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Recently, many people have become more concerned about having a sudden cardiac arrest. With the increase in popularity of
smart wearable devices, an opportunity to provide an Internet of Things (IoT) solution has become more available. Unfortunately,
out of hospital survival rates are low for people suffering from sudden cardiac arrests. The objective of this research is to present
a multisensory system using a smart IoT system that can collect Body Area Sensor (BAS) data to provide early warning of an
impending cardiac arrest. The goal is to design and develop an integrated smart IoT system with a low power communication
module to discreetly collect heart rates and body temperatures using a smartphone without it impeding on everyday life. This
research introduces the use of signal processing and machine-learning techniques for sensor data analytics to identify predict

and/or sudden cardiac arrests with a high accuracy.

1. Introduction

Heart problems have a significant impact on the quality of
life of any who suffer from them. Through the widespread
use of new technologies, there is a potential for advanced
healthcare systems. The development of smart wearable IoT
system for health monitoring is revolutionizing our lives [1].
Medical services have made large advancements in recent
years. Computing and communication technologies have the
potential to offer a wider variety of services for patients.
Through this advancement, a patient’s quality of life would
improve and provide a benefit to a large portion of the
population.

Through the availability and advancement of wearable
IoT devices, it aids patients in monitoring and controlling
their health metrics. An example of the benefits is that a
patient can be made aware of the status of their condition with
the aid of such devices at any time. That information can then
be made available to the treating health care professional to
provide prompt action for a condition or save the life of the

user in an emergency. Connected health is proving to be a
major application for developing technologies.

The concept of connected healthcare systems and smart
embedded IoT devices offers a potential for both commercial
companies and individuals to benefit. The goal is to use
investigations performed on new technologies to enable the
creation, enhancement, and expansion of connected health
systems with the objective of developing a system that can
help patients obtain a better awareness of their health status
and provide early medical warnings.

The goal of the IoT is to enable things to be connected
anytime and anyplace, with anything and anyone ideally
using any path/network and any service [2, 3]. This goal
requires more development in many areas including commu-
nication and applications. Many research and development
entities are involved in development activities. Cisco defines
the Internet of Everything (IoE) as connectivity of people,
data, things, and processes in networks of connections [3]; in
other words, IoE is a network of computers and devices of all
types and sizes, all communicating and sharing information.
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According to Cisco, there will be 50 billion devices connected
to the Internet by 2020 [4]. IoT can be described as a network
of networks.

A special dedicated IEEE standard is under development
for the architectural framework of the IoT, namely, IEEE
P2413 [5]. This standard defines IoT as a system of intercon-
nected people and physical objects along with Information
and Communication Technology (ICT) to build, operate, and
manage the physical world via smart networking, pervasive
data collection, predictive analytics, and optimization [6].
The IoT standard provides a reference model, defines archi-
tectural building blocks, and affords development mecha-
nisms for the relevant systems.

As the Internet continues to grow, one of the key enablers
is the IPv6 [7] global deployment which supports the ubiqg-
uitous addressing of any communicating “smart thing”. It
will provide access to billions of smart things allowing new
models of IoT interconnection and integration. However,
as a result of network expansion, more requirements will
be added to network functions, network management, and
network composition. IPv6 must enable the interconnection
of heterogeneous IoT components together with heteroge-
neous applications. 6LoOWPAN [8] is an optimized version
of IPv6 for Low Power Wireless Personal Area Networks. It
is basically IPv6 implemented on resource-constrained IoT
devices.

IoT security is one of the main research topics as there
is a need to provide security for the growing number of
connected devices. For example, there is a need to ensure
that IoT devices are only providing information to authorized
entities [20]. IoT hardware development has many related
research issues as new devices are introduced and many of
them are small and have limited battery life. Moreover, the
IoT sensor devices must be integrated into the Internet using
communication protocols. These protocols must consider the
low energy of the sensor battery especially when sensors are
deployed in remote locations.

There are many protocols developed and more to be
developed that consider the use of low power for IoT
devices. For example, an efficient service announcement and
discovery protocol in IP-based ubiquitous sensor networks
is proposed [8]. The protocol adopts a fully distributed
approach to ensure optimal acquisition times, low energy
consumption, and low generated overhead, with timely reac-
tion to topology changes. The protocol is capable of realizing
optimal acquisition times with minimal cost in terms of
energy and generated overhead, making it suitable for mobile
networks.

The Internet Engineering Task Force has done the major
standardization work for the Constrained Application Pro-
tocol (CoAP) that allows seamless integration of low power
devices into the Internet [21]. CoAP can run on most devices
that support User Data Protocol and the network architecture
that use this protocol is a hot research topic [22-26]. IoT
devices use different protocols (Bluetooth, Zigbee, etc.) and
different networks (LANs; WANs). Thus, an IoT platform
has three building blocks: Cloud Computing is used as an
enabling platform that supports IoT-based systems to allow
connecting a large number of devices and sensors. IoT-based
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healthcare applications can use Cloud Computing platforms
to facilitate sensors communication, instead of implementing
separate means to have all the sensors communicate directly.

1.1. Major Contributions. Inthis paper, our aim is to develop a
smart IoT system that is unique and stands out when it comes
to eHealth based IoT systems for predicting a personalized
cardiac arrest, because they naturally combine the detection
and communication components. QOur major contributions
are as follows:

(i) Developing a multisensory smart lIoT-based cyber-
human system for heart abnormality prediction.

(ii) Proposing a smartphone-based heart rate detection
system using a wearable Body Area Sensor (BAS) system.

(iii) Designing, developing, and implementing a low power
communication module to send data to the smartphone.

(iv) Implemening a mobile system for remote supervision of
users, which can be used to detect personalized health crisis.

The rest of the paper is organized as follows: in Section 2,
we describe the background and relevant related work. In
Section 3, we discuss the solution process of designing our
system architecture and we explain the circuit design of our
system. In Section 4, we discuss the data collection process
and follow with Sections 5 and 6, which are data analysis,
results, and evaluation of our smartphone-based prototype
system. Finally, in Section 7, we conclude the paper with some
future research directions.

