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Injuries due to unintentional falls cause high social cost in which several systems have been developed to reduce them. Recently, two
trends can be recognized. Firstly, the market is dominated by fall detection systems, which activate an alarm after a fall occurrence,
but the focus is moving towards predicting and preventing a fall, as it is the most promising approach to avoid a fall injury. Secondly,
personal devices, such as smartphones, are being exploited for implementing fall systems, because they are commonly carried by
the user most of the day. This paper reviews various fall prediction and prevention systems, with a particular interest to the ones
that can rely on the sensors embedded in a smartphone, i.e., accelerometer and gyroscope. Kinematic features obtained from the
data collected from accelerometer and gyroscope have been evaluated in combination with different machine learning algorithms.
An experimental analysis compares the evaluated approaches by evaluating their accuracy and ability to predict and prevent a fall.

Results show that tilt features in combination with a decision tree algorithm present the best performance.

1. Introduction

Health centers have to deal with a large number of patients
due to unintentional falls, resulting in huge cost on the
society. For example, the average hospital cost for fall injury
is over $ 30,000 [1]. Thus, there is a critical need for the
development of cost-effective systems to reduce the injuries
of a fall and to give faster assistance when a fall occurs. Several
risk factors for falling can be identified, and specific interven-
tions can be designed in order to reduce injuries. To this end,
several systems were developed and are now available. Most
of these systems concern fall detection [2-8], and they only
notify user’s acquaintances after a fall occurrence. However,
there are systems with the goal of predicting and preventing a
fall, called fall prediction and prevention systems (FPPSs) [9-
13]. Such systems track and report data from wearable sensors
without engaging the users in the monitoring process. FPPSs
include sensors to collect data and software applications to
process them: first, data are collected from sensors, then, the
collected data are analyzed to extract an appropriate feature
set. Afterwards, a machine learning algorithm is applied on

the obtained data. Since smartphones nowadays are broadly
used as personal digital assistance and they are equipped
with precise sensors and communication component, they
are used commonly in FPPSs as a monitoring device to collect
data.

Fall prediction systems typically estimate real-time or
future fall risk. These systems are helpful in reducing
the financial and health consequences of a fall. Since
both prediction and prevention systems evaluate a fall
risk sometimes prediction and prevention terms are inter-
leaved. These systems are essential to check the feasibility
of performing recovery mechanisms before a fall occur-
rence.

Real-time fall prediction system aims to identify an
abnormal gait pattern in order to estimate the probability
of a real-time fall occurrence [14-16]. In real-time fall risk
prediction, data are collected from sensors, and are analyzed
to compute the appropriate feature set. Then, the risk of a
possible fall is evaluated through classification algorithms.
Real-time systems continuously assess the fall risk while the
user is doing his/her daily activity. When an abnormal gait is
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FIGURE 1: Fall prediction and prevention taxonomy.

detected then the user is alerted [14-16], or an external aid,
such as a walker or robot, is exploited to prevent a probable
fall [17, 18].

Future fall prediction is estimated through some clinical
assessment tests. Probable future falls are prevented through
improving gait and mobility by some exercises [17, 18]. These
tests often involve questionnaires or functional assessments
of posture, gait, cognition, and other risk factors. These
clinical tests are subjective and qualitative and typically use
threshold assessment scores to categorize people as fallers and
nonfallers. Typically, these tests are timed up and go (TUG)
[19], Berg Balance Scale (BBS) [20], sit to stand (STS) [21],
and one leg stand (OLS) [22] to evaluate balance and lower
limb strength.

