion matrix of our approach for the six basic
expressions, plus neutral expression (Ne) for both machine
learning algorithms.

A number of points can be drawn from this matrix; the
happiness and surprise expressions are still recognized with
high rate of 98.55% and 98.75% in the case of SVM and
92.75% and 98.75% in kNN case, respectively. On the other
hand, the perception of the other expressions particularly
sadness is confused with neutral. However, neutral expression
is recognized with high rate 0f 90.35% and 79.18% using SVM
and kNN, respectively. We achieved an average recognition
rate of 73.63% and 67.12% using SVM and kNN, respectively.
These results indicate that SVM classifier outperforms kNN
for facial expression recognition. Considering the neutral
expression as a separate class implies a lot of confusions
with other expressions, especially the subtle ones: fear, anger,
and sadness. Similarly, another appearance based approach
suffers from alike confusions with the neutral expression [28].

3.2. Binghamton University 3D Facial Expression Database
(BU-4DFE) [41]. To assess the effectiveness of our approach,
we evaluated it on a second database (BU-4DFE database) to
recognize the six basic facial expressions, plus neutral. First,
we extracted 2D frontal face image sequences from this 3D
database. After that, the eight fiducial points were detected in
the first frame (neutral expression) with the help of Valstar
et al. approach [42] and then tracked using a dense optical

flow tracking algorithm [43] in the rest sequence. Next, we
extracted frame-based feature vectors from the apex frames.
Asin Section 3.1, we represented each expression sequence by
one apex frame, used LOOCYV strategy, and employed both
machine learning algorithms: SVM and kNN.

The recognition results are summarized in a confusion
matrix, as shown in Table 4. Due to their distinctive facial
deformations which are easier to be detected, happiness and
surprise expressions are recognized with high rate: 88.4%,
93.7% and 85.36%, 86.2% using SVM and kNN classifiers,
respectively. Similarly, confusions of subtle expressions with
neutral are present. In contrast with our evaluation on CK+
database, we achieved a lower recognition rate for neutral
expression and a higher one for sadness. We achieved an
average recognition rate of 68.04% and 57.92% using SVM
and kNN classifiers, respectively. These rates are lower than
that on CK+, which is reasonable due to the higher error in
the facial point localization which comes from the methods
employed on this database. Once again, SVM classifier
outperforms kNN for facial expression recognition.

3.3. Approach Evaluation with the Uncertainty in Facial Point
Detection. Locating the eight facial points in the afore-
mentioned experiments involves human intervention either
by annotating keyframes within each image sequence in
Section 3.1, or by selecting frames with neutral expression
to detect the facial points and track them afterwards in
Section 3.2. Therefore, these approaches cannot run fully
automatically.

This experiment is carried out to set up a method
for investigating the performance of geometry-based facial
expression recognition approaches in fully automatic frame-
based scenarios, where the facial point detector is applied
on each frame. This method helps to neutralize the analysis
of geometry-based approaches from the performance facial
point detectors. To this end, we synthesize facial points with
different uncertainties, which supposed to match the error of
any selected facial point detector. One thing’s for certain, the
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TABLE 4: The confusion matrix obtained by applying our approach on BU-4DFE database. The first row in each expression represents results
using SVM classifier. The other row shows the results using KNN classifier.

An Di Fe Ha Sa Su Ne
An 62.7 10.6 211 1.40 11.9 0.00 11.2
42.25 7.042 2.816 2.816 16.90 0.00 28.16
Di 16.07 59.8 6.25 6.25 2.67 2.67 6.25
19.64 46.42 1.785 12.50 3.571 1.785 14.28
Fe 7.62 3.38 55.9 11.8 11.8 0.85 8.47
3.389 8.474 28.81 15.25 16.94 1.694 25.42
Ha 2.43 3.65 3.65 88.4 0.00 1.83 0.00
0.00 7.317 1.219 85.36 3.658 2.43 0.00
Sa 174 1.58 111 0.00 53.4 0.00 16.34
19.04 1.587 12.69 0.00 44.44 0.00 22.22
Su 0.00 3.45 1.14 0.57 114 93.7 0.00
0.00 5.747 3.448 0.00 0.00 86.20 4.597
Ne 20.2 2.02 7.16 2.02 4.18 2.02 62.4
6.00 0.00 12.00 2.00 6.00 2.00 72.00

prior knowledge about the distribution of point localization
error would help in selecting more robust geometrical fea-
tures. Studying this issue is behind the scope of this work,
since all state-of-the-art point detectors are not providing
these error distributions [38, 44-46].