2. Related Works

There are many research projects that attempt to charac-
terize a user’s heart abnormality; however, most of them
have lack of key components. Many individuals currently
perform research in eHealth and many companies have taken
advantage of this work by designing systems that connect
patients with doctors around the world. We examine two
different categories of related systems: comprehensive health
care using embedded systems and connected eHealth smart-
phone applications. Our proposed system is more related
to connected eHealth smartphone applications since we
are developing an application on smartphone that connects
with a smart IoT device while most companies focus on
comprehensive health care systems that allow users to interact
with one another and benefit from resources.

2.1. Comprehensive Health Care Systems. “PatientsLikeMe”
focused on helping patients answer the question: “Given my
status, what is the best outcome I can hope to achieve, and
how do I get there?” They answered patient questions in
several forms like having patients with similar conditions
connect to each other and share their experiences [27]. But,
they did not mention data security and the usability of the
system.

Another related system is called “DailyStrength”. It is
a social network centered on support groups, where users
provide one another with emotional support by discussing
their struggles and successes with each other. The site con-
tains online communities that deal with different medical
conditions or life challenges [28]. It is very similar to
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“PatientsLikeMe” in the sense that both of them are free
platforms that involve patients and doctors interacting. Two
major discrepancies between them are that “DailyStrength”
does not involve research institutes and does not have a
mobile application. Also, both systems are not IoT-based
system.

In another work, a robust model was developed that
included multiple pulse parameters, EEG, and skin conduc-
tance sensors into a shirt [42]. Another system was developed
for connecting facial expressions and voice recognition with
EEG patterns [43]. Other researchers proved that EEG alone
exhibits characteristics for different emotions [44]. Facial
recognition software has been compared with heart rate
variability in order to better understand patterns associated
with various emotions [45]. It has also been proven that
certain pulse patterns are associated with physical stress and
not from emotional stress [46]. But, their systems are mobile
and they did not use IoT as a platform for their system.

Another comprehensive health care system is called
“Omnio” which is an all-in-one application for Medical
Resources [29]. It provides, among its services, clinical
resources, diagnostic resources, disease guides, and drug
information. Everyday Health [30] is a company which owns
websites and produces content relating to health and wellness.
It has higher ratings and publishes many health articles that
can be very helpful for patients. In addition, it has a smart
search that provides users with easy access their materials.

2.2. Connected eHealth Mobile Applications. Even though all
the systems mentioned above provide health services, they do
not provide any smart devices that can be used to monitor
user’s daily activities and alert them when needed. There
are many heart monitors that provide users with their ECG
signals so they can keep track of their condition but none of
which who alert the users upon emergencies. A Smart Elderly
Home Monitoring System (SEHMS) designed and developed
on an Android™-based smartphone with an accelerometer; it
could detect a fall of the user [31]. It provides a smartphone
user interface to display health information gathered from
the system. The main advantage of SEHMS is that it has the
remote monitoring facility for elderly who and chronically
hostile patients. But it cannot warn the user in case of
emergency.

Remote Mobile Health Monitoring (RMHM) is a system
that provides monitoring of a user’s health parameters such as
his or her heart rate, which is measured by wearable sensors
[32]. It allows care givers and loving one to monitor the user’s
to facilitate remote diagnosis. The system does not have the
capability of monitoring in real time.

The idea of predicting heart attacks remains a challenge
and that is the focus of our research. Every research group
specifies its own approach on how they plan to achieve
its objective. We decided to use a combination of body
temperature and ECG to predict heart abnormalities. Other
systems have different approaches with different hardware
implementations. None of them were discussed about power
consumption rate during data collection. Our system uses a
low power Bluetooth module to collect a longitudinal data
wirelessly using a smartphone.

In [33, 34], authors presented a comparison between
different data mining techniques for heart attack prediction.
They present just prediction algorithms rather than a com-
plete system with a data collection device and a computing
platform. The best techniques that are most commonly used
for predicting heart problems are: Decision Tree, Naive Bayes,
Neural Network, and K-mean. Our research not only includes
a complete system with an IoT device and a computing
platform, but also uses one of those data mining techniques
(Decision Tree) to predict heart problems. This makes our
system unique in the sense that we created a low power
smart IoT system and used a data mining technique in our
prediction algorithm. Upon testing our prediction algorithm,
we obtained results with a high accuracy for all our healthy
and unhealthy test subjects. We illustrate the difference
between our system and the other related works in Tables 1
and 2.

To address the drawbacks of the above-mentioned
research and systems, in this paper, we propose a smart IoT-
based heart rate monitoring system. Our system is designed
to address directly some of the drawbacks of the existing
systems and potentially yield good prediction results. The
most important aspect of our system is the warning that
allows the user to prevent an injury before it actually happens.
To the best of our knowledge, our system is the first smart
IoT-based health assistance which uses a subject-specific
Body Area Sensor signals for predicting heart related injuries.

3. System Architecture

The strength of our system relies on existing wireless com-
munications to provide low power with maximum freedom
of movement to users in their physical activity. In addition,
we have used small, light-weight smart IoT devices that are
user friendly, like the smartphone and the wrist-band.

To integrate the sensors, we used the output of the embed-
ded sensors to perform an extensive set of experiments for
evaluating and discriminating between normal and abnormal
heart rate patterns. Subjects wear the embedded sensors
and carry their smartphone in their pocket or hold it in
their hands. The embedded ECG and temperature sensors
constantly collect the heart parameters while the subject is
living a normal life. After receiving the data through a low
power Bluetooth communication channel, the smartphone
will process the data to classify whether the user’s condition
is normal or abnormal. A quantitative heart rate analysis is
performed in the Android platform which gives the user the
option of viewing his/her real-time plots of the ECG signal
and body temperature.

