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We use the corrections to the Newton-Einstein secular precessions of the longitudes of the perihe-
lia of the inner planets, phenomenologically estimated E.V. Pitjeva by fitting almost one century
of data with the EPM2004 ephemerides, to constrain some long-range models of modified grav-
ity recently put forth to address the dark energy and dark matter problems. They are the four-
dimensional ones obtained with the addition of inverse powers and logarithm of some curvature
invariants, and the DGP multidimensional braneworld model. After working out the analytical
expressions of the secular perihelion precessions induced by the corrections to the Newtonian po-
tential of such models, we compare them to the estimated extra-rates of perihelia by taking their
ratio for different pairs of planets instead of using one perihelion at a time for each planet sep-
arately, as done so far in literature. The curvature invariants-based models are ruled out, even
by rescaling by a factor 10 the errors in the estimated planetary orbital parameters. Less neat is
the situation for the DGP model. Only the general relativistic Lense-Thirring effect, not included,
as the other exotic models considered here, by Pitjeva in the EPM force models, passes such a
test.

Copyright q 2007 Lorenzo Iorio. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

1. Introduction

Weak-field limits of theories involving long-range modifications of gravity recently put forth
to address the issues of dark energy and dark matter [1–8] are important because such exotic
corrections to the Newtonian potential allow, in principle, for tests to be performed on local,
astronomical scales, independently of the galactic/cosmological effects [9] which motivated
such alternative theories and that, otherwise, would represent their only justification. In this
paper, we will show how to obtain phenomenologically tight constraints on the viability of
some of such modified theories by suitably using the latest observational results from solar
system planetary motions [10, 11].
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In Section 2, we will consider the four-dimensional models obtained from inverse pow-
ers of some curvature invariants [3]. After working out the analytic expression of the secular,
that is, averaged over one orbital revolution, perihelion precession induced by the Newto-
nian limit of such models, we will compare it to the phenomenologically estimated correc-
tions to the usual Newton-Einstein precessions of the perihelia of the inner planets of the solar
system. By taking the ratio of them for different pairs of planets we will find that the pre-
dicted exotic effects are ruled out. In Sections 3 and 4, we repeat the same procedure for the
four-dimensional model based on the logarithm of some invariants of curvature [5] and for
the Dvali-Gabadadze-Porrati (DGP)multidimensional braneworld model [1], respectively, by
finding that also such models do not pass our test. In Section 5, we apply the same strategy
to the general relativistic gravitomagnetic field [12–14] finding that it is, instead, compatible
with the ratio of the perihelion precessions for all the considered pairs of planets. Section 6 is
devoted to the conclusions.

2. The inverse-power curvature invariants models

In this Section, we will address the long-range modifications of gravity obtained by including
in the action inverse powers of some invariants of curvature not vanishing in the Schwarzschild
solution [3–5]. From the correction to the Newtonian potential [3]

V = −αGM

r6k+4c

r6k+3, r � rc, (2.1)

where k is a positive integer number, it follows a purely radial acceleration:

A = −αGM(6k + 3)

r6k+4c

r6k+2 r̂, (2.2)

r � rc. (2.3)

The length scale rc depends, among other things, on a parameter μwhich must assume a
certain value in order that the model in [3] is able to reproduce the cosmic acceleration [15, 16]
without dark energy; it is just such a value of μ which makes rc ≈ 10 pc (k = 1) for a sun-like
star [3]. Since [4]

|α| = k(1 + k)

(6k + 3)24k3k
(2.4)

and rc ≈ 10 pc (k = 1), the condition r � rc for which the expansion in r/rc yielding (2.1)
retains its validity is fully satisfied in the solar system, and (2.2) can be treated as a small
correction to the Newtonian monopole with the standard perturbative techniques of celestial
mechanics. The Gauss equation for the variation of the longitude of pericentre � of a test
particle acted upon by an entirely radial disturbing acceleration A is

d�

dt
= −

√
1 − e2

nae
Acosf, (2.5)

where a and e are the semimajor axis and the eccentricity, respectively, of the orbit of the test
particle, n =

√

GM/a3 is the unperturbed Keplerian mean motion, and f is the true anomaly
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reckoned from the pericentre. The secular precession of the pericentre 〈�̇〉 can be worked out
by evaluating the right-hand side of (2.5) onto the unperturbed Keplerian ellipse

r = a(1 − ecosE), (2.6)

where E is the eccentric anomaly, and by performing subsequently an integration over one full
orbital period. To this aim, the following relations are useful:

dt =
(

1 − ecosE
n

)

dE,

cosf =
cosE − e

1 − ecosE
.