For example, the off-the-shelf facial points’ detector [38]
reported 2-5% mean error (MEr) for the eight facial points
that are used in our approach. MEr is defined as the mean
of the Euclidean distance between the detected point and
the ground truth divided by face width. The behavior of the
detection error is not reported; hence it is not clear if there are
correlations among the point detection errors. Additionally,
we have no information about the error distribution in x-
y coordinates. Let oy, 0, denote error standard deviations
in x- and y-coordinates for a specific facial point. Then, the
provided MEr (from state-of-the-art point detectors) could
be calculated as

MEr = /o2 + 02 (12)

Figure 5 shows three possible normal distributions for the
same MEr (12). In this experiment, we assume the worst
case, where the errors are independent, the errors in x-
and y-coordinates as well as the errors among facial points.
Furthermore, we assume o, = o, = MEr/ v/2; hence, no
useful information could be used to bias the geometrical
features. Additionally in this simulation, all facial points are
exposed to the same detection error MEr, which may not
reflect real scenarios. We used the normal distribution to
model our error.

The normal distribution is popular due to the central limit
theory, and it is easy to analytically derive more results such
as least squares fitting errors. Moreover, normal distribution
has the maximum entropy for a given mean and variance [47].
Consequently, the error in the position of the detected points

is modeled by a bivariate Gaussian distribution, where each
facial point location is altered as follows:

Pe | _ . wh
[Py] [Py] " [”y] where

2
() (07 2)
y y

(Px> P,) is the synthesized point that will be passed to
PDM, and (p,. p,) is the ground truth facial point location.

This experiment is conducted on CK+ database for the
six basic facial expressions. The expression is classified using
SVM, which provided better results than kNN in the last
two experiments. Similarly, to the last experiment, we used
LOOCYV strategy, where each test sample is altered by (13)
to generate 1000 new test samples with specific uncertainty.
Then, those samples are processed by PDM module before
extracting the features and finally classifying them to facial
expressions. Figure 6 shows the distribution of synthesized
facial points generated from a sample of neutral expression.
We used the facial points at the apex of each facial expression,
which stem from gradient descent AAM fitting, as a ground
truth for (13). Figure 7 shows correct recognition rates of six
basic facial expressions versus MEr. As expected, an increase
in MEr results in lowering the recognition rate.

By far surprise expression is recognized with high rate
even for noisy detection, which is plausible due to its dis-
tinctive facial deformation as could be noticed from Table 1.
The recognition rate of anger, sadness, and fear expressions
dropped to be lower than 60% in the case of 5% error, which
can be attributed to the small deformations they cause, and
our geometry-based approach cannot accurately detect.

To fully understand the behavior of our proposed
approach under facial point localization errors, we depicted
most confusions that occurred between the facial expressions
in Figure 8. Sadness expression is mostly confused with
anger, and this confusion is dramatically increasing for higher
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FIGURE 5: Three samples of possible bivariate normal distribution for point detection error of same MEr, where MEr is the Euclidean distance
between the detected point and the ground truth divided by width of the detected face. The diagonal elements of the matrix contain the
variances (07, af,) for errors in x- and y-coordinates, while the off-diagonal elements contain the covariances between the errors of both
coordinates.
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FIGURE 6: The process of generating the eight facial points with uncertainty to simulate the errors in the point detectors. The upper left image
represents a sample of 2D normal distribution. The upper right is a sample of facial point in the neutral expression. The lower row shows the
distribution of the synthesized facial point samples which are generated by (13).
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FIGURE 7: The recognition rate versus the synthesized localization error for six basic facial expressions. This experiment was conducted on
CK+ database with the help of SVM classifiers. MEr is the Euclidean distance between the detected point and the ground truth divided by
width of the detected face.
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uncertainties of facial point location. Confusing disgust with
anger is also growing with increasing the uncertainty of the
facial point position. An additional remark on this exper-
iment, the state-of-the-art facial point detector approach
reported 2-5% error for the eight selected facial points. This
error was measured on a challenge database, which includes
non-frontal face and occluded facial parts. Furthermore, the
error was measured compared to manually annotated ground
truth, while in this experiment, the ground truth data are the
tracked facial points through a gradient descent AAM fitting
which already suffer from errors.

