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The practice of regular physical exercise is a protective factor against noncommunicable diseases and premature mortality. In spite
of that, large part of the population does not meet physical activity guidelines and many individuals live a sedentary life. Recent
technological progresses and the widespread adoption of mobile technology, such as smartphone and wearables, have opened the
way to the development of digital behaviour change interventions targeting physical activity promotion. Such interventions would
greatly benefit from the inclusion of computational models framed on behaviour change theories and model-based reasoning.
However, research on these topics is still at its infancy. The current paper presents a smartphone application and wearable device
system called Muoviti! that targets physical activity promotion among adults not meeting the recommended physical activity
guidelines. Specifically, we propose a computational model of behaviour change, grounded on the social cognitive theory of self-
efficacy. The purpose of the computational model is to dynamically integrate information referring to individuals® self-efficacy
beliefs and physical activity behaviour in order to define exercising goals that adapt to individuals’ changes over time. The paper
presents (i) the theoretical constructs that informed the development of the computational model, (ii) an overview of Muoviti!
describing the system dynamics, the graphical user interface, the adopted measures and the intervention design, and (iii) the
computational model based on Dynamic Decision Network. We conclude by presenting early results from an experimental study.

1. Introduction

Noncommunicable diseases such as cardiovascular and res-
piratory diseases, cancer, diabetes, and obesity are the
main cause of mortality in Western countries and cause
unimaginable costs for public health [1]. Although physical
activity constitutes an important protective factor against
such diseases [2], large part of the population does not
respect the recommended physical activity guidelines and
lives a sedentary life [3]. Hence, there is the need to find
new, effective, and large-scale solutions to promote behaviour
change in the direction of a higher physical activity.

Recent availability of effective and inexpensive sen-
sors, generally embedded into commercial devices, such as

wearables and smartphones, has opened the way to the
development of smartphone applications (apps) oriented to
promote health behaviour change [4]. Healthcare apps are
becoming one of the most important and promising tools
for delivering behaviour change interventions [5, 6]. With
regards to physical activity (PA) behaviour, mobile sensors
can perform direct, intense, and longitudinal measurements
of physical parameters (e.g., the heartbeat) and may produce
detailed records of the individual behaviour (e.g., exercise)
that are immediately available for analysis [7]. Thanks to
such opportunities for data collection, new technologies
can rapidly manage and combine different input datasets,
provide accurate predictions about the influence pattern
among interested variables (e.g., behavioural, psychological),
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and deliver behaviour change interventions that are adaptive
to individual and context changes over time [8]. For these
reasons, mobile technology has been hypothesized to support
the science of behaviour change and it constitutes a pref-
erential tool both for modeling behaviour change theories
and for testing them in real world settings [4, 9, 10]. In
spite of that, existing PA apps are characterized by a lack of
adherence to behaviour change theories [11] and relatively
little attention has been paid to the adoption of specific com-
putational models grounded in behaviour change theories
[12]. More specifically, even though digital interventions that
made extensive use of behaviour change theories produce
larger effects on behaviour [13], Cowan and colleagues [11]
evidenced that Health & Fitness apps mostly included only
minimal theoretical content.

Self-efficacy theory [14, 15] is one of the most prominent
psychological theories about behaviour change and it lays
its foundations on the construct of self-efficacy. Self-efficacy
(SE) has been defined as the beliefs in one’s capabilities
to organize and execute the courses of action required to
produce given attainments [14]. Such beliefs affect several
areas of human endeavor [15] and these effects are par-
ticularly relevant with regards to health-related behaviours
[16-18]. More specifically, it has been consistently shown
that self-eflicacy is a key determinant for the adoption and
maintenance of PA behaviour [17, 19, 20], as well as a
mediator of the effects of interventions on physical activity
[21-24].

Self-efficacy beliefs develop as a consequence of four
sources of information: enactive mastery experience, vicar-
ious experience, verbal persuasion, and physiological or
affective states management [15]. Among them, mastery
experience has been shown to be the most potent source of
self-efficacy in different domains and populations [15, 25-27].
It refers to the direct experience of performing a specific task
and, hence, it represents an authentic indicator of the individ-
ual ability to accomplish similar tasks in the future. Indeed,
when people engage in tasks and activities, they interpret the
results of their actions and they use such interpretations to
develop beliefs about their capability and to subsequently act
according with the created beliefs. Experiences interpreted
as successful generally increase confidence while experiences
interpreted as unsuccessful generally undermine it [15]. As a
consequence, in light of the reciprocal influence between self-
efficacy and behavior, the selection of any specific behavioral
goal should be set with the aim to gradually support both
the achievement of successful experiences and the increas-
ing of self-efficacy. For this purpose, goals should be (i)
doable in order to permit individuals to master successful
experiences and (ii) challenging in order to adequately
reinforce self-efficacy beliefs once the goal has been achieved
(15, 28].