(2.7)

Let us start with the case k = 1; the extra-acceleration becomes

Ak=1 = −9αGM
r10c

r8 r̂. (2.8)

By proceeding as previously outlined and using the exact result

∫ 2π

0
(cosE − e)(1 − ecosE)8dE = −5eπ

64
[

128 + 7e2
(

128 + 160e2 + 40e4 + e6
)]

, (2.9)

it is possible to obtain the exact formula

〈�̇〉k=1 = −45α
r10c

√

GMa17
(

1 − e2
)

[

1 + 7e2
(

1 +
5
4
e2 +

5
16

e4 +
1
128

e6
)]

. (2.10)

It is important to note the dependence of 〈�̇〉 on a positive power of the semimajor axis a: this
fact will be crucial in setting our test.

The predicted extra-precession of (2.10) can be fruitfully compared to the corrections
to the usual Newton-Einstein rates of the longitudes of perihelia of the inner planets of the
solar system phenomenologically estimated in [10], in a least-square sense, as solve-for pa-
rameters of a global solution in which a huge amount of modern planetary data of all types
covering about one century were contrasted to the dynamical force models of the EPM2004
ephemerides [11]. Such corrections are quoted in Table 1. They were determined in a model-
independent way, without modeling this or that particular model of modified gravity: only
known Newton-Einstein accelerations1were, in fact, modeled so that the estimated perihelion
extra-rates account, in principle, for all the unmodeled forces present in nature. Since July
2005 [17], many other authors so far used the extra-precessions of the perihelia of the inner
planets of the solar system estimated in [10] to put constraints on modified models of gravity
[18–23], cosmological constant [24, 25], various cosmological issues [26–30], dark matter dis-
tribution [31–35], trans-Neptunian bodies [36], general relativity [17, 37]; a common feature
of all such analyses is that they always used the perihelia separately for each planet, or com-
bined linearly by assuming that the exotic effects investigated were included in the estimated

1 With the exception of the general relativistic gravitomagnetic interaction, yielding the Lense-Thirring effect, and of the
Kuiper belt objects.
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Table 1: Semimajor axes a, in AU (1 AU = 1.49597870691 × 1011 m), and phenomenologically estimated
corrections to the Newtonian-Einsteinian perihelion rates, in arcseconds per century (′′ cy−1), of Mercury,
the Earth, and Mars [10]. Also the associated errors are quoted: they are in m for a [11] and in ′′ cy−1 for
�̇ [10]. For the semimajor axes they are the formal, statistical ones, while for the perihelia they are realistic
in the sense that they were obtained from comparison of many different solutions with different sets of
parameters and observations (Pitjeva, private communication 2005). The results presented in the text do
not change if δa are rescaled by a factor 10 in order to get more realistic uncertainties.

Planet a (AU) δa (m) �̇ (′′ cy−1) δ�̇ (′′ cy−1)
Mercury 0.38709893 0.105 −0.0036 0.0050
Earth 1.00000011 0.146 −0.0002 0.0004
Mars 1.52366231 0.657 0.0001 0.0005

corrections to the perihelia precessions, and by using their errors to constrain the parameters
of the extra-forces. About the reliability of the results in [10, 23] made an independent check
by assessing the total mass of the Kuiper belt objects and getting results compatible with other
ones obtained with different methods, not based on the dynamics of the inner planets. It must
be noted that more robustness could be reached if and when other teams of astronomers will
estimate their own corrections to the perihelion precessions. On the other hand, an alternative
approach would consist in refitting the entire data set by including an ad-hoc parameter ac-
counting for just the exotic effect one is interested in. However, such a procedure might be not
only quite time-consuming because of the need of modifying the software’s routines by includ-
ing the extra-accelerations, but it would be also model-dependent by, perhaps, introducing the
temptation of more or less consciously tweaking somehow the data and/or the procedure in
order to obtain just the outcome one a priori expects.