Finally, the following steps summarize how to generalize
the usage of this experiment.

(i) The proposed facial point detectors should report not
only each point MEr but also the error distribution in
x- and y-coordinates and also the error covariances
among different points; hence, we can activate the oft-
diagonal elements in (13).

(ii) The researchers in geometrical facial features syn-
thesize facial points with the help of aforementioned
information. As a result of this step, we overcome the
issue of reimplementing not available state-of-the-art
facial point detectors. Additionally, we save the time
of applying facial point detectors to huge databases
when we just optimize the geometrical features.

(iii) The process of geometrical feature extraction should
be optimized with respect to the known distributions
of point localization errors.

4. Conclusions and Future Work

Several approaches were proposed to do facial expression
recognition. These approaches can be grouped into two main
categories: geometry and appearance based. In this paper,
we considered the geometry based case. The state-of-the-
art geometry-based approaches entail prior-knowledge of
person-specific neutral expression; however, such informa-
tion is not available in real-world scenarios. In contrast to
that, we extract geometrical features from just eight facial
points. These features do not rely on person-specific neutral
expression or any temporal information. Two databases were
used to evaluate our approach. We achieved an average 83%
(frame-level) recognition rate on CK+ database which as
well as Lucey et al. approach; however, they used 68 facial
points along with prior knowledge of person-specific neutral
expression. Our average recognition rate can be improved by
approximately 6% in the case of utilizing information about
person-specific neutral expression. When we add the neutral
expression as a new class to the expression classifier in the
frame-based case, the recognition rate drops to 73.6% due to
additional higher confusions between the subtle expressions
with the neutral one.

On the other hand, we achieved 68% average recognition
rate on BU-4DFE database. The geometry-based approach
strongly depends on the facial point detector. Interestingly,
we provide a method to neutralize the analysis of geometry-
based approach from specific feature detectors. We synthe-
sized facial points with various uncertainties that supposed to

1

match existing errors in the facial point detectors. Then, we
investigated our approach under errors from 1to 5%, which is
the range of the state-of-the-art approaches. As expected, the
recognition rate is adversely affected by increasing the facial
point localization error.

The next step in our research is to generalize the facial
expression recognition to non-frontal face poses. Combining
geometry and appearance-based approaches deserves also
more attention.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgment

This work is part of the project done within the Transregional
Collaborative Research Centre SFB/TRR 62 Companion-
Technology for Cognitive Technical Systems funded by the
German Research Foundation (DFG).

References

[1] E. T. Lee, “Human emotion estimation through facial expres-
sions,” Kybernetes, vol. 23, no. 1, pp. 39-46, 1994.

[2] C. Shan, S. Gong, and P. W. McOwan, “Beyond facial expres-
sions: learning human emotion from body gestures,” in Proceed-
ings of the British Machine Vision Conference (BMVC 07), 2007.

[3] S. Uzun, C. Oflazogluy, S. Yildirim, and E. Yildirim, “Emotion
estimation from eeg signals using wavelet transform analysis,”
in Signal Processing and Communications Applications Confer-
ence (SIU), pp. 1-4, April 2012.

[4] V. A. Petrushin, “Emotion recognition in speech signal: exper-
imental study, development, and application,” in Proceeding of
the 6th International Conference on Spoken Language Processing
(ICSLP *00), pp. 222-225, 2000.