The design of a fall prediction and prevention system
faces several significant challenges. They need to be accurate,
reliable, robust, and cost-effective [1]. In this paper, a fall
prediction and prevention system is described in three parts:
fall factors (i.e., fall symptoms), their features, and machine
learning algorithms. This paper investigates every mentioned
stage and experimentally evaluates the various approaches.
This paper does not present systems using sensors such as
camera and sound since they are prone to violate individual’s
privacy comparing to kinematic wearable sensors. In this
paper, accelerometer (for measuring the acceleration) and
gyroscope (for measuring the angular rate around one or
more axes of the space) are considered for evaluation. These
sensors are chosen since they are easily accessible and do not
disturb the privacy of the user. The main contributions of this
paper are the following:

(i) A comprehensive discussion on fall prediction and
prevention systems

(ii) Preparing a dataset with realistic parameters to simu-
late abnormal gait

(iii) Finding the most representative fall factors

(iv) Evaluation of the fall factors based on the extracted
feature on commonly used machine learning algo-
rithms

This paper is organized as follows. In Section 2, existing
FPPSs are classified according to the fall factors. Then, in Sec-
tions 3 and 4, feature extraction techniques and machine
learning algorithms are described. Evaluation criteria are
illustrated in Section 5. Afterwards, experimental results are
shown in Section 6. Finally, conclusions are presented in
Section 7.

2. Classification of Fall Factors

Fall prediction and prevention is a multifaceted problem
that can be broadly categorized into two different domains:
physiology and kinematics, as can be seen in Figure 1.
Physiological solutions consider intrinsic fall factors, i.e.,
parameters which mostly originate from the body. These
solutions entail an in-depth medical evaluation of the risk
factors and exploit sensors related to body monitoring:

(i) Electrocardiogram (ECG) sensor

Typically, ECG is used to assess the electrical and
muscular operations of the heart but ECG sensing can
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also determine abnormalities that might lead to a fall
(23, 24].

(ii) Electromyography (EMG) sensor

EMG is a technique for evaluating the electrical
potential produced by muscle cells. EMG in combi-
nation with other medical sensors is used in FPPSs
[23].

(iii) Blood pressure sensor

Blood pressure sensing is a physiological sign that can
be investigated to determine abnormalities that may
lead to a fall [23].

(iv) Galvanic Skin Response (GSR) sensor

GSR is a method for measuring the electrical charac-
teristics of the skin. GSR in combination with ECG
and EMG are used to predict and prevent falls [23].

Fall factors in physiological analysis are as follows:

(i) Neuromuscular noise

The increased neuronal noise associated with aging
increases gait variability and consequently fall risk
[25].

(ii) Heartbeat

An irregular heartbeat increases the risk of a fall [23,
26].

(iii) Skin electrical characteristic

Since the sweat glands are controlled by the sympa-
thetic nervous system, which controls also emotions,
a variation of the skin electrical characteristic could
demonstrate a state of stress, which indicates the risk

of a fall [23].

Unlike physiological solutions, kinematics-based FPPSs
consider user’s posture or gait variables. These solutions
usually exploit movement sensors to investigate the extrinsic
parameters of fall, i.e., characteristics of the movement of the
body:

(i) Accelerometer

An accelerometer is a device that measures accelera-
tion, i.e, the rate of change of the velocity of an object.
(ii) Gyroscope

A gyroscope gives the angular rate around one or
more axes of the space. Angular measurement around
lateral, longitudinal and vertical plane are referred
to as pitch, roll and yaw, respectively. Typically, in
FPPSs, the gyroscope is used in combination with an
accelerometer.

(iii) Motion sensor
A motion sensor detects the movement of an object
in the environment.

(iv) Piezoelectric sensor

A piezoelectric sensor measures the variations in
pressure and force using the piezoelectric effect and
converts them into an electrical charge.

Kinematic-based FPPSs focus on future or real-time fall
occurrence. Future fall solutions evaluate a user to estimate
his/her fall risk: if the fall risk is high, a probable future fall can
be prevented through some exercises [27]. In contrast, real-
time fall solutions avoid a fall while the user is doing his/her
daily activity by alerting the user [14-16] or using an external
aid such as a walker or robot [17, 18].

As extrinsic fall factors are among the most common
causes of fall, this study surveys kinematic-based FPPSs,
considering in particular data acquired with gyroscope and
accelerometer sensors. The main kinds of factors in kinematic
analysis which can increase the risk of fall in FPPSs are
explained in the following.