To determine abnormal heart patterns, we first establish
a criterion for normal heart rate. Quantitative analysis of
heart rate stability and pulse symmetry will yield a series of
parameters, like heart rate, RR intervals (RR interval is the
duration between two consecutive R peaks in an ECG signal),
and ST segments (ST segment is the flat section of the ECG
signal between the end of the S wave and the beginning of
the T wave. It represents the interval between ventricular
depolarization and repolarization). We then design an early
warning system to monitor those parameters for signs of
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TaBLE 1: Qualitative comparison of existing work based on different features.
Approach Use IoT Device Mobility Low Power System Cyber Physical System Cost Effective
PatientsL-ikeMe [27] No Yes No No No
Daily Strength [28] Yes Yes No No No
Om-nio [29] Yes Yes Yes Yes No
Everyday Health [30] Yes No No No No
SEHMS [31] No Yes No Yes No
RMHM [32] No No No Yes No
PHM [33] Yes Yes No Yes No
Qardiocore [34] No No No Yes No
Maksimovi¢ [35] No No No Yes No
Stecker [36] No No No Yes No
Mancini [37] No No No Yes No
Sun [38] No No No Yes Yes
Communicore [39] No No NO Yes No
Kavithal [40] Yes No No Yes No
Jagtap [41] No No No Yes No
Our Approach Yes Yes Yes Yes Yes
TABLE 2: Quantitative comparison of existing work based on different features.
Approach Average Max HR Aipcrc(:i(riz;te Si\rﬁ;;iegl\gz?e Number I(J)Sfel()ievice (s) Powerig(\)/\r;zltltrsnption
PatientsL-ikeMe [27] 160 90% 120 1 ~ 500 mWatt
Daily Strength [28] 156 85% 110 1 N/A
Om-nio [29] 140 80% 100 1 N/A
Everyday Health [30] 144 85% 80 1 N/A
SEHMS [31] 155 78% 90 2 N/A
RMHM [32] 162 82% 140 2 N/A
PHM [33] 145 70% 150 1 N/A
Qardiocore [34] 135 78% 110 1 N/A
Maksimovi¢ [35] 155 85% 105 2 N/A
Stecker [36] 167 77% 130 1 N/A
Mancini [37] 151 87% 135 2 ~ 600 mWatt
Sun [38] 160 75% 95 1 N/A
Communicore [39] 148 72% 150 1 N/A
Kavithal [40] 156 68% 155 1 N/A
Jagtap [41] 148 72% 145 2 N/A
Our Approach 135 95% 160 1 ~ 444 mWatt

cardiac arrest during any activity. Although the system con-
tinuously monitors ECG patterns, the planned design only
triggers a warning if the ECG patterns and body temperature
of the user reaches a certain threshold level, wherein the
user might face a potential heart attack. At that moment, the
system transmits a warning to the subject in the form of a
message or a vibration alert. Figure 1 illustrates the prototype
embedded smart IoT system.

The IoT device constantly collects data from the user
and sends it to smartphone via a Bluetooth communication
module. All the processing and data analysis take place in
the application where the user has the option to view user

real-time plots. These plots provide the user a basic idea of
his/her body’s status. The user does not have maintained a
record of his/her data to ensure that s/he is in a healthy or
unhealthy state since the application’s job is to alert the user
upon an emergency. Finally, when the algorithm senses an
abnormality it immediately alerts the user.

3.1. Hardware. The initial prototype system consists of a low
power Bluetooth chip, an Arduino Uno™, a pulse sensor, and
a temperature sensor as shown in Figure 2. The other com-
ponents are the power supply unit along with a smartphone
with an application.
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FIGURE 2: Hardware components for early prototype system [9-12].

The Arduino simply serves as an Analog to Digital Con-
verter (ADC) [47]. An Arduino is an open-source physical
computing platform based on a simple I/O board and a
developmental environment that implements the process-
ing/wiring language. The Arduino is programmed to read
analog signals from the pulse and temperature sensors and
create a data packet to convert the signals into digital form.
Subsequently, it sends those packets to the phone as a
response to the data sending request. It also manages the
Bluetooth communication by coordinating with the RN42
Bluetooth chip. The Bluetooth chip basically equips the
Arduino with the ability to connect to the smartphone
application.

The data read from the sensors is always an analog value
between 0 and 5 volts since that is the operating voltage of
this microcontroller. The Arduino then maps those voltage

values to digital values ranging from 0 to 1023. Since the y-
axis for ECG signals is also a voltage, all we had to do is scale
the digital values to back voltage.

Basically, we read the sensor value from the Arduino
through analog pin 0 and then multiply it by 5 and divide it by
1023 to get the correct voltage value. This only applies to the
pulse sensor since the expected output from the temperature
sensor is in degrees Celsius.

To avoid the inaccuracy in simultaneous reading from
multiple analog pins, we not only need a delay between each
reading, but also need to read from the same analog pin twice.
We read the temperature data from the sensor twice and send
the second reading, then do the same for the pulse sensor.
We need to send different symbols before the sensor readings
to be able to parse the data at the receiving end (android
application). Before sending a temperature reading we send



a /" and before sending a pulse reading we send a -, which
makes data parsing simple.

3.1.1. Hardware Modifications. After testing our early pro-
totype system, we worked on modifying the hardware to
develop a better IoT device that can later on be used as
a user friendly wearable device. In this section, we will
discuss the new hardware components used, the design of the
wearable device, and the performance of the device (power
consumption /current draw).

(1) New Hardware Components. Rather than using the
Arduino Uno, we decided to use the Arduino Mini instead.
They both have the same microcontroller, clock speed, oper-
ating voltage, and range of input voltage. The Arduino Uno
has an area of 36.63 cm” which is almost 7 times larger than
the Arduino Mini. When developing a user friendly wearable
device, it is important to have smaller components to be able
to design a compact device.

