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1. Introduction

In [1], the attempt was made to obtain a possible generalization of quantum mechanics on
any numbers including nonassociative numbers: octonions. In [2], the author applies nonas-
sociative algebras to physics. This book covers topics ranging from algebras of observables
in quantum mechanics, to angular momentum and octonions, division algebras, triple-linear
products, and Yang-Baxter equations. The nonassociative gauge theoretic reformulation of Ein-
stein’s general relativity theory is also discussed. In [3], one can find the review of mathemat-
ical definitions and physical applications for the octonions. The modern applications of the
nonassociativity in physics are as follows: in [4, 5] it is shown that the requirement that finite
translations be associative leads to Dirac’s monopole quantization condition; in [6, 7] Dirac’s
operator and Maxwell’s equations are derived in the algebra of split-octonions.

In this paper, we attempt to give toy models of a nonassociative quantummechanics us-
ing finite dimensional nonassociative algebras—octonions or sedenions. In the previous paper
[8], we have shown that in a nonassociative quantum theory the observables can be presented
only by elements of an associative subalgebra of a nonassociative algebra of nonperturbative
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quantum operators. Unfortunately, we cannot now present any model of nonassociative
quantum theory since building of such nonassociative infinite dimensional algebra is a very
complicated mathematical problem. But in this paper we present a toy model of nonassociative
quantum mechanics. We can do that using an analogy with the standard quantum mechanics
with the spin: if the relevant degrees of freedom for us are spin degrees of freedom only (the co-
ordinate dependence of a wave function is not important), then we will have a qubit quantum
system. The qubit quantummechanics is much simpler than the standard quantummechanics
with Pauli equation.

In this paper, we will show that there exists a finite dimensional nonassociative algebra
(octonions or sedenions) that has an associative subalgebra (quaternions, biquaternions). The
associative subalgebra may have a noncommutative subalgebra (quaternions) and a commu-
tative subalgebra. The quantum states of the noncommutative subalgebra are qubits. Three
eigenvectors of the commutative subalgebra one can identify with three qubit fermion genera-
tions.

Why can a nonassociative quantum theory be interesting? The reason is that it could be
a candidate for a nonperturbative quantum theory formulated on the operator language. Gen-
erally speaking (according to [8]) the elements of such algebra are unobservables but if in such
nonassociative algebra exists an associative subalgebra, then their elements are observables.

Thus the goal of this paper is to show that one can find a nonassociative finite dimen-
sional algebra having an associative subalgebra (which elements are observables only) and to
show that one can correctly define the Heisenberg equation of motion using the nonassociativity
property.

2. Nonassociative quantum dynamics

In this section, we would like to present a toy model of quantummechanics realized on a finite
dimensional associative subalgebra (quaternions Q or biquaternions B) of a nonassociative
algebra (octonions O or sedenions S, resp.).

In the usual associative quantum mechanics, we obtain the time evolution of any opera-
tor x̂ from the Heisenberg equation of motion for the Hamiltonian ̂H

dx̂

dt
= I
[

̂H, x̂
]

, (2.1)

where [x̂, ŷ] = x̂ŷ − ŷx̂ is the commutator and I2 = −1; later we will omit ̂. Among many pro-
posed methods for generalizing or modifying the present framework of quantum mechanics,
Nambu suggested [9] to modify the Heisenberg equation of motion (2.1) into a triple product
equation

dx

dt
=
{

h1, h2, x
}

, (2.2)

where {x, y, z} is a triple-linear product, and we use two Hamiltonian operators h1,2, instead
of the customary one Hamiltonian as given in (2.1).

