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It is well known that one cannot construct a self-consistent quantum field theory describing the non-
relativistic electromagnetic interaction mediated by massive photons between a point-like electric
charge and a magnetic monopole. We show that, indeed, this inconsistency arises in the classical
theory itself. No semiclassic approximation or limiting procedure for � → 0 is used. As a result, the
string attached to the monopole emerges as visible also if finite-range electromagnetic interactions
are considered in classical framework.
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In his classical works, Dirac showed that the existence of a magnetic monopole would explain
the electric charge quantization [1, 2]. This is known as the Dirac quantization rule. There ex-
ist various arguments based on quantum mechanics, theory of representations, topology, and
differential geometry on behalf of Dirac rule [3, 4]. Dirac formulation of magnetic monopoles
takes into account a singular vector potential. Other approaches exist where two nonsingular
vector potentials, related through a gauge transformation, are used [5, 6]. Finite-range electro-
dynamics is a theory with nonzero photonmass. It is an extension of the standard theory and is
fully compatible with experiments. The existence of Diracmonopole inmassless electrodynam-
ics is compatible with the above quantization condition if the string attached to themonopole is
invisible. The quantization condition can be obtained either with the help of gauge invariance
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or angular momentum quantization. In massive electrodynamics, both these approaches are
no longer applicable [7]. These conclusions are formulated in a quantum framework which is
a quantized version of the classical one. The Hamiltonian formulation and the problems in-
volved in quantization of Dirac theory of monopoles have been extensively discussed in the
past and are still an active field of research [8, 9]. Major work on the quantum field theory
of magnetic charges has been developed by Schwinger [10–12] and Zwanziger [13]. Recent
work on constructing a satisfactory classical relativistic framework for massive electrodynam-
ics and magnetic monopoles from a geometrical point of view has been considered in [14, 15].
A complete update on the experimental and theoretical status of monopoles is presented in
[16].

In this paper, we consider the problem of constructing the static limit of a consistent
classical, nonrelativistic electromagnetic theory describing a point-like electric particle with
charge e and mass m moving in the field of a fixed composite monopole of charge em, where
their mutual interaction is mediated by massive carrier gauge fields. The total magnetic field
�B is comprised of point-like magnetic charge, a semi-infinite string along the negative z-axis
and diffuse magnetic field contributions. We impose that the electrically charged particle must
never pass through the string (Dirac-veto) [17] and therefore the motion of the test charged
particle is constrained to region of motion R+ := {(r,θ,ϕ) : r ∈ R

+
0 , θ ∈ [0,π), ϕ ∈ [0,2π]}. It is

known that no spherically symmetric diffuse magnetic field solutions are allowed in Maxwell
classical electrodynamics with massive photons and magnetic monopoles [7]. Requiring the
theory presented here is endowed with a well-defined canonical Poisson bracket structure, it
is shown that the total angular momentum is the generator of rotations. Furthermore, by de-
manding proper transformation rules under spatial rotations for the allowed magnetic vector
field solutions, it is shown that only spherically symmetric diffuse magnetic fields satisfy the
Lie algebra of the system. This leads to conclude that the permitted solutions to the general-
ized Maxwell theory are incompatible with the Lie algebra of the Hamiltonian formulation. As
a consequence, any quantization procedure applied to this classical theory would lead to an
inconsistent quantum counterpart.

Maxwell equations with nonzero photon mass and magnetic charge follow from a stan-
dard variational calculus [18–20] of the Maxwell-Proca-Monopole action functional. The field
equations for the electromagnetic 4-vector potential Aμ, together with the Bianchi identities
and Lorenz gauge condition ∂μA

μ = 0, lead to the generalized Maxwell equations in three
dimensions as follows:

�∇ · �E = 4πρe −m2
γA0, �∇ × �E = −c−1∂t �B − 4πc−1�jm,

�∇ · �B = 4πρm, �∇ × �B = 4πc−1�je + c−1∂t �E −m2
γ
�A,

(1)

where mγ = ω/c and ω is the frequency of the photon. In absence of electric fields, charges,
and currents, as well as the absence of magnetic current, the static monopole-like solution of
this system is

�B = �B(Dirac) + �Bγ , (2)

where �B(Dirac) is the standard Dirac magnetic field

�B(Dirac) =
em
r2

r̂ (3)
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whose divergence and curl are given by

�∇ · �B(Dirac) = 4πemδ
(3)(�r), �∇ × �B(Dirac) = 0. (4)

