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1. Introduction

In the papers [1–7] the Poincaré algebra for the generators of the rotations Mab and
translations Pa in D dimensions,

[Mab,Mcd] =
(
gadMbc + gbcMad

) − (c ↔ d),

[Mab, Pc] = gbcPa − gacPb,

[Pa, Pb] = 0,

(1.1)

has been extended by means of the second rank tensor generator Zab in the following way:

[Mab,Mcd] =
(
gadMbc + gbcMad

) − (c ↔ d),

[Mab, Pc] = gbcPa − gacPb,

[Pa, Pb] = cZab,

[Mab,Zcd] =
(
gadZbc + gbcZad

) − (c ↔ d),

[Pa, Zbc] = 0, [Zab, Zcd] = 0
(1.2)
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where c is some constant (Note that, to avoid the double count under summation over
the pair antisymmetric indices, we adopt the rules which are illustrated by the following
example:

[Pa, Pb] = cZab =
c

2

(
δc
aδ

d
b − δd

aδ
c
b

)
Zcd =

∑

c<d

fab
cdZcd =

1
2
fab

cdZcd, (1.3)

where fab
cd are structure constants, and so on.)

Such an extensionmakes common sense, since it is homomorphic to the usual Poincaré
algebra (1.1). Moreover, in the limit c → 0 the algebra (1.2) goes to the semidirect sum of the
commutative ideal Zab, and Poincaré algebra (1.1).

It is remarkable enough that the momentum square Casimir operator of the Poincaré
algebra under this extension ceases to be the Casimir operator, and it is generalized by adding
the term linearly dependent on the angular momentum

PaPa + cZabMba
def= Xkh

klXl, (1.4)

where Xk = {Pa, Zab,Mab}. Due to this fact, an irreducible representation of the extended
algebra (1.2) has to contain the fields with the different masses [4, 8]. This extension with
noncommuting momenta has also something in common with the ideas of the papers [9–11]
and with the noncommutative geometry idea [12].

It is interesting to note that in spite of the fact that the algebra (1.2) is not semi-simple
and therefore has a degenerate Cartan-Killing metric tensor nevertheless there exists another
nondegenerate invariant tensor hkl in adjoint representation which corresponds to the
quadratic Casimir operator (1.4), where thematrix hkl is inverse to thematrix hkl: hklhlm = δk

m.
There are other quadratic Casimir operators

c2ZabZab, (1.5)

c2εabcdZabZcd. (1.6)

Note that the Casimir operator (1.6), dependent on the Levi-Civita tensor εabcd, is
suitable only for the D = 4 dimensions.

It has also been shown that for the dimensions D = 2, 3, 4 the extended Poincaré
algebra (1.2) allows the following supersymmetric generalization:

{Qκ,Qλ} = −d(σabC)κλZab,

[Mab,Qκ] = −(σabQ)κ,

[Pa,Qκ] = 0,

[Zab,Qκ] = 0,

(1.7)

with the help of the supertranslation generators Qκ. In (1.7) C is a charge conjugation
matrix, d is some constant, and σab = 1/4[γa, γb], where γa is the Dirac matrix. Under this



Advances in High Energy Physics 3

supersymmetric generalization the quadratic Casimir operator (1.4) is modified into the
following form:

PaPa + cZabMba − c

2d
Qκ(C−1)

κλ
Qλ, (1.8)

while the form of the rest quadratic Casimir operators (1.5), (1.6) remains unchanged.
In the present paper we propose another possible semi-simple tensor extension of the

D-dimensional Poincaré algebra (1.1) which turns out a direct sum of the D-dimensional
Lorentz algebra so(D − 1, 1) andD-dimensional anti-de Sitter (AdS) algebra so(D − 1, 2). For
the caseD = 4 dimensions we give for this extension a supersymmetric generalization which
is a direct sum of the 4-dimensional Lorentz algebra so(3, 1) and orthosymplectic algebra
osp(1, 4) (super-AdS algebra). In the limit this supersymmetrically generalized extension go
to the Lie superalgebra (1.2), (1.7).

Let us note that the introduction of the semi-simple extension of the (super) Poincaré
algebra is very important for the construction of the models, since it is easier to deal with the
nondegenerate space-time symmetry.

2. Semi-Simple Tensor Extension

Let us extend the Poincaré algebra (1.1) in theD dimensions bymeans of the tensor generator
Zab in the following way:

[Mab,Mcd] =
(
gadMbc + gbcMad

) − (c ↔ d),

[Mab, Pc] = gbcPa − gacPb,

[Pa, Pb] = cZab,

[Mab,Zcd] =
(
gadZbc + gbcZad

) − (c ↔ d),

[Zab, Pc] =
4a2

c

(
gbcPa − gacPb

)
,

[Zab, Zcd] =
4a2

c

[(
gadZbc + gbcZad

) − (c ↔ d)
]
,

(2.1)

where a and c are some constants. This Lie algebra, when the quantities Pa and Zab are taken
as the generators of a homomorphism kernel, is homomorphic to the usual Lorentz algebra. It
is remarkable that the Lie algebra (2.1) is semi-simple in contrast to the Poincaré algebra (1.1)
and extended Poincaré algebra (1.2).