In recent years, we assisted the first attempts of developing
computational models based on self-efficacy theory in order
to promote PA [29, 30]. Self-efficacy theory is particularly
suitable to be modeled because of its nature that is explicitly
dynamic (i.e., it takes into account time-varying information
such as individual achievements, self-efficacy beliefs and
expectations) and, thus, permits adapting the intervention to
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the individual over the course of the intervention itself [12].
The advantages of developing a computational model based
on a behaviour change theory, such as self-efficacy theory,
mainly rely on the capacity of predicting directionality and
magnitude of effects among variables (e.g., target behaviour
and its psychological determinants),and simulating and test-
ing how they change and influence each other across contexts
and over time [31].

First computational models of self-efficacy focused on
different approaches and frameworks. Pirolli [30] proposed
a computational model, called ACT-R-DStress, aiming to
(i) model interactions among behavioral goals, memories
of past experiences, and behavioral performance, and (ii)
explains and predict both the dynamics of self-efficacy and
the individual performance in an exercise program. For these
purposes the ACT-R-DStress exploited the computational
neurocognitive architecture that characterizes the ACT-R
theory’s simulation environment [32]. Differently, Martin et
al. [29] developed a dynamical model of social cognitive
theory adopting principles from control system engineer-
ing with a focus on system identification methodologies.
Specifically, system identification compares what happens in
different states and contexts of the person over time to what
was predicted by a precise mathematical model of a given
theory. Such methods have been applied to PA promotion
and to generate dynamical models for future predictions to
be tested against social cognitive theory (for an overview see
(33]).

The current paper presents an innovative computational
model that is conceptually framed in self-efficacy theory
with a particular emphasis on self-efficacy beliefs and goal
setting constructs. The computational model is embedded in
adigital behaviour change intervention delivered by Muovitil,
a mobile app and heart rate monitor system that aims at the
promotion and maintenance of PA among adults not meeting
the recommended PA guidelines. The main contribution of
the current work is twofold: (i) generating a computational
model that combines input data collected through mobile
technology (i.e., amount of PA collected through a heart
rate monitor, SE assessed through ecological momentary
assessment) in order to set PA goals that are dynamically
adapted to each individual’s achievement and changes in SE
over time and (ii) tuning the proposed computational model
according to early empirical findings from real case studies.

2. Materials and Methods

2.1. Overview of Muoviti!

2.1.1. The Experimental System. The experimental system that
constitutes Muoviti! is made of three key components (see
Figure 1):

(i) A heart rate (HR) wristband needed to measure
the amount of PA performed. More specifically, two
commercial, low-cost and reliable HR monitors (i.e.,
MioAlpha, PulseON) have been tested. Such devices
nonetheless provide an estimate of the relevant phys-
iological parameters which is precise and reliable
enough for our purposes [34, 35].



Advances in Human-Computer Interaction 3

—
send
new PA goal DM mySQL
calculate
new PA goal
\
. send
send HR METs and SE
() .
smartwatch
smartphone server

FIGURE 1: The general architecture of Muoviti!
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FIGURE 2: Screenshots from the Graphical User Interface (GUI) of the Muoviti! App.

(ii) A smartphone app which (i) handles the user inter-  generated on the basis of two different input data: (i) goal
face, (ii) ecologically assesses SE through an ad hoc ~ achievement during the previous week and (ii) SE beliefs
short questionnaire, (iii) collects information from  in doing physical activity during the previous week. Finally,
the heart rate monitor, and (iv) transfers information ~ Muoviti! splits the weekly PA goal into daily short-term
to/from the back office. goals, translates them into concrete PA tasks (e.g., minutes of

running, or fast walking), and presents them to the user (see

iii) A back office with that stores the data relati
(ifi) A back office with a server that stores the data relative below in the ‘Computational model’ paragraph).

to each person and executes the modeling algorithm,

thus formulating tailored PA suggestions for the next
training period. 2.1.2. Graphical User Interface. Figures 2 and 3 illustrate

the main components of Muovitil’s graphical user interface.