The diffuse magnetic field �Bγ(�r) is given by the following general expression

�Bγ(�r) = b
(1)
γ (r,n̂ · �r)�r + b

(2)
γ (r,n̂ · �r)n̂, (5)

where b
(1)
γ and b

(2)
γ are general scalar field functions, and n̂ is a unitary vector along the

monopole string. The magnetic field �Bγ(�r) is such that

�∇ · �Bγ = 0 , �∇ × �Bγ = −m2
γ

(

�A(Dirac) + �Aγ

)

. (6)

The vector �A(Dirac) is the standard singular vector potential representing the field of a fixed
monopole;

�A(Dirac)(�r) =
em
r2

sin(θ)
1 + cos(θ)

(n̂ × �r), θ �= π (7)

with semi-infinite singularity line oriented along the negative z-axis, where em is the magnetic
charge. The vector potential �Aγ(�r) is given by the following general expression

�Aγ(�r) = emm
2
γfγ

(

mγr,mγ�r · n̂
)

(n̂ × �r), (8)

where fγ is a generic scalar field function. Because of the second equation in (6), it is clear that
no spherically symmetric diffuse magnetic field solutions are allowed, that is to say, solutions
like

�Bγ(�r) = Bγ(r)r̂ (9)

are not allowed.
On the other hand, it is known that the classical nonrelativistic theory describing the

massless electromagnetic scattering of an electric charge from a fixed magnetic monopole does
have a Hamiltonian formulation [21]. With this result in mind, let us consider the classical non-
relativistic theory describing a point-like electric particle with charge e and mass m moving in
the field of a fixed monopole of charge em, but let us suppose that the electromagnetic interac-
tion is mediated by massive photons. The total magnetic field �B is comprised of the point-like
magnetic charge, string, and diffuse magnetic field contributions as follows:

�B = �B(Dirac) + �Bγ

=
[

�∇ × �A(Dirac) + em �f(�r)
]

+ �∇ × �Aγ

= �∇ × �A + em �f(�r),
�A = �A(Dirac) + �Aγ ,

(10)

where

∥

∥ �f(�r)
∥

∥ = 4πδ(x)δ(y)Θ(−z) = 4π
r2

δ(θ)δ(ϕ)
sin θ

Θ(−cos θ) (11)
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is the string function having support only along the line n̂ = −ẑ and passing through the origin
while Θ is the Heaviside step function.

The classical Newtonian equation of motion describing this system is

m
d2�r

dt2
− e

c

d�r

dt
× (�∇ × �A) − eem

c

d�r

dt
× �f(�r) = 0. (12)

The Hamiltonian that gives rise to the above equations of motion reads

Htotal(�p,�r) =

(

�p − (e/c) �A
)2

2m
+Hstring, Hstring = −eem

c

∫(

d�r

dt
× �f(�r)

)

· d�r. (13)

We impose that the electrically charged particle must never pass through the string (Dirac-
veto) and therefore the classical equation of motion in the allowed region of motion R+ :=
{(r,θ,ϕ) : r ∈ R

+
0 , θ ∈ [0,π), ϕ ∈ [0,2π]} is given by

m
d2�r

dt2
− e

c

d�r

dt
× (�∇ × �A) = 0. (14)

The restricted Hamiltonian associated with (14) is given by

H(�p,�r) =

(

�p − (e/c) �A
)2

2m
=
( �P · r̂)2
2m

+
( �P · ̂θ)2
2m

=
( �P · r̂)2
2m

+
�L2

2mr2
=
( �P · r̂)2
2m

+

(

�J 2 − �s 2)

2mr2
,

(15)

where �p = m(d�r/dt) + (e/c) �A is the canonical momentum vector, �P = �p − (e/c) �A = m(d�r/dt)
is the kinetic momentum vector, �L = �r × �P is the orbital angular momentum of the system, and
�J = �L + �s is the total angular momentum such that �J · �s = 0, where

�s = (4πc)−1
∫

[

�r × (�E × �B)
]

d3�r

= �smassless +
e

4πc

∫

d�r�r ×
[

�r

r3
× �Bγ(�r − �R)

] (16)

with �smassless = (eem/c) ̂R [21–23], and �R is the relative vector position between the monopole
and the electric charge. The vector �s is taken as an angular momentum with independent de-
grees of freedom and must obey the following classical Poisson-bracket relation

{

si,sj
}

= −εijksk. (17)