To be able to upload code to the device using Mini USB
Adapter, we also needed a 0.1 yF (micro-farad) capacitor
connected in series between the reset pin of the Arduino
Mini and the reset pin of the Mini USB Adapter. We used a
PCB soldering board to solder all the hardware components
together. The board, which has dimensions of 5 cm x 7 cm
(almost the same size of the Arduino Uno), has all the hard-
ware components soldered to it. To power the device, we used
a 7.4 Volt Lithium Ion battery with a current supply of 2200
mAH (milli-amperes per hour). This battery has an outlet
plug that gives it the ability to recharge. So, we also bought
a Pin Battery Connector Plug to insert the battery in. This
allows us to solder the pin plug to the board without soldering
the battery itself, allowing the user to remove the battery
when it needs to be recharged. All the components that we
added (shown in Bold in this section) are shown in Figure 3.

(2) Design of the Wearable Device. After soldering all the
hardware components on the PCB board, we design the
system using Velcro strips to make it wearable. The device is
designed such that the Mini USB Adapter can be connected
only when we need to modify code on the Arduino. The final
design of the device is shown in Figure 4, where Figure 4(a)
shows the device with the Mini USB Adapter attached and
Figure 4(b) shows the device without the Mini USB Adapter.

Figure 4(b) shows the device when the battery is active;
hence, the LEDs of the Arduino Mini, Bluetooth, and pulse
sensor are all on. The wires connected to the battery can
be easily plugged in and out of the IoT device to allow the
user to power the device on and oft. The battery is placed
between two PCB soldering boards. The temperature sensor’s
connection mounts over the Bluetooth chip and under the
lower PCB board, where it will be in contact with the user’s
skin when the device is worn. The pulse sensor extends to
the palm where it should be wrapped around the user’s index
finger. It is easy to measure pulse from finger during daily
activities of the user. Finally, the Velcro is glued to the bottom
of the lower PCB board and covered in black leather to give
the device a better appearance. A complete smart wearable
IoT device is shown in Figure 5.
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(3) Smart IoT Device Performance. In this section, we explain
the power consumption of the IoT device in different modes.
When the IoT device is powered, the Bluetooth enters the
idle mode where it blinks on and off waiting for a connection
request. When the Android device connects to the IoT device
through the application, the Bluetooth’s LED stops blinking
and is set to green indicating a successful connection.

The performance of the device can be determined by
measuring the current consumption which tells us how long
the device can be powered. The voltage supplied from the
battery is constant since the Arduino Mini takes the voltage
it needs and supplies to the devices connected to it. The
typical way to determine the performance of the device is by
checking the amount of current that is drawn from the battery
in the different modes. The two modes in which we test
the device are the idle mode and the connected/transmitting
mode. The measuring unit of the battery is in milliamp hour
(mAH) which is an energy measure. A battery with 2200
mAH will work for an hour if the current drawn from it is
always 2200 mA. Similarly, if the current draw is 1100 mA, the
battery would last two hours. Therefore, to measure how long
the device can be powered in the on state without the battery
draining, we need to calculate the average current draw of
the IoT device. Table 3 shows the current draws, the device’s
lifetime, and the power consumption during the two modes
for the IoT device.

The performance of the smart IoT device shows that the
system can collect data for a long period of time in both
modes which makes it very useful for users. When the battery
is too low on power to operate the device, it can be recharged
by simply plugging the battery’s wires to a charger.

3.2. Software. To receive and analyze data from the IoT
device, we use a heart rate and body temperature collector
interface in the smartphone. As described in the hardware
section, we developed a Bluetooth communication channel
that is capable of transmitting data from the pulse and
temperature sensors to the smartphone. On receiving data
from the sensors, the system processes the data to identify
any abnormality in the heart rate.

To transmit data to the smartphone through Bluetooth
channel, we opened a socket from the Android application
that connected to the transmitting signals of the Bluetooth
module. To communicate with the Arduino, we created a
software serial object and specified the transmitting and
receiving pins. When the Bluetooth is supplied with power,
it immediately enters the pairing mode, where it waits for
any device to connect to it. Then the smartphone Bluetooth
adapter is opened through the application and it starts
searching for the devices. After a successful connection, the
application will produce a message on the screen informing
the user that the connection was successful, and the Bluetooth
chips LED will turn from red (pairing mode) to green
(connected mode). The detail user interface of our system is
shown in Figure 6.

After connecting to the IoT device, the application will
automatically start receiving the sensors’ data. The appli-
cation parses the temperature and pulse data into separate
arrays that are then sent to different pages where they are
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FIGURE 4: Wearable IoT device.

plotted in real time. The user has the option of either viewing
the separate plots for each sensor data or viewing a page that
has both plots in real time. While data is being plotted, the
algorithm is constantly examining the ECG signal waiting for
any abnormality.

The user will have the option of either signing up or
logging in depending on whether the user has an account
or not. If the user has an account s/he can simply enter the
username and password to login. If not, clicking on the sign-
up button will take the user to another page where s/he will
be asked to enter some information to create an account. The
user will then be directed to the home page of the application

where s/he will have different options. The user will need to
connect to the IoT device before s/he can start viewing his/her
data. This can be done by pressing the connect button which
will take the user to another page where s/he can find the
device.

In the connect page, at first the user needs to turn
on the Bluetooth of the Android device. By pressing the
“TURN ON” button, the Android device will respond to the
application’s request, asking the user if the application can
open the Bluetooth and by hitting yes, the Bluetooth turns
on. The user can then go to the home page where s/he will
have several options between viewing his/her real-time plots
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TABLE 3: Performance metrics of IoT device.

Mode of operation Current Draw (mA)

Lifetime (Hours) Power Consumption (mW)

Idle 26

84 192.2

Connected 60

36 444

TABLE 4: Statistics about subjects participating in our data collection.