Muoviti! operates as follows. At the beginning of each  During the login process, users are asked to specify the login
weekly training period, a suggested PA goal for the week is ~ credentials (Figure 2.1), their age (Figure 2.2), and other
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FIGURE 3: Screenshots from the GUI of the Muoviti! App.

parameters like weight and waistline (Figure 2.3) that are
useful to evaluate possible benefits or drawbacks emerging
from exercising. Furthermore, the figure shows the interface
for the collection of values to assess users’ self-efficacy after a
physical activity session (Figure 2.4). Each week the training
sessions calendar is automatically updated on the basis of
previous training sessions results (Figure 3.1). The user can
manually place the activities suggested by the system to fit
better with other duties (e.g., working hours). The calendar
provides the patient with important information about the
training event (Figure 3.2), like the weather forecasting,
the duration and intensity of the activity to do, with the
possibility for the user to change the position of the activity
in the agenda. Finally, the system supports the user in self-
monitoring and collecting significant data when the activity
is accomplished (Figure 3.3), in particular the heart-beat rate,
a visual warning about the correct execution of the activity,
and the shortcuts to statistics and graphs about the results
obtained.

Finally, Figure 4 illustrates how the individual perfor-
mance has varied over the time, to provide people with an
immediate feedback about the results obtained day by day
and week by week. Muoviti! currently allows visualizing the
heart-beat rate graph of the last training session, the curves
of weight and waistline variations week by week, the burned
calories graph, session by session, and the percentage of
vigorous activity with respect to moderate activity.

2.2. Measures

2.2.1. Physical Activity. The computation of the PA goal
for the new training period (i.e., output data) is expressed
in terms of METs (Metabolic Equivalent of Task) that is
a measure of the amount and quality of performed PA
normalized to the physical characteristics and age of the
individuals. Specifically, it METs represent the ratio of the

metabolic rate (the rate of energy consumption) during a
specific exercise to a reference metabolic rate:

kcal

kg
MET is used as a mean of expressing the intensity and
energy expenditure of activities in a way comparable among
persons of different weight. Actual energy expenditure (e.g.,
in calories or joules) during an activity depends on the
person’s body mass; therefore, the energy cost of the same
activity will be different for persons of different weight. When
the subject begins performing a PA training session, she/he
asks the app to start the collection of PA data through the
Bluetooth connection with the wristband. The app translates
the HR collected by the wristband into the equivalent energy
expenditure (METs), given by the following formula [36]:

IMET = * h )

MET minutes = 4 x Time™™* + 8 « Time™™*  (2)

where TimeM™ and Time"™ are the periods of time the

subject is involved in moderate physical activity (MPA) and
vigorous physical activity (VPA) and parameters 4 and 8
represent the corresponding MET expenditure per minute.
A PA session is defined as moderate if the registered HR
values are in the range [6 * MHR/10,7 * MHR/10], while it
defined as vigorous if the registered HR values are in the range
[7 + MHR/10, 8 = MHR/10]. MHR represent the maximum
heart rate depending on the subject age and it is calculated by
subtracting age to a standard value (i.e., 220 - age).

2.2.2. Self-Efficacy Beliefs. SE beliefs are ecologically assessed
at the end of each training session, through a set of questions
to the person, each concerning a specific aspect of the
physical activity. Currently, two questions are proposed to the
user to evaluate the self-efficacy beliefs referring to the PA
they have just performed:
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FIGURE 4: Screenshots from the GUI of the Muoviti! App.

(i) How much do you feel able to do a similar training next
week, despite its duration?

(ii) How much do you feel able to do a similar training next
week, despite its intensity?

The SE score is given by the arithmetic mean of the provided
answers:

n
Y, answer;

SE; = (3)

! n

where 7 is the number of questions posed to the user and
answer; is the value given by the user on a 4-point Likert
scale, ranging from 1 (not able at all) to 4 (absolutely able).
The advantages of assessing SE through digital ecological
momentary assessment rely on the opportunity to minimize
recall bias, maximize ecological validity, and better under-
stand behaviour in real-world contexts [37].