2.1. User Profile. User profile can affect the fall risk. For exam-
ple, the risk of a fall for elderly people is higher than
young people, and the risk of a fall is higher in people who
experienced a previous fall. Fall risk can be assessed through a
weighted generic formula that combines all these factors [28].

2.2. Velocity. People with increased fall risk tend to walk
slowly. As such, the actual fall risk can be quantified according
to gait speed [29]. Gait speed is estimated by measuring
duration and length of user’s steps. The step duration is
calculated as the time between two consecutive foot contacts.
The step length is calculated as the sum of the displacement
during the swing phase and the stance phase.

2.3. Acceleration. Changing of body movement in a prefall
state causes alternation in the acceleration, so by processing
the Acceleration Time Series (ATS), a fall event can be
predicted. As Figure 2 illustrates, human motion during the
time period S can be presented with n smaller periods T
[30]. Period T itself consists of m short periods T with m
acceleration samples. Basically, ATS is characterized by a
series of elements ¢; over time, where each element describes
the feature of the movement during period T.

2.4. Tilt. Tilt is inclination from horizontal or vertical line.
When a user significantly tilts in a direction, it shows an
abnormal posture, which can lead to a fall. So, the user tilt
can be a factor to assess the risk of a fall. Table 1 illustrates the
notations to measure user’s tilt [14-16].

Some traditional standard balance tests, such as sit to
stand (STS), uses trunk tilt to evaluate the risk of a fall. The
trunk tilt is calculated based on the angles between the sensor
and the horizontal line of the ground [31].

2.5. Postural Transition Duration. Posture specifies the posi-
tion of the body. Any activity begins with a posture and ends
with another posture. Postural transition duration specifies
the duration of a transition from a posture to another one.
Balance control and stability of the body during postural tran-
sitions are key factors for avoiding falls. Postural transition
duration can be an indicator of fall because it is significantly
correlated with the fall risk [31]. Higher transition duration
means lower muscle strength, and consequently higher fall
risk. The duration of the postural transition can be computed
by means of the accelerometer and gyroscope by measuring
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FIGURE 2: ATS accelerometer.
TABLE L: Results of different approaches with decision tree and support vector machine classifications.
Measures Tilt Speed Acceleration
DT SVM DT SVM DT SVM
Accuracy 83.88 65.7 7211 61.53 81.42 56.66
Error Rate 16.11 34.2 27.88 38.46 18.57 43.33
Sensitivity 0.88 0.74 0.87 0.66 0.78 0.26
Generality 0.21 0.42 0.43 0.43 0.15 0.12
Precision 0.81 0.63 0.67 0.60 0.83 0.68
Recall 0.88 0.74 0.87 0.66 0.78 0.26
ROC Area 0.86 0.65 0.69 0.61 0.82 0.57

the depression on the vertical axis acceleration signal, and
the positive and negative angular rotations of the horizontal
axis. The depression of the acceleration signal comes from the
movement of the body, and the angular rotation is due to the
forward and backward leans of the trunk during transition.

2.6. Foot State. The foot state indicates the posture of the
foot during the gait cycle. Since foot state can specify the
balance of the user, investigating the foot state can help to
define the prefall state and estimate the fall risk. Some FPPSs
focus on features related to foot state such as foot clearance
(i.e., the distance of the foot and ground during walking)
and foot age (i.e., relation of the age with the foot pressure)
(32, 33].

2.7, Stability and Symmetry. Stability means the resistance of
standing against a position change. Symmetry is the balance
of the pressure on two feet. Stability and symmetry affect the
functionality of the user gait: a gait with weak stability and
symmetry has a higher fall risk. According to the stability and
symmetry of gait, an assessment model can be used to predict
the fall risk [34].