Gender Age [yrs.] Height [cm]
F: 4 23-26:8 150-159: 3
M: 16 27-34:9 160-169: 5
35-39:3 170-179: 10
180-189: 2

of the sensed data or going to the decision page. The decision
page will basically have information that describes the user’s
current health status. The time axis in real-time graphs shows
that the graph retrieves the current time from the Android
device and displays it in real time as the axis moves with
incoming data points.

4. Data Collection

After we finalized the system and were retrieving accurate
results, we began testing on test subjects. Since, we cannot test
our system with real people who have a chronic heart disease,
we recruited a group of participants, a variety of age groups,
and a range of heights (see Table 4 for statistics).

The data collection process can be divided into two parts,
reading the data from the sensors and sending it to the
smartphone. For the first part, one sensor gets the heart’s
pulse rate and the other one gets the body temperature. The
sensors data is parsed and plotted on the device’s screen.

4.1. Data Collection Interface. The sampling frequency or rate
at which we are collected sensor data is the key challenge in
data collection process. For our system, we send the data from
the two sensors simultaneously, so intuitively, the sampling
rate for our system would be less than the sampling rate of

a system that reads data from just one sensor. Given that
the body temperature does not undergo as many changes
as the ECG signal, we increased the ECG’s sampling rate
by decreasing the temperature’s sampling rate. We fixed the
sampling rates for the temperature sensor and the ECG signal
at 5 Hz and 160 Hz, respectively. Figure 7 shows the block
diagram that describes the sensor data collection interface.
The Bluetooth chip is also connected to the Arduino which
enables the IoT device to transmit the sensed data to the
smartphone application.

First, the user wears the device as described in the
hardware section and then uses the application to connect to
the Bluetooth interface as described in the software section.
From this point the user only needs to interface with the
application where s/he can navigate through the different
options.

4.2. Test Subject Data Collection. Our proposed system is
used to collect data from the users and store it in the
smartphone’s database and it can plot and process the data in
real time. To be able to write our algorithm, we had to collect
data from test subjects while doing different activities. The
three scenarios that we consider for each subject are: sitting,
walking, and climbing (upstairs). We believe that those
different scenarios can help us understand how everyone’s
heart behaves during different activities.

4.3. Test Subject Sample Data. The data collected show that
the system has a data collection system that is capable of
gathering data under any circumstances, such as in the three
scenarios described above. In this section, we show the
sample ECG data for test subjects. The sample temperature
sensor data are just plots to demonstrate the accuracy of the
SEnsor.
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FIGURE 6: Smartphone user interface for data collection and for real-time graph.

4.3.1. Temperature Data. In this subsection, we present the
detailed data for our temperature sensing process. Tempera-
ture does not need much analysis except for converting the
data points to the time domain and smoothing the signal for
better visual representation. The “noisiness” in temperature
signal indicates a need for smoothing. The y-axis represents
the temperature in Celsius and the x-axis shows the number
of data points. To convert the data points to time in seconds,
we need to use the sampling frequency which for this case
was 100 Hz. The sampling rate that was used here was just
to demonstrate the plot in an easier way since 700 hundred

data points can be easily mapped to 7 seconds using 100 Hz.
However, the sampling rates used for our system are still 5
Hz for the temperature data and 160 Hz for the ECG data.
Figure 16 shows a set of data when converted from data points
to time in seconds.

The temperature sensor used in our work has an accuracy
of +/- 0.5, which allows it to capture changes in temperature
very quickly as shown in the 7 second plots in Figure 8.
The one on the left shows the temperature decreasing
while the one on the right shows the temperature increas-
ing.
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4.3.2. ECG Data. ECG data was collected from test subjects
and analyzed on MATLAB. In this section, we show the data
of four test subjects in the three scenarios, two males and two
females. We were able to collect data for the walking scenario
using treadmills and for the climbing upstairs scenario using
stair steppers at the rec center. For each scenario, we show
the ECG signal and its corresponding heart rate. The heart
rate was ultimately calculated using the Fourier transform
method to make sure it is accurate [48]. Table 5 shows the
information of the four test subjects.

It is observed that the data collected for test subject 1
while sitting had no problems. Variations occurred when the
data collected while walking and climbing upstairs. This is a
result of the sensor moving while the subject was performing
the different activities. We collected data for multiple times
before we start analyzing. However, we decided to present the
noisy data obtained for subject 1 to show the major distinction
between noisy and proper ECG data. Therefore, the heart
rates for subject 1 for the last two scenarios are displayed as
N/A. A sample ECG signals for sitting, walking, and climbing
upstairs for a test subject shown in Figure 9.

5. Data Analysis Techniques

Our data analysis was mostly done using MATLAB. In signal
processing, noise is a general term for unwanted alterations
that a signal may suffer during collecting, storing, transmit-
ting, or processing data [49]. We collected data from analog
sensors and transmitting them over a low power Bluetooth
communication channel. We need data enhancement tech-
niques before we can start analyzing the data as the reading
can be affected by noise through the process. Since temper-
ature values do not usually have many fluctuations, we are
more concerned about the enhancement of the ECG signals.

5.1. Noise Reduction: Filtering. Extracting features from a
noisy signal can give a heart rate of 200 when the actual heart
rate is 80. Therefore, we ensure that, before we send our signal
to the feature extraction method, almost every unwanted part
of the signal is removed.

5.11 Baseline Wander Removal. The baseline wander is a
problem that shows ECG signals in a wavy fashion rather than
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TABLE 5: Test subject information.

Test Subject Weight (Ibs) Height (cm) Age Scenario Heart Rate
(i) Sitting .

. .. . (i) 107
Subject 1 125 173 20 (if) Walking (ii) N/A
(Female) (iii) Climbing

. (iii) N/A
Upstairs
(i) Sitting .

. . . (i) 72
Subject 2 141 177 24 (i) Walking (ii) 98
(Male) (iii) Climbing (iii) 108

Upstairs
(i) Sitting .