Observe that Htotal(�p, �r) is not spherically symmetric due to the occurrence of Hstring and even
in the restricted case ofH(�p, �r), the term �∇ × �Aγ breaks rotational invariance since

d�r

dt
× (

�∇ × �Aγ

)

=
d�r

dt

(

�∇ · �Aγ

) −
(

d�r

dt
· �∇

)

�Aγ

= −
(

d�r

dt
· �∇

)

�Aγ �= 0 in general.
(18)
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We made use of the transversality condition �∇ · �Aγ = 0 in computing (d�r/dt) × (�∇ × �Aγ) [7].
Furthermore, we emphasize that we may obtain a spherically symmetric Hamiltonian, pro-
vided the auxiliary condition (d�r/dt)k∂k(Aγ)j = 0 for all j = 1, 2, 3 is satisfied. Such condition
is however unnecessary for our present analysis.

The Poisson brackets between two generic functions f(�p, �r, t) and g(�p, �r, t) of the dynam-
ical variables �p and �r are defined as

{

f(�p,�r,t), g(�p,�r,t)
} def=

∑

i

(

∂pif∂rig − ∂rif∂pig
)

, (19)

and the basic canonical Poisson bracket structure for the conjugate variables is given by

{

ri,rj
}

= 0,
{

ri,pj
}

= −δij ,
{

pi,pj
}

= 0. (20)

Let us show explicitly that �J is the generator of spatial rotations so that we can safely define
the rank of a tensor by studying its transformation rules under such rotations. Let us prove

{

Ji,Jj
}

= −εijkJk. (21)

Using the tensorial notation for the cross product appearing in the definition of �J , and using
the standard properties of a well-define Poisson bracket structure, the brackets in (21) become

{

Ji,Jl
}

=
{

εijkrjpk,εlmnrmpn
} − {

εijkrjpk,εlmnrmAn

}

− {

εijkrjAk,εlmnrmpn
}

+
{

εijkrjAk,εlmnrmAn

}

+
{

si,sl
}

.
(22)

Using the basic canonical Poisson bracket structure expressed in (20) and the standard proper-
ties of Poisson brackets together with the following identity

εijkεmlk = δimδjl − δilδjm, (23)

the first bracket on the right-hand side of (22) becomes

{

εijkrjpk,εlmnrmpn
}

= rlpi − ripl. (24)

Similarly, the second, the third, and the fourth brackets on the right-hand side of (22) become

−{εijkrjpk,εlmnrmAn

}

= δilrnAn − rlAi + εijkεlmnrmpk
{

An,rj
}

,

−{εijkrjAk,εlmnrmpn
}

= −δilrkAk + riAl + εijkεlmnrjpn
{

rm,Ak

}

,
{

εijkrjAk,εlmnrmAn

}

= −εijkεlmnrjAn

{

rm,Ak

} − εijkεlmnrmAk

{

An,rj
}

.

(25)

The last bracket on the right-hand side of (22) is given by (17) Finally, substituting these five
brackets in the right-hand side. of (22) and ordering them properly, the Poisson brackets of �J
become

{

Ji,Jl
}

=
(

rlpi − ripl − rlAi + riAl − εilmsm
)

+ εijkεlmn

[

rmpk
{

An,rj
} − rjpn

{

rm,Ak

}]

+ εijkεlmn

[

rjAn

{

Ak,rm
} − rmAk

{

An,rj
}]

.

(26)
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Because of the full antisymmetry of the Levi-Civita tensor,

εijkεlmnrmpk
{

An,rj
} − εijkεlmnrjpn

{

An,rm
}

=
(

εijkεlmn − εimnεljk
)

rmpk
{

An,rj
}

= 0. (27)

Therefore, (26) becomes

{

Ji,Jl
}

= rlpi − ripl − rlAi + riAl − εilmsm

= −εilm
[

εmnkrn
(

pk −Ak

)

+ sm
]

.
(28)

Using (23), we obtain

−εilmεmnkrnpk =
(

rlpi − ripl
)

, εilmεmnkrnAk = −(rlAi − riAl

)

, (29)

and finally,

{

Ji,Jl
}

= −εilmJm. (30)

At this point, we have all the elements to show the classical inconsistency of the problem.
Recall the kinetic momentum vector is defined as

�P
def= �p − e

c
�A, �A = �Aγ + �A(Dirac). (31)