3. Feature Extraction

After acquiring signals from sensors, a feature extraction
technique should be applied to extract appropriate informa-
tion. Since data collected from sensors contain undesired
information, filtering techniques are essential. A filtering



Advances in Human-Computer Interaction

[ Fall Factor ]

[ Generic ][ Velocity ][ Acceleration ] { Tilt ] { Phase Transition ] {

[ i ]
Foot State ] S)S,:;];llelgy

— Age — Mean — SMA [ Mean —— Mean —— Step length Mean
- Gend — SVM —— Standard
eneer Deviation Stan.da'rd —— Sole pressure Standard
—— Derivative Deviation Deviation
— Previous fall Energy
— Hjorth — Singl i
Parameters Hjorth ingle support time
| Peak-to-Peak Parameters
E —— Double support time
—— Energy
—— Maximum L— Minimum Foot Clearance

FIGURE 3: Fall factors approaches.

technique eliminates some frequencies from the original
signal to attenuate the background noise and to remove unde-
sired frequencies [29, 35]. Frequently used filters in FPPSs
are high-pass filters, which eliminate frequencies lower than
the cutoff frequency, and low-pass filters, which pass only
frequencies lower than a certain threshold frequency. After
filtering the collected data, appropriate features should be
selected. Since analyzing a high number of features requires a
large amount of memory, finding the optimal feature set can
improve the performance of the system. The main features
extracted from each fall factor are listed in Figure 3 and
described in the following.

3.1. User Profile. Falls are the result of a combination of fac-
tors involving age, sex, mobility, daily activity, cognition, and
previous fall. Thus, fall risk can be expressed as a simple
function of user profile features with appropriate weights
[28]:

Fall Risk = 0.13(I,) +0.15(I,) + 0.14 (1,,,)

®
+0.1(Ig) +0.18 (1) + 0.33(I/)

where

(i) 1, is the age index: the risk of falls in the elderly is
assumed increasing with age [36];

(ii) I, is the sex index: female gender is associated with
greater risks of fall [37];

(iii) I,,, is the mobility index: mobility implies the ability
to move from place to place which can be indicator of
a fall [38, 39];

(iv) 1,4 is the index derived from the activities of daily
living (ADL): fall risk and a person’s perception of
capabilities within a particular domain of activities
have strong independent correlation with ADL [40];

(v) I, is the cognition index: impaired cognition and
dementia independently predict falls [41];
(vi) I is the previous fall index: a history of previous falls

has been recognized as being a significant risk factor
for future falls [41].

The weights in the above formula and the choice of indices
are made by statistical result of the earlier study [28]. The
weights differ for male and female; in the above formula
weights are calculated for female gender.

3.2. Velocity. As mentioned in Section 2.2, low gait speed
increases the risk of a fall. The average speed of the gait can
be measured to estimate the fall risk [29].

3.3. Acceleration. Frequently used features of the acceleration
are described in the following. In the formulas, A(t) refers
to the acceleration and A (t), A ,(t), and A_(t) indicate the
components of the acceleration in the 3 axes. Moreover,
A, A, and A ; are the i-th acceleration samples in the 3
axes.

The Signal Magnitude Area (SMA) can be used as a
feature of the acceleration signal to classify the activities of
the user [35]. SMA is computed as follows:

yi

1/ (T T
SMA = (L |A, ()] dt + L |Ay (t)|dt
)
T
+ J |A, (1) dt)
0
where T is the length of measurement time.

The Signal Magnitude Vector (SMV) is one of the com-
mon measures to calculate the resultant of the signal:

1 n
SMV = ;Z A2 4 A%+ AL (3)
i=1



SMV demonstrates the degree of the movement intensity and
it is an essential metric in FPPSs [15, 16, 30, 35].

Moreover, the derivative (A’(t)) of the acceleration indi-
cates the vibration of the movement and can be used as an
acceleration feature [35].

Hjorth parameters are statistical features of the signal in
time domain [42]. They are based on the variance of the signal
var(A(t)):

(i) Hjorth activity = var(A(t)); it can indicate the
signal power.

(ii) Hjorth mobility = \Jvar(A'(t))/var(A(t)); it can be
an indicator of the smoothness of the signal curve.