2.3. Intervention Design. Muoviti! aims to homogeneously
merge physical and psychological variables into a unique
conceptual framework, in order to build up tailored PA
goals. For this purpose, at the end of the weekly period,
the app interacts with the user by notifying the degree of
accomplishment of the weekly goal and sends the recorded
data to the back office. Muovitil’s back office aggregates PA
accomplishments and SE scores from each single training
session in order to get a global evaluation of the users’ PA
accomplishments and SE beliefs over the week. The global
evaluation of PA achievements and SE beliefs over the weekly
period may assume the following facets and codes:

(i) Physical activity:

(a) The weekly PA goal was achieved (PA+);
(b) The weekly PA goal was not achieved (PA-);

(ii) Self-efficacy:

(a) The weekly PA self-efficacy was high - average
SE equal or higher than 2.5 (SE+);

(b) The weekly PA self-efficacy was low — average SE
lower than 2.5 (SE-).

After this assessment is made, the PA goal for the next week is
proposed. Table 1 shows the decision rules about how global
evaluations of PA and SE are combined in order to set new
goals.

Finally, according to the user preferences, the PA goal for
the next training period is successively split in daily short-
term goals in order to support an effective action planning.
The goal setting strategies at each period are taken with the
aim of obtaining a successful result in a long-term perspective
that is determined according to the general guidelines for PA
promotion, which state that a person should perform 600
METs per week of PA [3].

2.4. Computational Modeling. The developed computational
model combines knowledge about the PA performed, mea-
sured through the data collected by the wearables and an
ecological momentary assessment of self-efficacy beliefs. The
model was employed to define and dynamically adapt, a PA
plan consisting of suggestions about the PA goal to be carried
out every week, with the aim of maximizing the probability of
bringing the person to the recommended PA level at the end
of the long-term training period. The mathematical model
adopted is a Dynamic Decision Network (DDN), a sequence
of simple Bayesian Networks (BN), each representing the
person’s situation at a specific training period (i.e., one week).
Figure 5 shows the current decisional model in Muoviti! (Part
(a)) and the future one (Part (b)). The basic BN embodies
variables which represent the physical activity performed, the
estimated self-efficacy of the period, and the possible external
factors (e.g., weather) influencing the performed activity. The
DDN model includes decision variables at each training stage,
which represent the PA goal proposed for the week, and a
utility function on the final level of PA achieved. Moreover,
the mathematical model of Muoviti! clearly combines self-
efficacy with objective measurements of PA, being able to
build up a personalized plan taking into account possible
different trajectories towards the final goal.

The DDN model has been preferred to other approaches
present in the literature (for instance, based on neurocogni-
tive simulation [30] or on the theory of dynamic systems [29]
because it represents with accuracy the sequence of decision
points (the weekly PA suggestions) that we have envisioned
in our approach. An explanation of the model can be given
as follows: the NEW GOAL variable (on Figure 5, part (a))
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FIGURE 5: Part (a): the model basic decision step and Part (b): the relation between two consecutive “time slices” in the DDN model.

represents the decision to be taken at the beginning of each
training period. It is influenced by the two basic variables
describing the state of the subject: the SE and the level of
success obtained in the preceding period, measured as the
ratio of achieved METs with respect to the current GOAL. The
achieved METs can be measured directly in our experimental
system, and the SE can be evaluated from the result Q of a set
of questions posed to the subject. Figure 5, Part (b) shows how
the basic decision step is embedded in the sequence of time
slices constituting the DDN. The structure of the model can
be explained by considering its two main purposes:

(1) Providing an integrated estimation of SE on the basis
of the self-report assessment of SE (i.e., Q) and SE
autocorrelation in preceding periods. We consider
that SE is a long-term developing psychological deter-
minant of PA; therefore, its values in succeeding peri-
ods are correlated. The model conditions the SE,,
value at the beginning of period t+1 to its preceding
value SE, which has already shown its effects on the
results (MET/GOAL) obtained in period t. We also
introduced a variable EXT to explain away a decrease
in SE when the observed PA shows a reduction due
to factors external to the training (e.g., an illness or a
period of bad weather).

(2) Providing planning decisions. The sequence of deci-
sions represented by the GOAL, variables must lead
the subject to achieve the desired PA level before
the end of the program; the decision to be taken
in each period must be compatible with this long-
term target (i.e., 600 METs per week). We call the
sequence of decisions from the present time until the
end of the program a strategy. The overall objective

is modeled by defining a utility function computed
on the expected value assumed by the MET variable
in a stable, long-term situation. The utility value
distribution can be computed, for each strategy, on
the basis of the present state assuming no external
interference. In this way an updated assessment of the
possible strategies can be carried out at each decision
step.