Let us define a triple product following [2]. The three-linear product in a vector space V
can be identified by a linear mapping

f : V ⊗ V ⊗ V −→ V. (2.3)
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For any x, y, z ∈ V , we assign an elementw ∈ V , which is linear in each of x, y, z, and we write
w = f(x, y, z) = {x, y, z}. The consistency condition

d

dt
(xy) = x

dy

dt
+
dx

dt
y (2.4)

for (2.1) leads to

{

h1, h2, xy
}

= x
{

h1, h2, y
}

+
{

h1, h2, x
}

y, (2.5)

where h1,2, x, y ∈ V and can be any elements of the algebra V (now the vector space V simulta-
neously is an algebra). In [8], it is shown that if wewould like to introduce physical observables
in a nonassociative quantum theory, then they can be elements of an associative subalgebra
only. Therefore, in contrast with the definition (2.2) of quantum dynamic on a nonassociative
algebra V we will propose that the observables x ∈ V1 ⊂ V (V1 is an associative subalgebra of
a nonassociative algebra V ) and h1,2 ∈ V1\V are nonassociative elements of the algebra V .

2.1. A nonassociative quantum mechanics on quaternions

Bearing in mind that the quaternions algebra is equivalent to a qubit algebra, one can apply
the results of this section to the dynamics of spin, polarized photon, and so on.

Let us introduce a quantum nonassociative dynamics on Q using full nonassociative
algebra O octonions: Q ⊂ O (in Appendix 5 the definitions for all algebras and multiplication
table are given). For this we introduce a nonassociative commutator (n/a-commutator) in the
following way:

[

i4, im+4, b
] ≡ i4

(

im+4b
) − (bi4

)

im+4, m = 1, 2, 3 (2.6)

generalizing the usual associative commutator [ab, c] = (ab)c − c(ab) = abc − cab in the fol-
lowing nonassociative way:

[a, b, c] ≡ a(bc) − (ca)b, a, b ∈ O, c ∈ Q\O. (2.7)

One can check that

[

i4, im+4, in
]

= −2εmnkik, m, n, k = 1, 2, 3. (2.8)

The nontriviality of n/a-commutator [i4, im+4, b] is that

i4
(

im+4b
) �= (i4im+4

)

b,
(

bi4
)

im+4 �= b
(

i4im+4
)

. (2.9)

The consistency condition (2.4) for (2.1) leads to

[H,xy] = x[H,y] + [H,x]y (2.10)

which can be easily proved for the associative algebra. But in our case the consistency condition
(2.4) leads to

[

i4, im+4, bc
]

= b
[

i4, im+4, c
]

+
[

i4, im+4, b
]

c, b, c = ik ∈ Q, m, k = 1, 2, 3, (2.11)
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Table 1: The sedenions multiplication table.

1 i1 i2 i3 i4 i5 i6 i7 i0 ε1 ε2 ε3 ε4 ε5 ε6 ε7

1 1 i1 i2 i3 i4 i5 i6 i7 i0 ε1 ε2 ε3 ε4 ε5 ε6 ε7

i1 i1 −1 i3 −i2 i5 −i4 −i7 i6 −ε1 i0 ε3 −ε2 ε5 −ε4 −ε7 ε6

i2 i2 −i3 −1 i1 i6 i7 −i4 −i5 −ε2 −ε3 i0 ε1 ε6 ε7 −ε4 −ε5
i3 i3 i2 −i1 −1 i7 −i6 i5 −i4 −ε3 ε2 −ε1 i0 ε7 −ε6 ε5 −ε4
i4 i4 −i5 −i6 −i7 −1 i1 i2 i3 −ε4 −ε5 −ε6 −ε7 i0 ε1 ε2 ε3

i5 i5 i4 −i7 i6 −i1 −1 −i3 i2 −ε5 ε4 −ε7 ε6 −ε1 i0 −ε3 ε2

i6 i6 i7 i4 −i5 −i2 i3 −1 −i1 −ε6 ε7 ε4 −ε5 −ε2 ε3 i0 −ε1
i7 i7 −i6 i5 i4 −i3 −i2 i1 −1 −ε7 −ε6 ε5 ε4 −ε3 −ε2 ε1 i0

i0 i0 −ε1 −ε2 −ε3 −ε4 −ε5 −ε6 −ε7 −1 i1 i2 i3 i4 i5 i6 i7

ε1 ε1 i0 ε3 −ε2 ε5 −ε4 −ε7 ε6 i1 1 −i3 i2 −i5 i4 i7 −i6
ε2 ε2 −ε3 i0 ε1 ε6 ε7 −ε4 −ε5 i2 i3 1 −i1 −i6 −i7 i4 i5