Here we will not use one perihelion at a time for each planet. Indeed, let us consider a
pair of planets A and B and take the ratio of their estimated extra rates of perihelia: if(2.10) is
responsible for them, then the quantity2

ΓAB =

∣

∣

∣

∣

∣

�̇A

�̇B
−
(

aA

aB

)17/2∣
∣

∣

∣

∣

(2.11)

must be compatible with zero, within the errors. The figures of Table 1 tell us that it is definitely
not so: indeed, for A = Mars, B =Mercury, we have

ΓMaMe= 105 ± 0.1. (2.12)

The situation is slightly better for A = Mars and B = Earth:

ΓMaE = 38 ± 3.5. (2.13)

An intermediate case occurs for A = Earth and B =Mercury:

ΓEMe= 103 ± 0.2. (2.14)

It is important to note that the following.

2 It turns out that the multiplicative term depending on the eccentricities has a negligible effect on our conclusions.
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(i) The uncertainty in ΓAB has been conservatively estimated as

δΓAB ≤
∣

∣

∣

∣

�̇A

�̇B

∣

∣

∣

∣

(

δ�̇A

∣

∣�̇A
∣

∣

+
δ�̇B

∣

∣�̇B
∣

∣

)

+
17
2

(

aA

aB

)17/2(
δaA

aA
+
δaB

aB

)

(2.15)

by linearly adding the individual terms coming from the propagation of the errors in �̇
and a in (2.11); this is justified by the existing correlations among the estimated Keplerian
orbital elements.3

(ii) The results presented here do not change if we rescale by a factor 10 the formal errors
in the semimajor axes [11] quoted in Table 1. The same holds also for the errors in the
perihelia rates which, however, are not the mere statistical ones but are to be considered
as realistic, as explained in the caption of Table 1.

(iii) The constraints obtained here with (2.11) are independent of α and rc; should one use
(2.10) for each planet separately to constrain rc, it turns out that, for |α| = 4 × 10−3 (k = 1),
rc � 4.5 AU. Note that with such a value the condition r � rc, with which (2.1) and, thus,
(2.10) were derived, holds for all the inner planets.

(iv) For k > 1, the situation is even worse because of the resulting higher powers with which
the semimajor axis enters the formulas for the perihelion rates.

3. The logarithmic curvature invariants models

The same approach can be fruitfully used for the model in [5] based on an action depending on
the logarithm of some invariants of the curvature in order to obtain a modification of gravity
at the MOND [38] characteristic scale [39], so to address in a unified way the dark energy and
dark matter problems; in this model the length scale rc amounts to about 0.04 pc for the Sun.
The correction to the Newtonian potential is

V ∝ GMr3

r4c
, (3.1)

which yields the perturbing acceleration

A ∝ r2

r4c
r̂. (3.2)

By using

∫ 2π

0
(cosE − e)(1 − ecosE)2dE = −eπ(4 + e2

)

, (3.3)

the secular precession of perihelion induced by (3.2) is

〈�̇〉 ∝

√

GMa5
(

1 − e2
)

r4c

(

4 + e2
)

; (3.4)

3 The correlations among the perihelion rates are low, with a maximum of 20%between the Earth and Mercury (Pitjeva,
private communication, 2005).
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also in this case, it depends on a positive power of the semimajor axis; cf. the approximated
result in [5] for the shift per orbit, that is, 2π〈�̇〉/n.