[5] T.Baltrusaitis, D. McDuff, N. Banda et al., “Real-time inference
of mental states from facial expressions and upper body ges-
tures,” in Proceedings of the IEEE International Conference on
Automatic Face and Gesture Recognition and Workshops (FG 1),
pp- 909-914, March 2011.

[6] M. Pantic, A. Pentland, A. Nijholt, and T. Huang, “Human
computing and machine understanding of human behavior:
a survey, in Proceedings of the 8th International Conference
on Multimodal Interfaces (ICMI 06), pp. 239-248, ACM, New
York, NY, USA, November 2006.

[7] A. Wendemuth and S. Biundo, “A companion technology for
cognitive technical systems,” in Cognitive Behavioural Systems,
A. Esposito, A. Esposito, A. Vinciarelli, R. Hoffmann, and V.
Mller, Eds., vol. 7403 of Lecture Notes in Computer Science, pp.
89-103, Springer, Berlin, Germany, 2012.

[8] G.Littlewort, M. S. Bartlett, L. P. Salamanca, and J. Reilly, “Auto-
mated measurement of childrens facial expressions during
problem solving tasks,” in Proceedings of the IEEE International
Conference on Automatic Face and Gesture Recognition and
Workshops (FG ’11), pp. 30-35, 2011.

[9] M.-C. Hwang, L. T. Ha, N.-H. Kim, C.-S. Park, and S.-].
Ko, “Person identification system for future digital TV with



12

(10]

(12]

(13

(14

(16]

(17]

[18

(20]

(21]

(22]

intelligence,” IEEE Transactions on Consumer Electronics, vol.
53, no. 1, pp. 218-226, 2007,

P. Corcoran, C. Iancu, E Callaly, and A. Cucos, “Biometric
access control for digital media streams in home networks,”
IEEE Transactions on Consumer Electronics, vol. 53, no. 3, pp.
917-925, 2007.

E. Vural, M. Cetin, A. Ercil, G. Littlewort, M. Bartlett, and J.
Movellan, “Drowsy driver detection through facial movement
analysis,” in Proceedings of the IEEE International Conference
on Humancomputer Interaction (HCI '07), pp. 6-18, Springer,
Berlin, Germany, 2007.

P. Ekman and W. Friesen, Facial Action Coding System: A
Technique for the Measurments of Facial Movements, Consulting
Psychologists Press, 1978.

P. Lucey, J. E Cohn, T. Kanade, J. Saragih, Z. Ambadar, and
I. Matthews, “The extended Cohn-Kanade dataset (CK+): a
complete dataset for action unit and emotion-specified expres-
sion,” in Proceedings of the IEEE Computer Society Conference on
Computer Vision and Pattern Recognition Workshops (CVPRW
’10), pp- 94-101, June 2010.

R. Niese, A. Al-Hamadi, A. Farag, H. Neumann, and B.
Michaelis, “Facial expression recognition based on geometric
and optical flow features in colour image sequences,” IET
Computer Vision, vol. 6, no. 2, pp. 79-89, 2012.

A.Saeed, A. Al-Hamadi, R. Niese, and M. Elzobi, “Effective geo-
metric features for human emotion recognition,” in Proceedings
of the 11th IEEE International Conference on Signal Processing
(ICSP’12), pp. 623-627, October 2012.

M. Valstar, M. Pantic, and I. Patras, “Motion history for
facial action detection in video,” in Proceedings of the IEEE
International Conference on Systems, Man and Cybernetics (SMC
'04), vol. 1, pp. 635-640, October 2004.

Y. Zhu, C. De Silva, and C. Ko, “Using moment invariants
and hmm in facial expression recognition,” in Proceedings of
the 4th IEEE Southwest Symposium on Image Analysis and
Interpretation, pp. 305-309.

Y. Zhang and Q. Ji, “Facial expression understanding in image
sequences using dynamic and active visual information fusion,”
in Proceedings of the 9th IEEE International Conference on
Computer Vision, vol. 2, pp. 1297-1304, October 2003.