Let us assume that there exists a well-defined Poisson bracket structure in the classical theoreti-
cal setting in consideration. In particular, let us assume a well-defined classical Poisson bracket
structure among the vector fields �J , �P , and �r, that is,

{

Ji,Jj
}

= −εijkJk,
{

Ji,rj
}

= −εijkrk,
{

Ji,Pj

}

= −εijkPk. (32)

Being �J the generator of rotations, it is required that any arbitrary vector �v must satisfy the
following classical commutation rules:

{

Ji,vj

}

= −εijkvk. (33)

Therefore, let us study the transformation properties of the magnetic field under spatial rota-
tions. It must be

{

Ji,Bj

}

= −εijkBk. (34)

In terms of the magnetic field decomposition, (34) is equivalent to

{

Ji,B
(Dirac)
j

}

= −εijkB(Dirac)
k

,
{

Ji,
(

Bγ

)

j

}

= −εijk
(

Bγ

)

k
. (35)

It is quite straightforward to check the validity of the first equation in (35), as a matter of fact,

{

Ji,B
(Dirac)
j

}

=
{

Ji,
em
r3

rj

}

=
em
r3

{

Ji,rj
}

+
{

Ji,
em
r3

}

rj

= −εijk em
r3

rk ≡ − εijkB
(Dirac)
k

.

(36)
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Let us consider the validity of (34), where the total magnetic field �B is given by

Bj(r,θ,ϕ) = εjlm∂lAm(r,θ,ϕ) + emfj(�r). (37)

By virtue of the Dirac-veto, the magnetic field Bj(r,θ,ϕ) felt by the electric charge reduces to

Bj(r,θ,ϕ) = εjlm∂lAm(r,θ,ϕ). (38)

Fixing the constants c and e equal to one for the sake of convenience, let us consider first
the Poisson brackets of the kinetic momentum vector components. Using (20), the standard
properties of Poisson brackets together with (23) and (38), we obtain

{

Pi,Pj

}

= −εijkBk. (39)

Multiplying both sides of (39) by εijn, we obtain

εijn
{

Pi,Pj

}

= −εijnεijkBk = −2δnkBk = −2Bn (40)

and therefore

Bk = −1
2
εijk

{

Pi,Pj

}

. (41)

Therefore, substituting Bk of (41) into (34), we obtain

{

Ji,Bj

}

= −1
2
εlmj

{

Ji,
{

Pl,Pm

}}

. (42)

The double commutator in (42) cannot be calculated in a direct way. However, because we are
assuming the existence of a well-defined Poisson bracket structure among the vectors �J , �B, and
�r, this double commutator can be evaluated by using the following Jacobi identity

{

Ji,
{

Pl,Pm

}}

+
{

Pm,
{

Ji,Pl

}}

+
{

Pl,
{

Pm,Ji
}}

= 0. (43)

Thus, using the fact that �J is the generator of rotations, that �P transforms as a vector quantity
under rotations, and using (23), we obtain

{

Ji,
{

Pl,Pm

}}

= −δilBm + δimBl. (44)

Substituting (41) into (44), we obtain

{

Ji,Bj

}

= −εijmBm. (45)

Therefore, we have shown that in a pure classical theoretical framework given by the Poisson
brackets formalism, the commutation rule between the generator of spatial rotations and the
total magnetic field is expressed in (45). Our last step is to calculate the Poisson brackets be-
tween �J and the magnetic field �Bγ . Using (5), standard Poisson brackets properties, and the
fact that �J is the generator of rotations, these brackets become

{

Ji,
(

�Bγ

)

j

}

Poisson
= −εijk

(

Bγ

)

k
+
{

Ji,b
(1)
γ

}

rj +
{

Ji,b
(2)
γ

}

nj. (46)



8 Advances in High Energy Physics

In order to have proper Poisson brackets, for each vectors n̂ and �r, the following relation must
hold:

{

Ji,b
(1)
γ

}

rj +
{

Ji,b
(2)
γ

}

nj = 0. (47)

Observe that the second Poisson bracket in the right-hand side of (46) contains a term quadratic
in nk,

{

Ji,b
(2)
γ

}

nj =
(

∂pkJi
)(

∂rkb
(2)
γ

)

nj

=
(

∂pkJi
)

[

∂rb
(2)
γ

rk
r

+ ∂(�r·n̂)b
(2)
γ nk

]

nj

=
1
r
∂pkJi ∂rb

(2)
γ rknj + ∂pkJi∂(�r·n̂)b

(2)
γ nknj .