By taking the ratio of (3.4) for a pair of planets and comparing it to the ratio of the
estimated extraprecessions in [10] it can be obtained

ΔAB =
∣

∣

∣

∣

�̇A

�̇B
−
(

aA

aB

)5/2∣
∣

∣

∣

. (3.5)

The test is not passed. Indeed, for A = Mars and B =Mercury we have

ΔMaMe = 30.7 ± 0.1; (3.6)

the pair A = Earth, B =Mercury yields

ΔEMe = 10.6 ± 0.2, (3.7)

while A =Mars, B = Earth Δ is marginally compatible with zero:

ΔMaE = 3.4 ± 3.5. (3.8)

Note that even if the real errors in the estimated extraprecessions of perihelia were up to 10
times larger than those quoted in [10] the pair Mars-Mercury would still be able to rule out the
logarithmic model in [5].

4. The multidimensional braneworld Dvali-Gabadadze-Porrati model

Another modifiedmodel of gravity aimed to explain the cosmic acceleration without darkmat-
ter is the multidimensional braneworld model DGP [1]which predicts, among other things, an
extra rate of perihelion independent of the planetary semimajor axis4 [40, 41]. It is incompati-
ble with the test of the ratio of perihelia as well, although less dramatically than the previously
examined models. Indeed, by defining

ΨAB =
∣

∣

∣

∣

�̇A

�̇B
− 1

∣

∣

∣

∣

, (4.1)

for A =Mars, B = Mercury we have

ΨMaMe = 1.0 ± 0.2, (4.2)

while A = Earth, B =Mercury yield

ΨEMe = 0.9 ± 0.2. (4.3)

Errors in the determined extra rates of perihelion 5 times larger than those quoted in Table 1
would allow the DGP model to pass the test. The pair A = Mars, B = Earth give a result com-
patible with zero:

ΨMaE = 1.5 ± 3.5; (4.4)

the same hold for the other three combinations in which A and B denotes the planets with the
smaller and larger semimajor axes, respectively. Until now, the DGP model was not found in
disagreement with the solar system data because the perihelia were used separately for each
planet [19].

4 The only dependence on the features of the planetary orbits occurs through a correction quadratic in the eccentricity e
(2.12) which turns out to be negligible in this case.
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5. General relativistic effects: gravitomagnetism

It maybe interesting to note that contrary to the exotic effects induced by the modified models
of gravity previously examined, the Lense-Thirring effect [12–14] induced by the general rela-
tivistic gravitomagnetic field of the Sun, not modeled in [10], does pass our test based on the
ratio of the perihelia. Indeed, since the Lense-Thirring perihelion precessions are proportional
to a negative power of the semimajor axis, that is,

〈�̇〉 ∝ a−3, (5.1)

the quantity

ΛAB =
∣

∣

∣

∣

�̇A

�̇B
−
(

aB

aA

)3∣
∣

∣

∣

(5.2)

must be considered. It turns out that it is compatible with zero for all the six combinations
which can be constructed with the data of Table 1. This result enforces the analysis in [17] in
which the extra rates of the perihelia were used one at a time for each planet and linearly com-
bined by finding the general relativistic predictions for the Lense-Thirring precessions compat-
ible with them.

6. Conclusions

In this paper, we used the corrections to the Newton-Einstein secular precessions of the longi-
tudes of perihelia of the inner planets of the solar system, estimated in [10] in a least-square
sense as phenomenological solve for parameters of a global solution in which almost one cen-
tury of data was fitted with the EPM2004 ephemerides, to put tight constraints on several
models of modified gravity recently proposed to explain dark energy/dark matter issues. By
using the ratio of the perihelion precessions for different pairs of planets, instead of taking one
perihelion at a time for each planet as done so far, we were able to rule out all the consid-
ered long-range models of modified gravity, in particular the ones based on inverse powers
of curvature invariants in [3] and on the logarithm of some curvature invariants [5] even by
rescaling by a factor 10 the errors in the estimated perihelion extra rates. The situation is less
dramatic for the DGP [1] braneworldmodel since if the real errors in the perihelion precessions
were, in fact, 5 times larger than the ones released, it would become compatible with the data.
Only the general relativistic Lense-Thirring effect passed the test. However, it must be noted
that our results are based only on the extra rates of perihelia determined in [10]: it would be
highly desirable to use corrections to the secular motion of perihelia independently estimated
by other teams of astronomers as well. If and when they will be available, our test will become
more robust.
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