The model tuning consists of the derivation of the conditional
probability tables (CPT) from the experimental collection of
data, as described in the next section.

3. Results

Muovitil's computational model represents a mathematical
description of a behaviour change model based on self-
efficacy theory that needs to be tuned according to real case
studies. To this scope, we assume that potential users of
Muoviti! can be classified into different basic profiles and
that such profiles are represented by the different values in
the CPTs present in the model. In this section we present
early findings from a study based on real case data. For these
purposes, we recruited 60 potential users of Muoviti!, chosen
among people involved in indoor physical activity, mostly
using treadmills. Participants (35 female, 25 male) were asked
to use Muoviti! for a period of eight weeks, splitting the
proposed amount of MET into two sessions, as suggested
by the application. Each participant was in the 35-60 years
old range, equipped with an Android smartphone and a
wearable device capable to detect heart-beat rate, provided
by us (ie., PulseOn) or on their own. The study started
with 120 MET as a goal to accomplish in the first week.
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According to the results obtained, crossing self-efficacy and
MET values obtained at the end of the week training session,
the new goal could be increased or decreased by 120 MET
with respect to the previous, or not modified, till a maximum
value of 600 MET to reach. The collected data were used to
build up a user profiling, suitable for the future set-up of
the Dynamic Bayesian Network: each user was characterized
by METs and SE values obtained in the eight weeks of the
study, for a total of 16 descriptors. These descriptors were
compared with an optimal user profile, exploiting the case-
based reasoning paradigm and the CREPERIE platform [38,
39]. In CREPERIE, a case is a finite collection of pairs (ce;
v;), 1 € [1, 00), where case elements ce=(id, t, n), where id
€ 7" - {0} is the case element identifier, t € T identifies the
range of values associated to ce (i.e., String, Integer, Double),
and n € String is the name of the case element; v € t is the
value associated to each ce. Case elements can be arranged
into a vector or a tree. CREPERIE defines different kinds
of similarity functions to use in the retrieval step, according
to the nature of the case elements values. In particular, the
following one has been adopted in our case study, given that
the values are numbers:

|Vce (x) ~ Ve (y)| (4)

max — min

Sf (nx ) =1

where x and y are two cases, n is the attribute corresponding
to ce(x) and ce(y), and max = v (n) € x U y: v (n) > v (m),
forallv..(m) exUyand min =v (k) exUy: v (k) < v .(j),
for all v..(j) € x U y. In other words, max and min can be
substituted by the extremes of the normalization interval if
needed.

Once sf(n, x, y) has been calculated for all n in x and y, the
similarity between case x and y is defined as follows:

sim (X y) — ZnED Sf (1’1, X y)
’ ZHED w,y,

©)
where w,, € [0, 1] is the weight of the attribute n, sim(x, y) is
the local similarity between cases x and y, and D is the set of
attributes in the cases.

Figure 6 shows the case structure adopted in our case
study: the case elements were composed of 16 descriptors,
eight met values reached during eight weeks of training and
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FIGURE 7: The profiling of Muoviti! app users according to the

CREPERIE platform. Similarity values are on Y axis, while case
element IDs are on the X axis.

eight self-eflicacy values calculated at the end of each week.
The MET values are multiples of 120 in the range [120, 600],
in accordance with the theoretical background of the model.
The SE values are in the range [1, 4], according to (3). The
denominator in the sf(n, x, y) calculus was equal to 480, given
that the extremes of the met domain set were 120 and 600,
respectively. Finally, we have considered w, =1 for all n.

Figure 7 shows the profiling of participants according to
their similarity with the optimal profile. Four main clusters
have been created: static, characterized by very low similarity
degree with the optimal profile (less than 50%), capable,
composed of profiles very similar to the optimal one (more
than 70%), and a sort of “grey zone” with similarity between
50% and 70% where two subcategories can be identified,
namely, complicated and slow but gradual. Complicated pro-
files are characterized by scarce physical performance and
low self-eflicacy, although they would potentially be able
to reach proposed objectives; slow but gradual profiles are
characterized by excellent physical performances, according
to which they could be compared to optimal profile, but very
low self-efficacy.