(48)

Since the proper Poisson brackets should be linear in nk, we require

∂(�r·n̂)b
(2)
γ = 0. (49)

There is no way to cancel out this term in (46), then it must be

b
(2)
γ = 0. (50)

We now consider the first Poisson bracket on the right-hand side of (46). Because of the anti-
symmetry in the indices i and j of the term εijk(Bγ)k, it must be

{

Ji,b
(1)
γ

}

rj +
{

Jj ,b
(1)
γ

}

ri = 0, (51)

that is,

{

Ji,b
(1)
γ

}

ri = 0. (52)

Explicitly, (52) becomes

0 =
(

∂pkJi
)(

∂rkb
(1)
γ

)

ri

=
(

∂pkJi
)

[

∂rb
(1)
γ

rk
r

+ ∂(�r·n̂)b
(1)
γ nk

]

ri

=
1
r

(

∂pkJi
)(

∂rb
(1)
γ

)

rkri +
(

∂pkJi
)(

∂(�r·n̂)b
(1)
γ

)

nkri.

(53)

We neglect the quadratic term in rk in (53) since this term has no analog in the proper Poisson
brackets. Then, we have

∂(�r·n̂)b
(1)
γ = 0. (54)

Recalling that

n̂ = −ẑ = −{cos(θ)r̂ − sin(θ)̂θ
}

= −cos(θ)r̂ + sin(θ)̂θ, (55)
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then

n̂ · r̂ = −cos(θ) = θ-dependent. (56)

Therefore, (54) is satisfied by an arbitrary scalar function bγ(r). As a consequence, the magnetic
field �Bγ is not θ-dependent (in a more general situation in which n̂ is not along the z-axis,
we would conclude that the magnetic field is not (θ, ϕ)-dependent). �Bγ must be a spherically
symmetric field whose general expression is the following:

�Bγ(�r) = Bγ(r)r̂. (57)

In conclusion, in order to have a well-defined classical Poisson bracket structure in the problem
under investigation, one must deal with diffuse magnetic field solutions exhibiting spherical
symmetry. However, those very same solutions are not compatible with massive classical elec-
trodynamics with magnetic monopoles. This result means that it is not possible to formulate
a consistent nonrelativistic classical theory describing the finite-range electromagnetic interac-
tion between a point-like electric charge and a fixed Dirac monopole without a visible string. In
other words, there is no way to construct a consistent Lie algebra in our classical framework
and this leads to the conclusion that there is no angular momentum to be quantized in order to
give the Dirac quantization rule. This fact points out that the string attached to the monopole is
visible and there is no way to make it invisible when considering finite-range electromagnetic
interactions in a pure classical framework. The Dirac string must assume dynamical signifi-
cance if the photon has a nonvanishing mass, and its dynamical evolution may play a signif-
icant role in a quantum description of the Dirac theory. In conclusion, we have shown that it
is not possible to construct a nonrelativistic classical theory of true Dirac monopoles (invisible
string, “monopole without a string”) and massive photons unless the string attached to the
monopole is treated as an independent dynamical quantity. An important feature of our ap-
proach is that we do not use any kind of semiclassical approximation or limiting procedure for
� → 0.

Appendices

A. The generator of spatial rotations

We show that �J is the generator of spatial rotations, that is,

{

Ji,Jj
}

= −εijkJk. (A.1)

Notice that

{

Ji,Jl
}

=
{

εijkrj
(

pk −Ak

)

+ si,εlmnrm
(

pn −An

)

+ sl
}

=
{

εijkrjpk − εijkrjAk + si,εlmnrmpn − εlmnrmAn + sl
}

=
{

εijkrjpk,εlmnrmpn
} − {

εijkrjpk,εlmnrmAn

} − {

εijkrjAk,εlmnrmpn
}

+
{

εijkrjAk,εlmnrmAn

}

+
{

si,sl
}

.