ε3 ε3 ε2 −ε1 i0 ε7 −ε6 ε5 −ε4 i3 −i2 i1 1 −i7 i6 −i5 i4

ε4 ε4 −ε5 −ε6 −ε7 i0 ε1 ε2 ε3 i4 i5 i6 i7 1 −i1 −i2 −i3
ε5 ε5 ε4 −ε7 ε6 −ε1 i0 −ε3 ε2 i5 −i4 i7 −i6 i1 1 i3 −i2
ε6 ε6 ε7 ε4 −ε5 −ε2 ε3 i0 −ε1 i6 −i7 −i4 i5 i2 −i3 1 i1

ε7 ε7 −ε6 ε5 ε4 −ε3 −ε2 ε1 i0 i7 i6 −i5 −i4 i3 i2 −i1 1

and has to be proved. Direct calculations using Table 1 (Appendix 5) show that it is correct that

[

i4, im+4, ikil
]

= −[i4, im+4, ilik
]

= ik
[

i4, im+4, il
]

+
[

i4, im+4, ik
]

il, m, k, l = 1, 2, 3. (2.12)

The octonion i4 can be replaced by any other octonion n = 5, 6, 7. It is necessary to note that the
consistency condition (2.11)will be destroyed if the numbers b, c = i4,5,6,7 ∈ O\Q.

For the physical application, let us introduce the following quantities:

hm+4 = im+4

√

I˜ħ
2
, m = 0, 1, 2, 3,

̂Sk = ik
I˜ħ
2
, k = 1, 2, 3.

(2.13)

Here we introduce a new constant ˜ħ as it is not evident that in a nonassociative quantum
mechanics the Planck constant will be the same; then the n/a-commutator will have the form

[

h4, hm+4, ̂Sn
]

= −I˜ħεmnk ̂Sk, m, n, k,= 1, 2, 3 (2.14)

which should be compared to the qubit dynamic (3.8). Now we can define a nonassociative

quantum dynamic of the quantity ̂�S = sk ̂Sk in an external vector field ˜Bm in the following way:

d̂�S

dt
= I
[

h4,−
(�̃B · �μ), ̂�S

]

, (2.15)
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where �̃B = ˜Bm�em is an analog of a magnetic field, �μ = μhm+4�em is an analog of a magnetic dipole

for a nonassociative case. Inserting ̂�S = sk ̂Sk into (2.15) leads to

ṡk = −εmnkωmsn (2.16)

that describes the rotation of the qubit and ωm = μBm is the angular velocity.
At the end of this section, we would like to mention that full quantum mechanics on the

basis of quaternions can be constructed (for details see [16]).

2.2. A nonassociative quantum mechanics on biquaternions

A construction similar to that in Section 2.1 can be done for the biquaternions. In this case,

[

i4, εm+4, b
] ≡ i4

(

εm+4b
) − (bi4

)

εm+4, m = 1, 2, 3. (2.17)

One can check that
[

i4, εm+4, in
]

= −2εmnkεk,
[

i4, εm+4, εn
]

= 2εmnkik, m, n, k,= 1, 2, 3.
(2.18)

The nontriviality of n/a-commutator [i4, εm+4, b] is that

i4
(

εm+4b
) �= (i4εm+4

)

b,
(

bi4
)

εm+4 �= b
(

i4εm+4
)

. (2.19)

In this case, the consistency condition (2.4) leads to

[

i4, εm+4, bc
]

= b
[

i4, εm+4, c
]

+
[

i4, εm+4, b
]

c, b, c = ik, εk ∈ B, m, k = 1, 2, 3 (2.20)

and has to be proved. Direct calculations using Table 1 show that it is correct that

[

i4, εm+4, ikil
]

= −[i4, εm+4, ilik
]

= ik
[

i4, εm+4, il
]