Table 2 shows some samples of users’ data from the graph
in Figure 7. The optimal profile data used in the case-based
reasoning is shown at the end of the table.
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TABLE 2: Samples of users’ data referring to the current profiles emerged from the comparison with an optimal profile.
Week
Ist 2nd 3rd 4th 5th 6th 7th 8th

Profile 1-Capable

Goal (METs) 120 240 360 480 360 480 480 600

Achijevement YES YES YES NO YES YES YES NO

Self-Efficacy HIGH HIGH HIGH LOW HIGH LOW HIGH LOW
Profile 2-Slow but gradual

Goal (METs) 120 240 360 360 360 480 480 360

Achievement YES YES YES YES YES YES NO NO

Self-Efficacy HIGH HIGH LOW LOW HIGH LOW LOW LOW
Profile 3-Complicated

Goal (METs) 120 240 240 240 360 480 360 240

Achievement YES YES YES YES YES NO NO YES

Self-Efficacy HIGH LOW LOW HIGH HIGH HIGH LOW HIGH
Profile 4-Static

Goal (METs) 120 120 240 120 120 240 120 120

Achievement NO YES NO NO YES NO YES YES

Self-Efficacy HIGH HIGH LOW HIGH HIGH LOW LOW LOW
Optimal Profile

Goal (METs) 120 240 360 480 600 600 600 600

Achievement YES YES YES YES YES YES YES YES

4. Discussion and Conclusions

This paper presented an innovative approach to promote
PA behaviour change among inactive adults. The approach
is based on the development of a computational model
grounded in self-efficacy theory and on the integration of
mobile technologies and dynamic decision networks. The
main aim of Muoviti! is to suggest personalized PA goals
that adapt to individuals’ changes in PA and self-efficacy over
time. Early findings revealed the presence of four clusters of
user profiles, reflecting the respective progression patterns
towards the long-term goal. However, further research is
needed to confirm such results by tuning the computational
model around a greater number of real case studies. After
having tuned the mathematical model in an experimental
setting, Muoviti! will be tuned in real life contexts too. The
purpose of this additional research phase is to develop a
mathematical model that takes into account external (e.g.,
weather, time of the day, and day of the week), demo-
graphical (sex, age), and psychological (e.g., stress, outcome
expectancies, and action control) factors that may influence
the exercise behaviour. Furthermore, in the same vein, future
research will aim to tune the current computational model in
different populations (e.g., clinical populations) and contexts
(e.g., rehabilitation settings) in order to validate its scalability.
Finally, next works will be also devoted to develop an effective
Android app for distribution: to this aim, many steps should
be completed. In particular, the adherence of our approach
to recent GDPR regulations must be implemented. At the
current stage for development, personal data (like the heart-
beat rate) of the users are stored inside their smartphones,
while elaborations of the system are anonymized and stored

in a cloud platform to be easily retrieved and used. Anyway,
this is not sufficient to allow full sharing and downloading of
the app through usual channels, like play-stores and websites.
For this reason, at the end of this preliminary phase of
analysis, where permissions to exploit user data have been
only signed by the participants for research scopes, our
strategy in future developments of the Muoviti! app will be
completely revised.
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available from the corresponding author upon request.

Conflicts of Interest

The authors declare that there are no conflicts of interest
regarding the publication of this paper.

References

[1] A.Boutayeb and S. Boutayeb, “The burden of non communica-
ble diseases in developing countries,” International Journal for
Equity in Health, 2005.

[2] B. K. Pedersen and B. Saltin, “Exercise as medicine - Evidence
for prescribing exercise as therapy in 26 different chronic
diseases,” Scandinavian Journal of Medicine and Science, 2015.

[3] Who, Global Recommendations on Physical Activity for Health,
World Health Organization, Geneva, Switzerland, 2010.

[4] K. Patrick, E. B. Hekler, D. Estrin et al., “The pace of technologic
change: implications for digital health behavior intervention



10

[10

(11]

(12]

(14]

(15]
(16]

(17]

(19]

(20]

research,” American Journal of Preventive Medicine, vol. 51, no.
5, pp. 816-824, 2016.

N. Lathia, V. Pejovic, K. K. Rachuri, C. Mascolo, M. Musolesi,
and P. J. Rentfrow, “Smartphones for large-scale behavior
change interventions,” IEEE Pervasive Computing, 2013.

S. Pagoto and G. G. Bennett, “How behavioral science can
advance digital health,” Translational Behavioral Medicine, 2013.
E. B. Hekler, P. Klasnja, V. Traver, and M. Hendriks, “Realizing
effective behavioral management of health: the metamorphosis
of behavioral science methods,” IEEE Pulse, Article ID 2271681,
2013.