(A.2)
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Therefore, there are five Poisson brackets to be calculated. Consider the first one
{

εijkrjpk,εlmnrmpn
}

= εijkεlmn

{

rjpk,rmpn
}

= εijkεlmn

[

rj
{

pk,rmpn
}

+
{

rj ,rmpn
}

pk
]

= εijkεlmn

[ − rj
{

rmpn,pk
} − {

rmpn,rj
}

pk
]

= εijkεlmn

[ − rj
(

rm
{

pn,pk
}

+
{

rm,pk
}

pn
)]

+ εijkεlmn

[ − (

rm
{

pn,rj
}

+
{

rm,rj
}

pn
)

pk
]

=εijkεlmn

[

δmkrjpn−δnjrmpk
]

=εijkεlmnδmkrjpn−εijkεlmnδnjrmpk

= εijkεlknrjpn − εinkεlmnrmpk = −εijkεlnkrjpn + εiknεlmnrmpk

= −(δilδjn − δinδjl

)

rjpn +
(

δilδkm − δimδlk

)

rmpk

= −δilδjnrjpn + δinδjlrjpn + δilδkmrmpk − δimδlkrmpk

= −δilrnpn + rlpi + δilrkpk − ripl = rlpi − ripl,

(A.3)

thus
{

εijkrjpk,εlmnrmpn
}

= rlpi − ripl. (A.4)

Consider the second bracket

−{εijkrjpk,εlmnrmAn

}

= −εijkεlmn

{

rjpk,rmAn

}

= −εijkεlmn

[

rj
{

pk,rmAn

}

+
{

rj ,rmAn

}

pk
]

= −εijkεlmn

[ − rj
{

rmAn,pk
} − {

rmAn,rj
}

pk
]

= −εijkεlmn

[ − rjrm
{

An,pk
} − rj

{

rm,pk
}

An

]

− εijkεlmn

[ − rm
{

An,rj
}

pk −
{

rm,rj
}

Anpk
]

= −εijkεlmn

[

δmkrjAn − rmpk
{

An,rj
}]

= −εijkεlknrjAn + εijkεlmnrmpk
{

An,rj
}

= εijkεl,n,krjAn + εijkεlmnrmpk
{

An,rj
}

=
(

δilδjn − δinδjl

)

rjAn + εijkεlmnrmpk
{

An,rj
}

= δilδjnrjAn − δinδjlrjAn + εijkεlmnrmpk
{

An,rj
}

= δilrnAn − rlAi + εijkεlmnrmpk
{

An,rj
}

,

(A.5)

thus

−{εijkrjpk,εlmnrmAn

}

= δilrnAn − rlAi + εijkεlmnrmpk
{

An,rj
}

. (A.6)

Using the standard canonical algebra, the third bracket becomes

−{εijkrjAk,εlmnrmpn
}

= −δilrkAk + riAl + εijkεlmnrjpn
{

rm,Ak

}

. (A.7)

For the fourth bracket, we obtain
{

εijkrjAk,εlmnrmAn

}

= εijkεlmn

{

rjAk,rmAn

}

= εijkεlmn

[

rj
{

Ak,rmAn

}

+
{

rj ,rmAn

}

Ak

]

= εijkεlmn

[ − rj
{

rmAn,Ak

} − {

rmAn,rj
}

Ak

]

= εijkεlmn

[ − rj
{

rm,Ak

}

An − rm
{

An,rj
}

Ak

]

= −εijkεlmnrjAn

{

rm,Ak

} − εijkεlmnrmAk

{

An,rj
}

.

(A.8)
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For the last bracket, let us remind that the vector s is such the Poisson brackets of its compo-
nents satisfy (17). In conclusion, using (A.4), (A.6), (A.7), (A.8), and using the commutation
rules of the classical spin, (A.2) becomes

{

Ji,Jl
}

= rlpi − ripl + δilrnAn − rlAi + εijkεlmnrmpk
{

An,rj
} − δilrkAk

+ riAl + εijkεlmnrjpn
{

rm,Ak

} − εijkεlmnrjAn

{

rm,Ak

}

− εijkεlmnrmAk

{

An,rj
} − εilmsm

=
(

rlpi − ripl − rlAi + riAl − εilmsm
)

+
(

εijkεlmn

[

rmpk
{

An,rj
} − rjpn

{

rm,Ak

}

+ rjAn

{

Ak,rm
} − rmAk

{

An,rj
}])

.

(A.9)

Notice that

εijkεlmnrmpk
{

An,rj
} − εijkεlmnrjpn

{

An,rm
}

=
(

εijkεlmn − εimnεljk
)

rmpk
{

An,rj
}

= 0. (A.10)

If i = l, then

εijkεlmn − εimnεljk = εijkεimn − εimnεijk ≡ 0. (A.11)

If i �= l, let us say i = 1 and l = 2, then

εijkεlmn − εimnεljk = ε1jkε2mn − ε1mnε2jk. (A.12)

Therefore, the possible nonvanishing pieces are

ε123ε213 − ε213ε123 ≡ 0, ε132ε231 − ε231ε132 ≡ 0, ε132ε213 − ε231ε123 ≡ 0, . . . (A.13)

Therefore, (A.9) becomes

{

Ji,Jl
}

=
(

rlpi − ripl − rlAi + riAl − εilmsm
)

= −εilm
[

εmnkrn
(

pk −Ak

)

+ sm
]

= −εilmJm.