A. Lorincz, L. A. Jeni, Z. Szabd, J. E Cohn, and T. Kanade,
“Emotional expression classification using time-series kernels,”
in Proceedings of the IEEE International Workshop on Analysis
and Modeling of Faces and Gestures, Portland, Ore, USA, 2013,
abs/1306.1913.

S. Koelstra, M. Pantic, and I. Patras, “A dynamic texture-based
approach to recognition of facial actions and their temporal
models,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 32, no. 11, pp. 1940-1954, 2010.

G. Zhao and M. Pietikdinen, “Dynamic texture recognition
using local binary patterns with an application to facial expres-
sions,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 29, no. 6, pp. 915-928, 2007.

T. Wu, M. S. Bartlett, and J. R. Movellan, “Facial expression
recognition using Gabor motion energy filters,” in Proceedings
of the IEEE Computer Society Conference on Computer Vision
and Pattern Recognition Workshops (CVPRW °10), pp. 42-47,
June 2010.

Z. Wang, S. Wang, and Q. Ji, “Capturing complex spatiotem-
poral relations among facial muscles for facial expression
recognition,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR ’13), pp. 34223429, 2013.

(24]

(25]

(26]

(27]

(31]

W
D

(33]

(34]

(35]

[37]

(38]

Advances in Human-Computer Interaction

G. Zhao and M. Pietikdinen, “Boosted multi-resolution spa-
tiotemporal descriptors for facial expression recognition,” Pat-
tern Recognition Letters, vol. 30, no. 12, pp. 1117-1127, 2009.

G. Littlewort, M. S. Bartlett, I. Fasel, J. Susskind, and J. Movellan,
“Dynamics of facial expression extracted automatically from
video,” Image and Vision Computing, vol. 24, no. 6, pp. 615-625,
2006.

R. Niese, A. Al-Hamadji, B. Michaelis, and H. Neumann, “Inte-
gration of geometric and dynamic features for facial expression
recognition in color image sequences,” in Proceedings of the
International Conference of Soft Computing and Pattern Recog-
nition (SoCPaR ’10), pp. 237-240, December 2010.

M. Pantic and I. Patras, “Dynamics of facial expression: recog-
nition of facial actions and their temporal segments from face
profile image sequences,” IEEE Transactions on Systems, Man,
and Cybernetics, Part B: Cybernetics, vol. 36, no. 2, pp. 433-449,
2006.

G. Littlewort, J. Whitehill, T. Wu et al, “The computer
expression recognition toolbox (CERT),” in Proceedings of the
IEEE International Conference on Automatic Face and Gesture
Recognition and Workshops (FG ’11), pp. 298-305, March 2011.

C. Shan, S. Gong, and P. W. McOwan, “Facial expression
recognition based on local binary patterns: a comprehensive
study;” Image and Vision Computing, vol. 27, no. 6, pp. 803-816,
2009.

G. Sandbach, S. Zafeiriou, and M. Pantic, “Local normal binary
patterns for 3d facial action unit detection,” in Proceedings of the
I9th IEEE International Conference on Image Processing (ICIP
12), pp. 1813-1816, 2012.

W. Zhang, S. Shan, W. Gao, X. Chen, and H. Zhang, “Local
Gabor Binary Pattern Histogram Sequence (LGBPHS): a novel
non-statistical model for face representation and recognition,”
in Proceedings of thelOth IEEE International Conference on
Computer Vision (ICCV °05), vol. 1, pp. 786-791, October 2005.

J. Castillo, A. Rivera, and O. Chae, “Facial expression recog-
nition based on local sign directional pattern,” in Proceedings
of the 19th IEEE International Conference on Image Processing
(ICIP’12), pp. 2613-2616, 2012.

A. Saeed, A. Al-Hamadi, and R. Niese, “Neutral-independent
geometric features for facial expression recognition,” in Proceed-
ings of the 12th International Conference on Intelligent Systems
Design and Applications (ISDA ’12), pp. 842-846, November
2012.