I. Nahum-Shani, S. N. Smith, B. J. Spring et al., “Just-in-
time adaptive interventions (JITAIs) in mobile health: key
components and design principles for ongoing health behavior
support,” in Proceedings of the Annals of Behavioral Medicine,
2016.

W. J. Nilsen and M. Pavel, “Moving behavioral theories into the
21st century: technological advancements for improving quality
of life” IEEE Pulse, Article ID 2271682, 2013.

D. Spruijt-Metz, E. Hekler, N. Saranummi et al., “Building
new computational models to support health behavior change
and maintenance: new opportunities in behavioral research,’
Translational Behavioral Medicine, vol. 5, no. 3, pp. 335-346,
2015.

L. T. Cowan, S. A. van Wagenen, B. A. Brown et al., “Apps
of steel: are exercise apps providing consumers with realistic
expectations?: a content analysis of exercise apps for presence of
behavior change theory,” Health Education and Behavior, 2013.

W. T. Riley, D. E. Rivera, A. A. Atienza, W. Nilsen, S. M.
Allison, and R. Mermelstein, “Health behavior models in the
age of mobile interventions: Are our theories up to the task?”
Translational Behavioral Medicine, 2011.

T. L. Webb, J. Joseph, L. Yardley, and S. Michie, “Using the
Internet to promote health behavior change: A systematic
review and meta-analysis of the impact of theoretical basis,
use of behavior change techniques, and mode of delivery on
efficacy;” Journal of Medical Internet Research, 2010.

A. Bandura, “Self-efficacy: toward a unifying theory of behav-
ioral change,” Psychological Review, vol. 84, no. 2, pp. 191-215,
1977.

A. Bandura, “Self Efficacy: the exercise of control,” American
Journal Os Health Promotion, 1997.

A. Luszczynska and R. Schwarzer, “Social cognitive theory;” in
Predicting Health Behaviour, 2005.

P. Steca, L. Pancani, F. Cesana et al., “Changes in physical activity
among coronary and hypertensive patients: A longitudinal
study using the Health Action Process Approach,” Psychology
& Health, vol. 32, no. 3, pp. 361-380, 2016.

P. Steca, L. Pancani, A. Greco et al,, “Changes in dietary behavior
among coronary and hypertensive patients: a longitudinal
investigation using the health action process approach,” Applied
Psychology: Health and Well-Being, vol. 7, no. 3, pp. 316-339,
2015.

A. E. Bauman, R. S. Reis, J. F Sallis, J. C. Wells, R. J. E Loos,
and B. W. Martin, “Correlates of physical activity: why are some
people physically active and others not?” The Lancet, vol. 380,
no. 9838, pp. 258-271, 2012.

L. S. Rovniak, E. S. Anderson, R. A. Winett, and R. S.
Stephens, “ocial cognitive determinants of physical activity in
young adults: A prospective structural equation analysis,” in
Proceedings of the Annals of Behavioral Medicine, 2002.

(21]

[22]

(26]

(27]

(28]

(29]

(30

(31]

(32]

(33]

(34]

(37]

Advances in Human-Computer Interaction

S. Ashford, J. Edmunds, and D. P. French, “What is the best
way to change self-efficacy to promote lifestyle and recreational
physical activity? A systematic review with meta-analysis,”
British Journal of Health Psychology, 2010.

V. Burke, L. J. Beilin, H. E. Cutt, J. Mansour, and T. A. Mori,
“Moderators and mediators of behaviour change in a lifestyle
program for treated hypertensives: a randomized controlled
trial (ADAPT),” Health Education Research, 2008.

C. D. Darker, D. P. French, E E Eves, and F. E. Sniehotta, “An
intervention to promote walking amongst the general popula-
tion based on an “extended” theory of planned behaviour: a
waiting list randomised controlled trial,” Psychology ¢ Health,
2010.

G. R. Dutton, E Tan, B. C. Provost, J. L. Sorenson, B. Allen,
and D. Smith, “Relationship between self-efficacy and physical
activity among patients with type 2 diabetes,” Journal of Behav-
ioral Medicine, 2009.

S. L. Britner and F Pajares, “Sources of science self-efficacy
beliefs of middle school students,” Journal of Research in Science
Teaching, 2006.

C. W. Loo and J. L. E Choy, “Sources of self-efficacy influencing
academic performance of engineering students,” American
Journal of Educational Research, 2013.