(iii) Hjorth complexity =
mobility(A'(t))/mobility(A(t)); it can effectively
measure irregularities in the frequency domain.

The Hjorth parameters are mostly used to analyze the
electroencephalography signals but they are also utilized to
analyze accelerometer and gyroscope signals in FPPSs [15].

Peak is the absolute maximum value of the signal over the
period of time, and peak-to-peak is the difference between
the minimum and the maximum value of the signal over the
period of time. The peak-to-peak acceleration amplitude and
the peak-to-peak acceleration derivative are two features used
in FPPSs [29].

The energy of the acceleration signal describes the
amount of physical activity in the vertical and horizontal
directions. It can determine the strength of the contact with
the floor, so it can be used to recognize abnormal walking
pattern such as stumbling [14, 16]. The energy of the signal
can be computed as

E= | lard )

As described in Section 2.3, ATS can be characterized
by a series of features ¢;. Feature ¢; can be determined by

—
calculating the resultant acceleration A :
= AR 5
AF=JM|+W|+M ®)

The resultant acceleration (A—F)) varies within a small range B
= [b), b)] around g where g is the gravity force, b, < g < b,.
Therefore, if the resultant acceleration exceeds B, an abnormal
walking is probable.

3.4. Tilt. Trunk tilt has an important role in the maintenance
of the posture. The average and standard deviation of trunk
tilt are measured during the sit to stand phase of STS test
to assess the risk of a fall [31]. Moreover, energy and Hjorth
parameters of the tilt vector are used as an indicator of the
abnormal motion [14-16].

3.5. Postural Transition Duration. The average and standard
deviation of the duration of the postural transition can be
used to estimate the user’s fall risk [27, 31].
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3.6. Foot State. Step length is a feature of the foot in a gait
cycle that can be a good indicator of the fall risk. Since a
high step length decreases the stability of the user, the fall
risk increases as the length of the step grows. Single support
time is the time when only one limb is on the ground in a gait
cycle. Double support time is the time spent when both feet
are on the ground in a gait cycle. The foot age is an index of the
gait which shows how old is the gait condition of the subject.
Through the foot age, the falling risk can be quantified.
The foot age is computed through the four gait features
(step length, step center of sole pressure (CSP), distance of
single supporting period, and time of double support period)
[32].

The Minimum Foot Clearance (MFC) is another foot
state feature that indicates the vertical distance between the
lowest point of the foot of the swing leg and the walking
surface during the swing phase of the gait cycle. The foot
clearance is an important gait parameter that is related to the
risk of falling. The low foot clearance for a step during the
walking increases the probability of fall because of hitting to
an obstacle. The foot clearance is extensively studied to detect
trips and falls 33, 43, 44].

4. Machine Learning Algorithm

Features extracted from the input signals are processed by a
machine learning algorithm in order to classify the abnormal
behavior and the normal daily activity. Exploited machine
learning algorithms in FPPSs are described in following.

(1) Threshold-based Algorithm utilizes a threshold to
classify the feature set of the user gait. After extracting the
desired features from the input signals, these features are
compared with predefined thresholds. Since the thresholds
have an important effect on the performance of the algo-
rithm, the biggest challenge of a threshold-based algorithm
is determining the thresholds. Moreover, the performance of
the algorithm depends on the number of features which need
to be analyzed. However, complexity and power consumption
of this type of algorithms are low, so it can be adequate for
devices with limited resources. Some examples of different
FPPSs that exploit a threshold-based algorithm are described
in the following.

Features of the acceleration signal of human upper trunk
[30] in a short time interval before the fall are denoted as
A. After obtaining the ATS of the user, P(ATS |A) states the
probability of a fall occurrence during the user motion. Two
thresholds P1 and P2 are specified to predict and detect a fall.
As Figure 4 illustrates, the output of P(ATS [A) is an input to
the algorithm. Then, based on predefined thresholds, if P is
higher than PI, the fall risk is notified, if P is higher than P2,
a possible fall is noticed.