. . . (i) 72
Subject 3 163 180 23 (if) Walking (ii) 100
(Male) (iii) Climbing (iii) 134

Upstairs
(i) Sitting .

. N . (i) 79
Subject 4 128 184 23 (if) Walking (ii) 89
(Female) (iii) Climbing (iii) 105

Upstairs

being more of a constant envelope. A high pass filter to the
signal improves the “look” of the signal because it removes the
low frequency component that manifests itself as a sine-like
pattern of the baseline. Removing the baseline wander gives a
better signal which can help us process data more accurately.
Equation (1) describes the process of reducing noise using
base line wonder, where w_ is the cut-off frequency and N
is the filter order:

1

Hw)f = ———
] 1+ (wc/w)ZN

@

First, we smooth the signal using the MATLAB built
in function ‘smooth, which gives us that sine-wave-like
signal, then we subtract that sine-wave-like (low frequency
component) from the collected ECG signal.

5.1.2. Removal of High-Frequency Component. The time
domain operation of a low pass filter for signals is the
mathematical operation called the moving average (often
addressed to as smoothing). The enhanced version was
achieved by applying a low pass filter with a very satisfying
result as can be seen in the plot. The key when using high pass
or low pass filters is to choose the correct cut-off frequency.
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Choosing the wrong cut-off frequency can result in huge
alterations in the signal and irrelevant or, worse, erroneous
data decisions. Equation (2) describes the operation of low
pass filtering.

H (o)) = !
|H (w)] 1+(w/wc)2N (2)

We apply a moving average which is achieved by using
the smooth function in MATLAB. Using the correct window
for smoothing is essential as it can affect the signal’s expected
output. For the ECG signal we used a smoothing window of
20 data points.

5.2. Extracting Features. After noise reduction, we extracted
heart rate, RR intervals, and ST segments from ECG signals.
We used these features as inputs of our prediction algorithm
along with the body temperature. In the next subsections,
we describe the process of extracting features from the ECG
signal.

5.2.1. Heart Rate. We extracted heart rate or Beats per
Minutes (BPM) from collected ECG signals. We can calculate
BPM using several techniques including taking the number
of QRS peaks in a given time, using autocorrelation, or using
Fourier transform. The first technique sometimes yields inac-
curate results; however, when a signal has no baseline wander
problem, this technique should work. Autocorrelation and
Fourier transform techniques yield very accurate results.

(1) Autocorrelation. In autocorrelation, a signal is correlated
with a shifted copy of itself as a function of delay or lag.
Correlation indicates the similarity between observations
as a function of the time lag between them. We used this
technique to analyze our data as the collected ECG signals are
periodic. First, we calculate the difference between two peaks
which gives the length of one period in data points. Dividing
that number of data points by the sampling frequency gives us
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FIGURE 11: R-R interval of an ECG signal [19].

the time in seconds of one period. Inversing and multiplying
it by 60 give us the total beats per minute.

The mathematical equation for the autocorrelation func-
tion for signal processing is shown in

N2-k
R(k)= ) x(m)*x(m+k) 3)

n=N1

The equation shows the summation of the product of a
signal (x(m)) and a shifted version of it (x(m + k)). From
the equation, one can intuitively understand that, at lag
zero, the signal will have the highest amplitude since it is a
multiplication of itself without any shift.

(2) Fourier Transform. The Fourier transform extracts the
frequencies and harmonics of the signal. So, we find the
location of the maximum harmonic in the frequency plot.

The first significant harmonic in the signal is shown
approximately around 0.92 (the red circle) as shown in
Figure 10, which represents the beats per second. Simply
multiplying this by 60 gives us the beats per minute. The other
peaks in the signal represent either noise or information are
irrelevant in terms of calculating the heart rate.

The equations for the Fourier and inverse Fourier trans-
forms are shown below in (4) and (5), respectively [50].

F(w) = J £ () * e dt (4)

f(t) = % J_Zp(w) * e dw (5)

where F(w) is the frequency domain of a given signal and
f(¢) is the time domain of the signal. For our data analysis,
we used an “fft” function in MATLAB that gives us the plot
of the signal in the frequency domain. From there, we get the
location of the maximum harmony and multiply it by 60 to
get the beats per minute.

5.2.2. R-R Intervals. Another feature that we extracted from
the ECG signal is called the R-R interval, which is the interval
between successive R peaks in an ECG signal. For normal
ECG signals, the R-R intervals do not fluctuate or suddenly
change in a drastic manner. We recorded R-R intervals by
having the standard deviation of the signal. Figure 11 gives a
visual representation of an RR interval
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FIGURE 12: Sample ECG with R-R interval and ST segment.

Basically, we find the R peaks and subtract the peaks
locations in time, giving us the duration between each beat.
We find the peaks using a threshold value that ensures that all
the R peaks are included. To do that, we get the maximum of
the signal and subtract it by a specified percentage to ensure
that all the intervals are above the threshold value. The reason
for this was because not all the R peaks have the same voltage
value, the voltage values of the peaks usually fluctuate which
is why we dynamically calculate that threshold value based on
the portion of the ECG signal with which we are dealing. We
create arrays that store the R-R intervals of the ECG signal to
calculate the variability of the durations.

5.2.3. ST Segments. Also, another feature is that we extracted
ST segment voltage value from the ECG signals. We take the
ST segment into consideration for heart attack predictions
since elevated ST segments are one of the biggest indicators
of heart attacks. Figure 12 shows the sample data from one of
our test subjects. To calculate the ST segment voltage value,
we take the average of the points shown in the rectangle.

This produces a number that represents the ST segment
voltage value. The R-R interval is basically the range between
both peaks. We take a 20 percent from that range and add
it to the location of the first peak which gives us the point
where we would start adding the voltage values. Then we
take 50 percent of the range and subtract it from the location
of the subsequent peak, which gives us the point where we
would stop adding the voltage values. Those voltage values
are shown in the box in Figure 12.