The extended Lie algebra (2.1) has the following quadratic Casimir operators:

C1 = PaPa + cZabMba + 2a2MabMab
def= XkH

kl
1 Xl, (2.2)

C2 = c2ZabZab + 8a2
(
cZabMba + 2a2MabMab

)
def= XkH

kl
2 Xl, (2.3)

C3 = εabcd
[
c2ZabZcd + 8a2

(
cZbaMcd + 2a2MabMcd

)]
. (2.4)
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Note that in the limit a → 0 the algebra (2.1) tends to the algebra (1.2) and the
quadratic Casimir operators (2.2), (2.3), and (2.4) are turned into (1.4), (1.5), and (1.6),
respectively.

The symmetric tensor

Hkl = sHkl
1 + tHkl

2 = Hlk (2.5)

with arbitrary constants s and t is invariant with respect to the adjoint representation

Hkl = HmnUm
kUn

l. (2.6)

Conversely, if we demand the invariance with respect to the adjoint representation of
the second rank contravariant symmetric tensor, then we come to the structure (2.5) (see also
the relation (32) in [6]).

The semi-simple algebra (2.1)

[Xk,Xl] = fkl
mXm (2.7)

has the nondegenerate Cartan-Killing metric tensor

gkl = fkm
nfln

m, (2.8)

which is invariant with respect to the coadjoint representation

gkl = Uk
mUl

ngmn. (2.9)

With the help of the inverse metric tensor gkl: gklglm = δk
m we can construct the quadratic

Casimir operator which, as it turned out, has the following expression in terms of the
quadratic Casimir operators (2.2) and (2.3):

Xkg
klXl =

1
8a2(D − 1)

[
C1 +

3 − 2D
8a2(D − 2)

C2

]
, (2.10)

that corresponds to the particular choice of the constants s and t in (2.5).
The extended Poincaré algebra (2.1) can be rewritten in the form

[Nab,Ncd] =
(
gadNbc + gbcNad

) − (c ↔ d), (2.11)

[LAB, LCD] =
(
gADLBC + gBCLAD

) − (C ↔ D), (2.12)

[Nab, LCD] = 0, (2.13)

where the metric tensor gAB has the following nonzero components:

gAB =
{
gab, gD+1D+1 = −1}. (2.14)
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The generators

Nab = Mab − c

4a2
Zab (2.15)

form the Lorentz algebra so(D − 1, 1), and the generators

LAB =
{
Lab =

c

4a2
Zab, LaD+1 = −LD+1a =

1
2a

Pa, LD+1D+1 = 0
}

(2.16)

form the algebra so(D − 1, 2)( Note that in the case D = 4 we obtain the anti-de Sitter algebra
so(3, 2).) . The algebra (2.11)–(2.13) is a direct sum so(D − 1, 1) ⊕ so(D − 1, 2) of the D-
dimensional Lorentz algebra and D-dimensional anti-de Sitter algebra, correspondingly.

The quadratic Casimir operators NabN
ab, LABL

AB, and εabcdNabNcd of the algebra
(2.11)–(2.13) are expressed in terms of the operators C1 (2.2), C2 (2.3), and C3 (2.4) in the
following way:

NabN
ab − LABL

AB =
1
2a2

C1, (2.17)

NabN
ab =

1
16a4

C2, (2.18)

εabcdNabNcd =
1

16a4
C3. (2.19)

3. Supersymmetric Generalization

In the case D = 4 dimensions the extended Poincaré algebra (2.1) admits the following
supersymmetric generalization:

{Qκ,Qλ} = −d
[
2a
c
(γaC)κλPa + (σabC)κλZab

]
,

[Mab,Qκ] = −(σabQ)κ,

[Pa,Qκ] = a
(
γaQ)κ,

[Zab,Qκ] = −4a
2

c

(
σabQ)κ,

(3.1)

where Qκ are the supertranslation generators.
Under such a generalization the Casimir operator (2.2) is modified by adding a term

quadratic in the supertranslation generators

C̃1 = PaPa + cZabMba + 2a2MabMab − c

2d
Qκ(C−1)

κλ
Qλ

def
= XKH

KL
1 XL, (3.2)
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whereas the form of the rest quadratic Casimir operators (2.3) and (2.4) is not changed. In
(3.2) XK = {Pa, Zab,Mab,Qκ} is a set of the generators for also the semi-simple extended
superalgebra (2.1), (3.1).

The tensor

HKL = vHKL
1 +wHKL

2 = (−1)pKpL+pK+pLHLK (3.3)

is invariant with respect to the adjoint representation

HKL = (−1)
(
pK+pM

)(
pL+1)HMNUN

LUM
K, (3.4)

where pK = p(K) is a Grassmann parity of the quantity K. In (3.4) v and w are arbitrary
constants and nonzero elements of the matrix HKL

2 equal to the elements of the matrix
Hkl

2 followed from (2.3). Again, by demanding the invariance with respect to the adjoint
representation of the second rank contravariant tensorHKL = (−1)pKpL+pK+pLHLK, we come to
the structure (3.4) (see also the relation (32) in [6]).