L. M. Warner, B. Schiiz, J. K. Wolff, L. Parschau, S. Wurm, and R.
Schwarzer, “Sources of self-efficacy for physical activity,” Health
Psychology, 2014.

E. A. Locke and G. P. Latham, “Building a practically useful
theory of goal setting and task motivation: A 35-year odyssey,”
American Psychologist, 2002.

C. A. Martin, S. Deshpande, E. B. Hekler, and D. E. Rivera,
“A system identification approach for improving behavioral
interventions based on Social Cognitive Theory,” in Proceedings
of the American Control Conference, 2015, https://doi.org/10.1109/
https://doi.org/10.1109/ACC.2015.

P. Pirolli, “A computational cognitive model of self-efficacy and
daily adherence in mHealth,” Translational Behavioral Medicine,
vol. 6, no. 4, pp. 496-508, 2016.

E. B. Hekler, S. Michie, M. Pavel et al., “Advancing models and
theories for digital behavior change interventions,” American
Journal of Preventive Medicine, vol. 51, no. 5, pp. 825-832, 2016.
J. R. Anderson, D. Bothell, M. D. Byrne, S. Douglass, C. Lebiere,
and Y. Qin, “An integrated theory of the mind. Psychological
Review;” Psychological Review, 2004.

E. B. Hekler, D. E. Rivera, C. A. Martin et al., “Tutorial for using
control systems engineering to optimize adaptive mobile health
interventions,” Journal of Medical Internet Research, vol. 20, no.
6, p. €214, 2018.

S. E. Stahl, H.-S. An, D. M. Dinkel, J. M. Noble, and J.-M. Lee,
“How accurate are the wrist-based heart rate monitors during
walking and running activities? Are they accurate enough?”
BM] Open Sport & Exercise Medicine, 2016.

G. Valenti and K. R. Westerterp, “Optical heart rate monitor-
ing module validation study;” in Proceedings of the Digest of
Technical Papers - IEEE International Conference on Consumer
Electronics, 2013.

T. Armstrong and E Bull, “Development of the world health
organization global physical activity questionnaire (GPAQ),
Journal of Public Health, 2006.

S. Shiffman, A. A. Stone, and M. R. Hufford, “Ecological
momentary assessment,” in Proceedings of the Annual Review of
Clinical Psychology, 2008.


https://doi.org/10.1109/ACC.2015
https://doi.org/10.1109/ACC.2015

Advances in Human-Computer Interaction

[38] L. Manenti and E Sartori, “etadata support to retrieve and
revise solutions in case-based reasoning,” International Journal
of Metadata, Semantics and Ontologies, 2011.

[39] E. Sartori, A. Mazzucchelli, and A. Di. Gregorio, “Bankruptcy
forecasting using case-based reasoning: The CRePERIE
approach,” Expert Systems with Applications, 2016.

1



D. | Advances in !

s .  WNultimedin
Applied v
Computational

Intelligence and Soft
El_:_@guting-r -

The Scientific Mathematical Problems E ’Miu”:l s ;
World Journal in Engineering

(24 [~4

Modelling &
Simulation

in Engineering Intelligence

Hindawi

Reconfigurable Submit your manuscripts at

_Eomputing www.hindawi.com

Journal of

Computer Networhs
and Communications
International Journal of

Advances in

Scientific ' e Engineering : i
Civil Engineering

Programming Interaction Mathematics

I International Journal of
Journal of Computer Games
Robotics Technology

Journal of
Electrical and Computer Computational Intelligence
Engineering and Neuroscience


https://www.hindawi.com/journals/ijcgt/
https://www.hindawi.com/journals/je/
https://www.hindawi.com/journals/afs/
https://www.hindawi.com/journals/ijrc/
https://www.hindawi.com/journals/acisc/
https://www.hindawi.com/journals/aai/
https://www.hindawi.com/journals/ace/
https://www.hindawi.com/journals/jece/
https://www.hindawi.com/journals/jcnc/
https://www.hindawi.com/journals/am/
https://www.hindawi.com/journals/ijbi/
https://www.hindawi.com/journals/ijem/
https://www.hindawi.com/journals/jr/
https://www.hindawi.com/journals/cin/
https://www.hindawi.com/journals/mpe/
https://www.hindawi.com/journals/mse/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/ahci/
https://www.hindawi.com/journals/sp/
https://www.hindawi.com/
https://www.hindawi.com/