After adding all the voltage values, we divide by the
number of points to get the average voltage value representing
the ST segment. Typically, the voltage values of a normal ECG
would be much lower than the voltage values of an ECG with
an elevated ST segment. We also use a standard deviation
analysis to detect if an ST segment suddenly changed. Note
that using percentages of the R-R interval to get the locations
of the ST segment voltage values and then averaging them is
not a conventional way to calculate the voltage value of the
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ST segment. This is based on our analysis, which used trial
and error, and that method to extract the ST segment voltage
value provided us with the best results.

5.3. Algorithm. The algorithm is the most important part of
the system. The algorithm functions as shown in the flow
chart in Figure 13. The first step is to read the data from the
sensors at 5 Hz for the temperature data and 160 Hz for the
ECG data. We then maintain a sampling window of 5 seconds
on which to perform all computations. After selecting the
sample window, we reduce the noise by applying the filtering
techniques discussed in Section 5.1. After removing all the
noise components from the signals, we extract the three
features from the ECG and pass on those features along
with the temperature data to our prediction algorithm. If
the results from the algorithm indicate that the current
sample window is normal, the window shifts by 1 second and
takes the next 5 seconds of data. If the algorithm detects an
abnormality, it immediately warns the user. Using a moving
window of 1 second creates the need more computation but
it provides faster and more accurate feature extraction and
prediction results. This means the next sample window will
have 1 second of new data and 4 seconds of data from the
previous sample window.

Our prediction algorithm is based on a predictive
machine-learning model called J48 Decision Tree [51]. This
model decides the target value of a new sample based on
various attribute values of the available data. We apply
that model to our algorithm with the result that the target
value would indicate whether the patient is having a heart
attack or not, and the available data would be contained
in the extracted features. We note that the decision tree
is a general model that can be used in many applications
in many different ways. We designed a novel algorithm;
Heart Attack Prediction using a Decision Tree based on
a Standard Deviation Statistical Analysis (DTSDSA); that
uses the decision tree model with a standard deviation
statistical analysis. We examine the method by which the
extracted features are processed at the decision tree. Using a
standard deviation statistical analysis, we determine whether
the features are abnormal or abnormal. Figure 14 shows the
structure of our decision tree which refers to the prediction
algorithm block in Figure 13. Our algorithm uses warning
levels from 0 to 4 to determine the degree of abnormality for
each incoming window.

We employ a sample window and a moving window. The
sample window contains the part of the ECG signal that
is being processed while the moving window specifies the
amount by which that sample window is shifted to start taking
the next sample window. Figure 15 illustrates the appearance
of both of the windows on one of our test subjects for both
sensors. As shown in Figure 14, the sample window is 5
seconds and the moving window is 1 second. This provides
an overlap of 4 seconds for subsequent sample windows. We
note that, for the 30 second ECG signal shown below, if we
did not have a moving window, we would have only had 6
sample windows (30 seconds/5 second windows). This means
that the features would only be updated 6 times throughout
the entire 30 seconds. The way we implemented it, we get 26
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FIGURE 13: Flow diagram of our algorithm.

results instead of 6 for the entire 30 seconds. This represents a
far more practical method since heart rates change very fast,
especially during cardiac events.

For each sample window, the feature extraction function
returns a single value for the heart rate, in a one-dimensional
array with the RR interval durations, and a one-dimensional
array with the ST segment voltage values. Since heart rates
are the most important feature that describe the heart’s status,
we start by checking variations in the heart beats first. We
do so by making sure that the heart rate is consistent using
our standard deviation analysis. Any heart rate while walking
or running is obviously going to be higher than the heart
rate while sitting or resting. Since we have a wide range of
heart rates that are considered normal, we were not able to
simply apply a thresholding technique where a heart rate
above a certain threshold value would be a sign of potential
heart failure. Heart rates can vary from 55 all the way to 150
depending on the person and what the person is doing.

By using our standard deviation statistical analysis, we
only detect an issue with the heart rate when it suddenly

fluctuates out of the normal range. If the current heart rate
has an error above 7 percent, we set the warning level to 1. For
example, if a person’s average heart rate is between 80 beats
per minute for 20 seconds then suddenly goes up to 100, the
error would be 25 percent. We only proceed to check the R-
R intervals if there is a problem with the current heart rate.
For the R-R intervals and ST segments arrays, with which
we are dealing, we calculate the standard deviation of the
sample window for both features. If the R-R intervals’ error
is higher than a certain percentage, we set the warning level
to 2 and proceed to check the ST segment. If the ST segment
also has an error higher than what is considered to be normal,
we set the warning level to 3 and proceed to check the body
temperature. At this point, we already know that this sample
window is abnormal. We still check the body temperature to
see if the warning level would go up to 4 or not since up to
this point, it can be a false reading based on errors in feature
extraction due to noisy signals. Since the temperature is a
single value, we calculate the error the same way we did for
the heart rates only with different thresholds. We then return
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FIGURE 14: Flow diagram of decision tree algorithm.

the warning level for each sample window to process that
warning and read the next sample window.

We created a dynamic buffer that attends to the processing
of warnings that are returned for each sample window. The
buffer is responsible for collecting the warning levels and
making a decision. To implement the buffer, we created
another window called the prediction window along with a
moving window. This window initially waits to collect the
results from 8 sample windows (8 warnings). The moving
window then shifts the prediction window 2 spots to the right.
A decision is made on each prediction window based on
a ratio that is calculated from the warning levels. Figure 16
shows the technique by which the prediction and moving
windows are established. The moving window is equivalent
to 2 warnings and the prediction window is equivalent to 8

warnings, which results in 10 prediction windows for the 30
second segment.