(A.14)

Indeed,

−εilmεmnkrnpk = −εilmεkmnrnpk = −εilmεnkmrnpk
=
(

δinδlk − δikδl,n

)

rnpk = −δinδlkrnpk + δikδl,nrnpk

= −ripl + rlpi =
(

rlpi − ripl
)

,

εilmεmnkrnAk = riAl + rlAi = −(rlAi − riAl

)

.

(A.15)

This concludes our proof.
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B. The Jacobi identity

Consider the kinetic momentum vector

�P
def= �p − e

c
�A, �A = �Aγ + �A(Dirac). (B.1)

Consider the Poisson bracket of the kinetic momentum vector components
{

Pi,Pj

}

=
{

pi −Ai,pj −Aj

}

=
{

pi,pj
} − {

pi,Aj

} − {

Ai,pj
}

+
{

Ai,Aj

}

=
{

Aj ,pi
} − {

Ai,pj
}

=
{

Aj ,pi
} − {

Ai,pj
}

= −∂iAj + ∂jAi = −(∂iAj − ∂jAi

)

= −εijkBk,

(B.2)

where

Bj = εjlm∂lAm. (B.3)

Using the fact that {Ji, Bj} = −εijkBk and the identity εijkεmlk = δilδjm − δimδjl, it follows that

εijkBk = εijkεklm∂lAm = εijkεmkl∂lAm = −εijkεmlk∂lAm

= −(δimδjl − δilδjm

)

∂lAm = −δimδjl∂lAm + δilδjm∂lAm

= −δim∂jAm + δil∂lAj = ∂iAj − ∂jAi.

(B.4)

Using (B.2), we obtain

εijn
{

Pi,Pj

}

= −εijnεijkBk = −2δnkBk = −2Bn. (B.5)

Thus,

Bk = −1
2
εijk

{

Pi,Pj

}

. (B.6)

Finally, let us focus on the following Poisson bracket:

{

Ji,Bj

}

=
{

Ji, − 1
2
εlmj

{

Pl,Pm

}

}

= −1
2
εlmj

{

Ji,
{

Pl,Pm

}}

. (B.7)

Using the Jacobi identity
{

Ji,
{

Pl,Pm

}}

+
{

Pm,
{

Ji,Pl

}}

+
{

Pl,
{

Pm,Ji
}}

= 0, (B.8)

we obtain
{

Ji,
{

Pl,Pm

}}

= −{Pm,
{

Ji,Pl

}} − {

Pl,
{

Pm,Ji
}}

=
{

Pl,
{

Ji,Pm

}} − {

Pm,
{

Ji,Pl

}}

=
{

Pl, − εimkPk

} − {

Pm, − εilkPk

}

= −εimk

{

Pl,Pk

}

+ εilk
{

Pm,Pk

}

= −εimk

( − εlkqBq

)

+ εilk
( − εmkqBq

)

= εimkεlkqBq − εilkεmkqBq

= −εimkεlqkBq + εilkεmqkBq

= −(δilδmq − δiqδml

)

Bq +
(

δimδlq − δiqδlm

)

Bq

= −δilδmqBq + δiqδmlBq + δimδlqBq − δiqδlmBq

= −δilBm + δmlBi + δimBl − δlmBi = −δilBm + δimBl.

(B.9)
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Then, using (B.6) and (B.9), we obtain

{

Ji,Bj

}

= −1
2
εlmj

( − δilBm + δimBl

)

=
1
2
εlmjδilBm − 1

2
εlmjδimBl

=
1
2
εimjBm − 1

2
εlijBl = −1

2
εijmBm − 1

2
εmijBm

= −1
2
εijmBm − 1

2
εijmBm = −εijmBm.

(B.10)

We have shown that in a pure classical theoretical framework given by the Poisson brackets
formalism, the commutation rule between the generator of spatial rotations and the total mag-
netic field is

{

Ji,Bj

}

= iεijkBk. (B.11)
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