M. E Valstar and M. Pantic, “Combined support vector
machines and hidden Markov models for modeling facial action
temporal dynamics,” in Human-Computer Interaction, M. Lew,
N. Sebe, T. Huang, and E. Bakker, Eds., vol. 4796 of Lecture Notes
in Computer Science, pp. 118-127, Springer, 2007.

A. M. Martinez, “Deciphering the face,” in Proceedings of the
IEEE Computer Society Conference on Computer Vision and
Pattern Recognition Workshops (CVPRW ’11), pp. 7-12, June 2011.
P. Viola and M. Jones, “Rapid object detection using a boosted
cascade of simple features,” in Proceedings of the IEEE Computer
Society Conference on Computer Vision and Pattern Recognition,
pp. 511-518, December 2001.

G. Bradski, “The OpenCV library,” Dr. Dobb’s Journal of Software
Tools, 2000.

P. N. Belhumeur, D. W. Jacobs, D. J. Kriegman, and N. Kumar,
“Localizing parts of faces using a consensus of exemplars,” in
Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR ’I1), pp. 545-552, June 2011.



Advances in Human-Computer Interaction

(39]

[40]

(46

C.C. Chang and C.-]. Lin, “LIBSVM: a library for support
vector machines,” ACM Transactions on Intelligent Systems and
Technology, vol. 2, pp. 1-27, 2011.

T. Cover and P. Hart, “Nearest neighbor pattern classification,”
IEEE Transactions on Information Theory, vol. 13, no. 1, pp. 21-
27,1967.

L. Yin, X. Chen, Y. Sun, T. Worm, and M. Reale, “A high-
resolution 3d dynamic facial expression database,” in Proceed-
ings of the 8th IEEE International Conference on Automatic Face
and Gesture Recognition (FG 08), pp. 1-6, September 2008.

M. Valstar, B. Martinez, X. Binefa, and M. Pantic, “Facial
point detection using boosted regression and graph models,”
in Proceedings of the IEEE Computer Society Conference on
Computer Vision and Pattern Recognition (CVPR ’10), pp. 2729-
2736, June 2010.

B. D. Lucas and T. Kanade, “An iterative image registration
technique with an application to stereo vision,” in Proceedings
of Imaging Understanding Workshop, pp. 674-679, 1981.

B. A. Efraty, M. Papadakis, A. Profitt, S. Shah, and 1. A. Kaka-
diaris, “Facial component-landmark detection,” in Proceedings
of the IEEE International Conference on Automatic Face and
Gesture Recognition and Workshops (FG ’11), pp. 278-285, March
2011.

V. Rapp, T. Senechal, K. Bailly, and L. Prevost, “Multiple kernel
learning SVM and statistical validation for facial landmark
detection,” in Proceedings of the IEEE International Conference
on Automatic Face and Gesture Recognition and Workshops (FG
1), pp. 265-271, March 2011.

W. Jiang, Y. Fang, Z. Zhou, and Y. Tan, “Active shape model with
random forest for facial features detection,” in Proceedings of the
2Ist International Conference on Pattern Recognition (ICPR ’12),
pp. 593-596, 2012.

T. M. Cover and J. A. Thomas, Elements of Information Theory,
Wiley-Interscience, Hoboken, NJ, USA, 2nd edition, 2006.

13



Advances in k& - - . Journal of

o 0 Industrial Engineerin
. WNultimedia J .

Applied
Computational
Intelligence and Soft
. g nternational Journal of T P - Com tll'lg"
The Scientific Dieenel Qumalof e iR e

World Journal Sensor Networks

Advances in

Fuzzy
Systems

Modelling &
Simulation
in Engineering

e

Hindawi

Submit your manuscripts at
http://www.hindawi.com

Computer Networks
and Communications

Advances in »
Artificial
Intelligence

i ‘ Advances in
Biomedica ‘H'\{'ii Artificial
‘ & NS Neural Systems

International Journal of
Computer Games in
Technology S re Engineering

Intel ional J na
Reconfigurable
Computing

Computational i

Ad S
uman-Computer Intelligence and 2y Electrical and Computer
Interaction Neuroscience Engineering

Journal of

Robotics