SMV, SMA, peak-to-peak, and derivative of acceleration
signals are computed as feature set of user gait [35]. After-
wards, thresholds are determined to define a near fall state.

The gait status can be classified based on mean and
standard deviation of stability and symmetry [34]:

(i) If index < mean+std, then the gait status is normal:
the subject walks normally and there is not fall risk.
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FIGURE 4: Threshold-based algorithm.

(ii) If mean+std < index < 3:mean, then the gait status is
attentive: the subject needs to care when walking.

(iii) If index > 3#mean, then the gait status is dangerous:
the subject should present a risk to fall.

(2) Decision Tree (DT) is a directed tree with a root
node without incoming edges and all other nodes, known
as decision nodes, with one incoming edge and possible
outcoming edges; a leaf node is a node without outcoming
edges. At the training stage, each internal node splits the
instance space into two or more parts. After that, every path
from the root node to a leaf node forms a decision rule to
determine which class a new instance belongs to [45]. Each
internal node represents a test on an attribute or on a subset
of attributes, and each edge is labeled with a specific value or
range of values of the input attributes. DT is a fast algorithm
but the computation cost on the tree grows as the size of the
tree increases.

Figure 5 illustrates how a decision tree algorithm can be
used in the classification of normal and abnormal walking
[14-16]. Firstly, accelerometer and gyroscope signals are
collected, then a general tilt vector is computed. Afterwards,
appropriate features (e.g., energy; Hjorth parameters) are
calculated from tilt vector. Then, DT is used to determine the
abnormal walking.

(3) Support Vector Machine (SVM) finds the best hyper-
plane with the maximum margin to separate two classes.
SVM can be defined as linear or nonlinear according to the
kind of hyperplane function. SVM is a prevailing classifica-
tion model for gait pattern recognizing [46-48]. SVM can be
used to determine the threshold value to classify the user gait
[30].

(4) Fuzzy Logic defines a membership function in order to
assign to objects a grade of membership ranging between zero
and one. For example, if X is a class of objects, with a generic
element denoted by x, a fuzzy set A in X is characterized by
a membership function f,(x). The value of f,(x) represents
the “grade of membership” of x in A, which is a real number

in the interval [0, 1]. The nearer the value of f,(x) to unity,
the higher the grade of membership of x is in A [49].

Based on the relationship between fall risk and age, the
fuzzy logic is used to prevent a fall using the sole pressure
sensor to estimate the age [32]. Firstly, the fuzzy membership
function for young age, yy, middle age, y,,, and elderly age,
Ug, are calculated based on the four extracted features (step
length, step center of sole pressure width, distance of single
supporting period, and time of double support period) of the
user gait. Then, a fuzzy logic is used to estimate the foot age.

5. Evaluation Criteria

Evaluation criteria of a machine learning algorithm are
described in the following. In all presented formulas, P
and N represent the total number of positive and negative
instances. A positive and negative instance can be defined
as an abnormal/normal walk. True Positive (TP) and True
Negative (TN) are defined as correct identification of a true
classification of positive and negative instance, respectively.
False Positive (FP) and False Negative (FN) misidentify
positive and negative instances, respectively.

(1) Specificity or True Negative Rate (TNR) measures
the rate of negative instances that are correctly identified as
negative:

#TN
Specificity = ————— 6
pecificity +TN + #EP (6)

Moreover, Generality is computed as 1 - Specificity.

(2) Sensitivity or True Positive Rate (TPR) measures the
rate of positive instances that are correctly identified as
positive:

#T'P
Sensitivity = —— 7
VY = YTP T #FN )

(3) Accuracy of an algorithm computes the number of

samples correctly classified:

#TP + #TN
Accuracy = #PI—#N )

(4) Error rate is the number of wrong classifications:

#FP + #FN
Error Rate = ) 9)
#P + #N

(5) Precision is the percentage of the samples correctly
classified as true:
#TP
Precision = — (10)
#TP + #FP
(6) Recall is the percentage of truly classified positive
samples:

#
Recall = __#P (11)
#TP + #FN

It should be noted that one criterion alone may not be
sufficient to evaluate the algorithm.
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The Receiver Operating Characteristic (ROC) curve can
be used to compare different algorithms. The ROC curve is a
graphical plot that illustrates the performance of a classifier
[50]. Generality and sensitivity are plotted on x and y axes
of the ROC plot, respectively. The best classifier is located
at the top left corner of the ROC graph, which represents
100% sensitivity and 100% specificity. The diagonal line from
the left bottom to the top right corner divides the ROC
space into two parts. The space above the diagonal represents
classification with few errors, while the space below the
line shows more erroneous results. For example, Figure 6
compares four possible algorithms: A(0.1,0.9), B(0.1,0.22),
C(0.9,0.15), and D(0.8,0.6). A has the best prediction among
the four instances. The further the result is from the diagonal

in the above space, the better the accuracy is. C is the worst
among the four instances, because it is below and far from
the diagonal line. B is a good classifier but not as much
as A, because it is above but not far from the diagonal
line. Moreover, since D is closer to diagonal line, it is more
acceptable than C.

To show how ROC curve is plotted, the output of two
classifiers is illustrated in Figure 7. The x-axis shows the
probability that the user gait is abnormal, and the y-axis
represents the number of instances with the same probability.
For instance, point (0.8, 5) means that the gait of 5 users is
predicted as abnormal with probability 0.8, and the gait of all
users is abnormal because it is located along the abnormal
distribution. To prepare the ROC curve, firstly, a random
variable X is defined and a threshold (T') is set. Everything
above the threshold (X > T) is classified as abnormal and
below the threshold (X < T) as normal. Then, sensitivity
and generality of this classification with threshold T are
computed. To generate the ROC curve, the sensitivity versus
the generality for all possible thresholds should be plotted.
Figure 7(a) shows a classifier with its associated ROC curve.
Since the distributions of normal and abnormal cases barely
overlap, the corresponding ROC curve of the classifier is close
to the upper left corner of the plot. Figure 7(b) shows another
classifier, where the distribution of normal and abnormal
cases overlap almost completely, so the ROC curve of the
classifier is close to diagonal line.

6. Experimental Results

In this section, the state-of-the-art FPPSs with accelerometer
and gyroscope have been implemented and then compared
according to the criteria described in Section 5.

First objective of the experiment is empirical comparison
of fall factors to find the most representative one among
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acceleration, tilt, and velocity. The second objective is evaluat-
ing different machine learning algorithm based on presented
features for each fall factor in the presented dataset. It should
be noted that the goal of the experiment is not finding an
optimal feature set for each fall factor.

A fall occurs due to passive causes like weakness, balance
deficit, gait deficit, visual deficit, and mobility limitation. The
following are the most frequently used methods to simulate
an abnormal gait, which can lead to a fall:

(i) Walking with straightened knee [14-16].

(ii) Walking with leg length discrepancy [14-16].
(iiif) Walking on a rough surface [51].
(iv) Walking through obstacles [35].

In the experiments, an abnormal walk is modeled as
irregular gaits obtained by walking through obstacles which
can cause stepping, tripping, and stumbling. Thus, a flat
area with different types of obstacles is prepared. Obstacles
included empty boxes (height: 37 cm, length: 20 cm, and
width: 17 cm) and plastic bottles (height: 20 cm; diameter: 6
cm), which are placed 60 cm far from each other.

Since the real falls cannot be experimented due to the
risk of injury, only forward fall is simulated with protection.

However, the applied method in this paper can easily be
generalized to other type of falls (i.e., backward; lateral). Users
are asked to walk through obstacles without looking them
for 10 seconds. The users in the experiments are 19 men
with weight in the range of 65-110 kg and height in the
range of 160-185 cm and 3 women with weight in the range
of 50-60 kg and height in the range of 157-165 cm. All
users are without gait disturbances. Furthermore, users are
in the range of 18-35 years old. Data is collected through
MATLAB R2015b. WEKA tool version 3.6.13 (WEKA is
an open source data mining tool that can be downloaded
from http://www.cs.waikato.ac.nz/ ml/weka/) has been used
to classify the obtained data.