+
[

i4, εm+4, ik
]

il,
[

i4, εm+4, ikεl
]

= −[i4, εm+4, εlik
]

= ik
[

i4, εm+4, εl
]

+
[

i4, εm+4, ik
]

εl,
[

i4, εm+4, εkil
]

= −[i4, εm+4, ilεk
]

= εk
[

i4, εm+4, il
]

+
[

i4, εm+4, εk
]

il,
[

i4, εm+4, εkεl
]

= −[i4, εm+4, εlεk
]

= εk
[

i4, εm+4, εl
]

+
[

i4, εm+4, εk
]

εl, m, k, l = 1, 2, 3.

(2.21)

The octonion i4 can be replaced by any other octonion in+4 with n = 1, 2, 3. It is necessary to note
that the consistency condition (2.20)will be destroyed if the numbers b, c = ik+4, εk+4, k = 1, 2, 3
belong to S\B.

For the physical application let us introduce the following quantities:

hm+4 = εm+4

√

I˜ħ
2
, m = 0, 1, 2, 3;

̂Sk = ik
I˜ħ
2
, k = 1, 2, 3;

̂Lk = εk
I˜ħ
2
, k = 1, 2, 3,

(2.22)
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then the n/a-commutator will have the form
[

h4, hm+4, ̂Sn
]

= −I˜ħεmnk̂Lk, m, n, k,= 1, 2, 3;
[

h4, hm+4, ̂Ln
]

= I˜ħεmnk ̂Sk, m, n, k,= 1, 2, 3.
(2.23)

Now we can define a nonassociative quantum dynamic of the quantities ̂�S = sk ̂Sk,
̂�L = lk̂Lk in

an external vector fields ˜B1,2;m in the following way:

d̂�S

dt
= I
[

h4,−n1
(�̃B1 · �μ

)

, ̂�L
]

,

d̂�L

dt
= −I

[

h4,−n2
(�̃B2 · �μ

)

, ̂�S
]

,

(2.24)

where n1,2 = ±1 and describe the sign of the interaction of the fields �̃B1,2 with �μ1,2 and with the

same definitions �̃B1,2 = ˜B1,2;m�em and �μ = μhm+4�em as in the previous section. Inserting ̂�S = sk ̂Sk
and ̂�L = lk̂Lk into (2.15) leads to

ṡk = −εmnkωmln,

l̇k = εmnkωmsn,
(2.25)

with the same definition of ω1,2;m = μ ˜B1,2;m as the angular velocity.

3. Qubits quantum mechanics

In this section, we would like to present qubit system where the above-mentioned quantum
operators from an associative subalgebra of a nonassociative algebra could be operated. Here
we follow the textbook [10]. A qubit is a quantum-mechanical two-state system. A canonical
example of a qubit is provided by the spin of a spin-1/2 particle, polarized photon, and so on.

Many investigations of quantum systems do not require a “complete” description of
the state. For example, one often neglects the position and momentum of a particle when one
is only interested in the “inner degrees of freedom” related to the spin. This simplifies the
description considerably, because the Hilbert space describing the spin of a particle with spin
1/2 is just the two-dimensional complex vector space C2.

Definition 1. A quantum system with a two-dimensional Hilbert space is called a two-state
system or a qubit (quantum bit). The vectors in the Hilbert space of a qubit are often called
spinors.

With respect to this basis, vectors are represented by column vectors C2, and linear op-
erators are represented by two-by-two matrices. For example, the basis vectors become

ψ+ =

(

1
0

)

, ψ− =

(

0
1

)

. (3.1)

A general state of a qubit is an arbitrary superposition of the two basis states,

ψ = c+ψ+ + c−ψ− =

(

c+
c−

)

, with c± ∈ C. (3.2)
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The norm of ψ and the scalar product with φ = d+ψ+ + d−ψ− are given by

∥

∥ψ
∥

∥

2 =
∣

∣c+
∣

∣

2 +
∣

∣c−
∣

∣

2
,

〈

ψ, φ
〉

= c∗+d+ + c
∗
−d−. (3.3)

Any observable has to be represented by a self-adjoint operator. With respect to a chosen or-
thonormal basis in the Hilbert space of a qubit, observables are thus represented by Hermitian
two-by-two matrices: the three Pauli matrices �σ =

(

σ1, σ2, σ3
)

which are the standard represen-
tation of the spin observables S1, S2, and S3, and are as well the representation of quaternions.