Assuming that the body temperatures are normal, the
worst case would be a prediction window with all 3’s which
gives a sum of 24. We add all the warning levels and divide
by 24. If the ratio is 0.5 or above, we trigger a warning to
the user. The results shown in Figure 16 are from an ECG
signal that was very noisy and did not have any characteristics
of a proper ECG. The algorithm therefore started detecting
abnormalities in the third prediction window. Running this
algorithm on normal ECG’s for healthy subjects gave us
ratios that were either zero or close to zero. Those were
our first indications that the algorithm does indeed work.
However, our next step was to run the algorithm on real
test subjects with heart failures for more validation. The
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FIGURE 17: Prediction algorithm results for test subject 1 while walking.

results are shown and discussed in more detail in the next
section.

6. Results and Evaluation

To evaluate our proposed system, we developed a prototype
application and investigated its performance. We evaluated
the prototype with extensive experiments. In this section,
we explain how the data is analyzed and performance is
measured for healthy and unhealthy subjects.

6.1. Healthy Test Subjects. The results shown are for one test
subject in the three different scenarios. Since all subjects had
normal body temperatures, we will show the ECG signals
and the results of the prediction algorithm for each sample
window. The test subject’s information is shown in Table 6.

The ECG signal while walking is considered as a normal
and, therefore, no warning will trigger. The ECG signal while
walking also consider as normal. But, we had a couple of
false warnings while walking. We use the prediction window
to eliminate the false warnings in our algorithm. Figure 17
shows that the results from the prediction algorithm had
three warnings of level one while walking. Therefore, there
was no need to warn the user since it was a false error.

The algorithm triggered a few warnings as well while the
test subject was climbing upstairs. As shown in Figure 18,
there are a few warnings for each prediction window, but,

none of which above 50 percent, threshold level for indicating
a myocardial infarction (MI).

6.2. Unhealthy Test Subjects. We were able to download
datasets from a database online that has records of patients
who suffered from sudden cardiac deaths. We also ran the
algorithm on our 20 healthy test subjects and the results
validated that the algorithm works with a high accuracy for
the healthy test subjects. Table 7 shows the information of
each test subject [52].

The results showed that the algorithm gives no warnings
for all scenarios that had different heart rates. However, to
validate our algorithm using only healthy subject data is
not enough. Even though we ran our algorithm on noisy
data, we still cannot conclude that our algorithm can predict
heart problems. Therefore, we downloaded 10 datasets from a
database online that has ECG signals for patients that suffered
from sudden cardiac deaths. The ECG signals we selected for
each test subject was moments before the subject passed away.

We tested our algorithm on the ECG signals from all the
subjects shown in Table 7 and the results were accurate as
expected. We show some details of the algorithm’s results for
the subject 5 from Table 7. Figure 19 shows the ECG signal for
subject 5.

Before showing the prediction algorithm results, we will
explain the results from the feature extraction to show why
the algorithm triggered warnings.
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TABLE 6: Information for test subject 1.
Subject Gender Age Scenario Average Heart Rate
(i) Sitting () 84
1 Male 24 (ii) Walking (ii) 108
(iii) Climbing Upstairs (iii) 135
Heart Rates for First 11 Sample Windows
71. | 131 | 71. 119 | 119 | 131 | 71 71. 71. 71. 131
94 .89 942 | .90 90 .89 942 | 942 | 942 | 942 | .89

Sample Window 2

(1) Heart Rate Error = 100 * |131.89 — 71.94| / 71.94 =
83.3% — Warning level 1

(2) As shown in Figure 20, the R-R Intervals had very
high fluctuations which explain why the heart rate
jumped from 71.94 to 131.89 in just one second. —
Warning level 2

(3) As shown in Figure 21, the ST segment voltage values
were also fluctuating in an abnormal fashion. —
Warning level 3

The prediction results for the ECG signal are shown
in Figure 22. The warning result from the second sample
window, the one we discussed, is highlighted in yellow. We
observed a remarkable fluctuation in all the features and the
algorithm triggered warnings of level 3 for almost all the
sample windows as expected for a patient who had a history
of cardiac surgery and passed away shortly after the signal was
recorded.

7. Conclusion

In this paper, we designed and developed an integrated smart
IoT system to predict and monitor heart abnormality in
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TABLE 7: Information of unhealthy test subjects.

Subject Gender Age History Medication Underlying Cardiac Rhythm
1 Male 43 Unknown Unknown Sinus
2 Female 72 Heart Failure Digoxin; Quinidine gluconate Sinus
3 Female 30 Unknown Unknown Sinus
4 Female 72 Mitral valve replacement Digoxin Atrial fibrillation
5 Male 75 Cardiac surgery Digoxin; Quinidine Atrial fibrillation
6 Male 34 Unknown Unknown Sinus
7 Female 89 Unknown Unknown Atrial fibrillation
8 Male 66 Acute myelogenous leukemia Digoxin; Quinidine Sinus
9 Female 82 Heart failure None listed Sinus
10 Male 68 History of ventricular ectopy Digoxin; Quinidine Gluconate Sinus
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FIGURE 19: ECG signal of unhealthy subject 5.
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FIGURE 20: R-R Intervals on sample window 2.
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FIGURE 21: ST segments on sample window 2.

user. We also managed to create a low power consumption
communication channel between the smart IoT device and
the smartphone application. This research provides users a
noninvasive device that allows them to better understand
how they may feel about their ECG. The results from different
data sets are also presented to show that this approach pro-
vides a high rate of classification correctness in distinguishing
between at normal and abnormal ECG patterns. The system
may also find multiple applications in behavior detection for
people with various disabilities.

To test the chronological durability and long-term fea-
sibility of our approach in the future, we plan to test our
system with data from the people who suffer from heart
problems. We plan to test the power consumption rate for
whole working life of the device during test on the field. We
also plan to measure the different physiological parameters
of the user during daily activities. Additionally, the system
can be used in the smart home monitoring system for future
wireless technology. Also, we can enhance the system by
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FIGURE 22: Prediction algorithm results for unhealthy subject 5.

adding more sensors, like, Galvanic Skin Response (GSR),
accelerometer, to the IoT device.
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