The semi-simple Lie superalgebra (2.1) (3.1) has the nondegenerate Cartan-Killing
metric tensor GKL (see the relation (A.6) in the Appendix A) which is invariant with respect
to the coadjoint representation

GKL = (−1)pK
(
pL+pN

)
UL

NUK
MGMN. (3.5)

With the use of the inverse metric tensor GKL,

GKLGLM = δK
M, (3.6)

we can construct the quadratic Casimir operator (see the relation (A.11) in the
Appendix A) which takes the following expression in terms of the Casimir operators (2.3)
and (3.2):

XKG
KLXL =

1
20a2

(
C̃1 − 9

32a2
C2

)
, (3.7)

that meets the particular choice of the constants v and w in (3.4).
In theD = 4 case the extended superalgebra (2.1), (3.1) can be rewritten in the form of

the relations (2.11)–(2.13) and the following ones:

{Qκ,Qλ} = −4a
2d

c
(ΣABC)κλLAB, (3.8)

[LAB,Qκ] = −(ΣABQ)κ, (3.9)

[Nab,Qκ] = 0, (3.10)
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where

ΣAB =
1
4
[ΓA,ΓB], ΓA =

{
γaγ5, γ5

}
,

{
γa, γb

}
= 2gab, gab = diag(−1, 1, 1, 1),

γ5 = γ0γ1γ2γ3.

(3.11)

The generators Nab (2.15) form the Lorentz algebra so(3, 1) and the generators LAB

(2.16),Qκ form the orthosymplectic algebra osp(1, 4). We see that superalgebra (2.11)–(2.13),
(3.8)–(3.10) is a direct sum so(3, 1) ⊕ osp(1, 4) of the 4-dimensional Lorentz algebra and 4-
dimensional super-AdS algebra, respectively.

In this case the Casimir operator (2.17) is modified by adding a term quadratic in the
supertranslation generators

NabN
ab − LABL

AB − c

4a2d
Qκ(C−1)

κλ
Qλ =

1
2a2

C̃1, (3.12)

while the form of the quadratic Casimir operators (2.18) and (2.19) is not changed.

4. Conclusion

Thus, we proposed the semi-simple second rank tensor extension of the Poincaré algebra in
the arbitrary dimensions D and super-Poincaré algebra in the D = 4 dimensions. It is very
important, since under construction of the models, it is more convenient to deal with the
nondegenerate space-time symmetry. We also constructed the quadratic Casimir operators
for the semi-simple extended Poincaré and super Poincaré algebra.

It is interesting to develop the models based on these extended algebra. The work in
this direction is in progress.

Appendix

A. Properties of Lie Superalgerbra

Permutation relations for the generators XK of Lie superalgebra are

[XK,XL} def= XKXL − (−1)pKpLXLXK = fKL
MXM. (A.1)

Structure constants fKL
M have the Grassmann parity

p
(
fKL

M
)
= pK + pL + pM = 0 (mod2), (A.2)

following symmetry property:

fKL
M = −(−1)pKpLfLK

M (A.3)
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and obey the Jacobi identities

∑

(KLM)

(−1)pKpMfKN
PfLM

N = 0, (A.4)

where the symbol (KLM) means a cyclic permutation of the quantities K, L, and M. In the
relations (A.1)–(A.4) every index K takes either a Grassmann-even value k(pk = 0) or a
Grassmann-odd one κ(pκ = 1). The relations (A.1) have the following components:

[Xk,Xl] = fkl
mXm,

{Xκ,Xλ} = fκλ
mXm,

[Xk,Xλ] = fkλ
μXμ.

(A.5)

The Lie superalgebra possesses the Cartan-Killing metric tensor

GKL = (−1)pNfKM
NfLN

M = (−1)pKpLGLK = (−1)pKGLK = (−1)pLGLK, (A.6)

which components are

Gkl = fkm
nfln

m − fkμ
νflν

μ,

Gκλ = fκμ
mfλm

μ − fκm
μfλμ

m,

Gkλ = 0.

(A.7)

As a consequence of the relations (A.3) and (A.4) the tensor with low indices

fKLM = fKL
NGNM (A.8)

has the following symmetry properties:

fKLM = −(−1)pKpLfLKM = −(−1)pKpMfKML. (A.9)

For a semi-simple Lie superalgebra the Cartan-Killing metric tensor is nondegenerate
and therefore there exists an inverse tensor GKL,

GKLG
LM = δM

K . (A.10)

In this case, as a result of the symmetry properties (A.9), the quantity

XKG
KLXL (A.11)

is a Casimir operator

[
XKG

KLXL, XM

]
= 0. (A.12)
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