The three Pauli matrices together with the two-dimensional unit matrix 12 form a basis
in the four-dimensional real vector space of all Hermitian two-by-two matrices. With respect
to an orthonormal basis in C2, any qubit observable Q is represented by a linear combination
of Pauli matrices

Q =
1
2

(

a012 +
3
∑

k=1

akσk

)

=
1
2

(

a0 + a3 a1 − Ia2
a1 + Ia2 a0 − a3

)

(3.4)

with real coefficients a0, . . . , a3. It is necessary to note the generation relation for the algebra of
Pauli matrices

[

σi, σj
]

= 2Iεijkσk. (3.5)

One can introduce the spin operators ̂Si = (ħ/2)σi and then (3.5) has the form

[

̂Si, ̂Sj
]

= Iεijk ̂Sk. (3.6)

A general time-independent qubit Hamiltonian has the form

H = a012 + �ω�σ, (3.7)

where �ω = e �B/mc is the angular velocity speed, e and m is the charge and mass of a particle,

and �B is a magnetic field. The dynamic of the spin ̂�S = si ̂Si is described in the following way:

d̂�S

dt
= I
[

H, ̂�S
]

(3.8)

or

ṡk = εijkωisj (3.9)

that describes the rotation of the qubit.

4. Possible physical applications

In Section 2, we presented a nonassociative quantum dynamic. We suppose that the nonasso-
ciative quantization procedure could be applied of a nonperturbative quantization for a field
theory. The nonassociative quantum dynamic presented in Section 2 can be an approximation
in this direction. Now we would like to present a few possible physical applications of such
nonassociative quantum dynamic.
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4.1. Anomalous qubit rotation

Let us consider (2.16) describing the qubit rotation under action of an external constant field
�̃B =
(

0, 0, ˜B
)

(which cannot be a magnetic field in our nonperturbative case). Then we have the
following equations:

ṡx = μ ˜Bsy,

ṡy = −μ ˜Bsx,
(4.1)

with the solution

sx = s0x sin
(

ωt
)

,

sy = s0y cos
(

ωt
)

.
(4.2)

The solution describes the rotation of qubit around the external constant field �̃B in the plane
xy. Comparing (2.16) and (3.9) we see that the rotation of qubit in the nonassociative quan-
tum mechanics is in the opposite direction in comparison with the rotation of spin around the
magnetic field in the standard quantum mechanics.

For the extended version of qubit presented in Section 2.2 we use (2.25)with

˜B1,z = ˜B1, ω1,z = ω1,

˜B2,z = ˜B2, ω2,z = ω2,

ṡx = ω1ly,

l̇y = ω2sx,

(4.3)

with the following solution:

sx = s0xe±t
√
n1n2ω1ω2 , ly = l0ye±t

√
n1n2ω1ω2 . (4.4)

It seems that the solution with n1, n2 > 0 is physically senseless as in this case we have ex-
ponentially increasing/decreasing operators ̂L and ̂S. But in the case n1, n2 < 0 we have the
rotation of extended qubits in a plane.

4.2. Fermion qubit generations

Let us consider the commutative and associative subalgebra A spanned on the basis (1, i3, ε3, i0)
which is the commutative subalgebra of the noncommutative and associative algebra of bi-
quaternions A ⊂ B ⊂ S (for the definitions of biquaternions and sedenions see Appendix 5).
The matrix representation of A is

i3 = I

(

−σ3 0
0 1

)

= I

⎛

⎝

−1 0 0
0 1 0
0 0 1

⎞

⎠ ,

ε3 =

(

σ3 0
0 1

)

=

⎛

⎝

1 0 0
0 −1 0
0 0 1

⎞

⎠ ,

i0 = I

(

−12 0
0 1

)

= I

⎛

⎝

−1 0 0
0 −1 0
0 0 1

⎞

⎠ .