An iPhone 4S is adopted in the experiments, equipped
with the STMicro STM33DH 3-axis accelerometer and the
STIMicro AGDI 3-axis gyroscope. Commonly adopted sam-
pling frequencies range from some dozens to hundred of
Hertz such that they are constant and higher than gait cycle
frequency. In the experiment, the frequency is fixed to 10Hz.
Since the body Center of Pressure (COP) reveals several
information of user gait, the smartphone is placed on the
lower back of trunk, near the real Center Of Mass (COM)
position, assuming that this position moves parallel to the
COP, and the same acceleration and positions will be mea-
sured [52].


http://www.cs.waikato.ac.nz/%20ml/weka/
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In the following, velocity, acceleration, and tilt fall factors
with different combinations of machine learning algorithms
have been evaluated.

SMA, SVM, maximum derivative, Hjorth parameters,
peak-to-peak, and energy features of acceleration are con-
sidered in the experiments. Moreover, mean, standard devi-
ation, energy, and Hjorth parameters of tilt and mean of
velocity are considered as the features in the experiment. The
performance of different features with a particular machine
learning algorithm was already presented in previous studies.
The novelty of this paper is the comparison of different fall
factors with presented features on different machine learning
algorithm.

Table 1 shows the result of the experiments when the
decision tree and support vector machine are selected to
classify the obtained data. As reported in the last line of
Table 1, a higher ROC area corresponds to a better accuracy.
The comparison of the results from different fall factors shows
that the tilt always has better accuracy among the other fall
factors. Combination of tilt with decision tree gives 83.9% of
accuracy and with support vector machines gives 65.7% of
accuracy. So, the preciseness of tilt factor shows that it can be
adopted as a deserved representative of fall factors in FPPSs
implemented with personal monitoring device.

There are several factors that can affect the decision to
choose a machine learning algorithm. In literature there are
several studies which compare the performance of different
machine learning algorithms [53-55]. The best machine
learning algorithm cannot be universally identified because
machine learning algorithms are task-dependent. In addition,
the best machine learning algorithms for a particular task
depends on several factors. The feature set is the primer factor
which impacts on the performance. In addition, also dataset
characteristic such as number of samples, type and kind of
data, and skewed data can impact on the performance. In a
skewed dataset, almost all samples fall in one particular class
rather than in the other classes.

The comparison of the different machine learning algo-
rithms with the presented setting in this paper shows that DT
has better performance than SVM in all the combinations.
Although DT has better performance comparing to the SVM,
it cannot be generalized to all experiments and datasets. The
reason is based on the no free lunch theorems that indicates
there is not superiority for any machine learning algorithm
over the others, so the best classifier for a particular task is
task-dependent [56, 57]. However, it should be noted that
DT requires more memory space when the size of the tree
grows. Moreover, as Figure 8 shows, the tilt fall factor with
DT algorithm has the best performance to detect abnormal
walks, and speed has the lower performance. Since in the
experiment patients tilt in a direction, it is not surprising that
tilt is the most representative fall factor.

7. Conclusion

This paper analyzed different aspects of fall prediction and
prevention systems. It provides a comprehensive overview
of various fall factors and corresponding features. Moreover,
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different machine learning algorithms in fall prediction
and prevention systems have been reviewed. Furthermore,
multiple combinations of features and fall prediction and
prevention algorithms have been experimentally evaluated
to find an optimal solution. Based on the presented results
tilt features in combination with the decision tree algorithm
present the best performance among the other permutations
of fall factors and fall prediction and prevention algorithms.
Future work may include

(i) generalizing the dataset to older adults or patients
with neurological disorders;

(ii) adopting new machine learning algorithms in the
comparison list;

(iil) comparing systems across other performance metrics
such as time, accuracy with respect to the size of
dataset, number of features, memory consumption,
and power consumption.
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