(4.5)
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The basis vectors are

ξ1 =

⎛

⎝

1
0
0

⎞

⎠ , ξ2 =

⎛

⎝

0
1
0

⎞

⎠ , ξ3 =

⎛

⎝

0
0
1

⎞

⎠ (4.6)

which are eigenvectors of matrices (4.5). For such a system, we can apply the Heisenberg equa-
tion of motion (2.24).

One can say that the index k (by ξk) enumerates “a fermion generation” of extended
qubits living in the vector space E of the matrix representation of biquaternions. The vector
space E1 spanned on the basis vectors (4.6) is a vector subspace E1 ⊂ E. According to equation
of motion (2.25), the generations of extended qubits can be mixed up. But it is correct only if

there exists the interaction term
(− �̃B2 · �μ

)

; in the opposite case the qubit generations cannot be
mixed up.

In the standard model of particle physics [11–13], there are open questions which have
not yet found an answer. Chief among these is the fermion family or generation puzzle as to
why the first generation of quarks and leptons (up quark, down quark, electron, and electron
neutrino) are replicated in two families or generations of increasing mass (the second genera-
tion consisting of charm quark, strange quark, muon, and muon neutrino; the third generation
consisting of top quark , bottom quark, tau, and tau neutrino). One can presuppose that a
nonassociative infinite dimensional quantum theory may shed light on the generation puzzle
of fermions.

5. Outlook

Thus we have shown that one can generalize the standard finite dimensional quantum me-
chanics (e.g., qubit quantum mechanics) to a nonassociative finite dimensional quantum me-
chanics realized on a finite dimensional associative algebra which is a subalgebra of a nonasso-
ciative algebra. We have considered two cases: quaternionic and biquaternionic nonassociative
qubit quantum mechanics. In both cases, the nonassociativity is realized in the Heisenberg
quantum equation of motion: on RHS of corresponding equations the usual commutator is
changed on a nonassociative commutator.

The biquaternion version of nonassociative quantum mechanics has commutative
(1, i0, ε3, i3) and noncommutative (1, i1, i2, i3) observables. It allows us to suppose that an in-
finite dimensional nonassociative quantum theory will have an associative subalgebra having
physical observables with commutators (ââ†−â†â = Iħ) and anticommutators ( ̂f ̂f†+ ̂f†

̂f = Iħ).
Probably it means that the unification of bosons and fermions can be done not only on the basis
of supersymmetry but in a nonassociative quantum theory as well.

Now we would like to list the results and properties of the nonassociative quantum
mechanics discussed here.

(i) Two examples of a finite dimensional quantum mechanics are presented.
(ii) The Heisenberg quantum equation of motion is essentially nonassociative.
(iii) The nonassociativity leads to the fact that the usual Hamiltonian cannot be introduced as

the product of two operators.
(iv) Generally speaking the nonassociative factors (i4, im+4) or (i4, εm+4) are unobservable

physical quantities that remind hidden parameters in the theory with hidden parame-
ters.
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(v) The nonassociative quantum theory can be an alternative one to supersymmetric theories.
(vi) In [8], it is shown that the nonassociative quantum theory can describe nonlocal objects

like strings and so on.

Appendix

Sedenions

Sedenions [14, 15] form an algebra with nonassociative but alternative multiplication and a
multiplicative modulus. It consists of one real axis (to basis 1), eight imaginary axes (to bases
in with i2n = −1, n = 0, . . . , 7), and seven real axes (to bases εn with ε2n = +1, n = 1, . . . , 7).
The multiplication table is given in Table 1. The sedenions nonassociative algebra contains the
following important subalgebras:

(i) the associative quaternion subalgebra Q with in, n = 1, 2, 3;
(ii) the associative biquaternion subalgebra B with i0, in, εn, n = 1, 2, 3;
(iii) the nonassociative octonion subalgebra O with in, n = 0, . . . , 7.
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