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Confinement in QCD results from special properties of vacuum fluctuations of gluon fields. There
are two numerically different scales, characterizing nonperturbative QCD vacuum dynamics:
“small” one, corresponding to gluon condensate, critical temperature etc, which is about 0.1–
0.3 GeV, and a “large” one, given by inverse confining string width, glueball and gluelump masses,
and so forth, which is about 1.5–2.5 GeV. We discuss the origin of this hierarchy in a picture
where confinement is ensured by quadratic colorelectric field correlators of the special type. These
correlators, on the other hand, can be calculated via gluelump Green’s function, whose dynamics
is defined by the correlators themselves. In this way one obtains a self-consistent scheme, where
string tension can be expressed in terms of ΛQCD.
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1. Introduction

Confinement of color is the most important property of quantum chromodynamics (QCD),
ensuring stability of matter in the Universe. Attempts to understand physical mechanism of
confinement are incessant since advent of constituent quark model and QCD; for reviews, see,
for example, [1–4]. Among many suggestions, one can distinguish three major approaches as
follows.

(i) Confinement is due to classical field lumps like instantons or dyons.

(ii) Confinement can be understood as a kind of Abelian-like phenomenon, for
example, according to seminal suggestion by Hooft [5] and Mandelstam [6] of dual
Meissner scenario.

(iii) Confinement results from properties of quantum stochastic ensemble of nonpertur-
bative (np) fields filling QCD vacuum.
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The first approach has a body of successful phenomenology; see review in [7].
On the other hand, as is well known, instanton gas model lacks confinement. As for the
second approach, it has gained much popularity in the lattice community, and studies
of various projected objects such as Abelian monopoles and center vortices are going
on (see, e.g., [8, 9]). It is worth mentioning that despite tremendous recent progress in
lattice calculations, the problem of identifying correct gauge-invariant picture of the QCD
vacuum is extremely difficult on the lattice as well as in the continuum. For example, the
results of [10, 11]—lowering deconfinement critical temperature with rising magnitude of
external Abelian chromomagnetic (not chromoelectric!) field—are not easily incorporated
to the conventional dual superconductor picture with space-time independent monopole
condensate and presumably suggest the formation of nontrivial inhomogeneous condensates.
It seems to be correct to conclude that the exact pattern of the Abelian confinement scenario
is not yet fixed.

The development of the third approach in a systematic way started in 1987 [12–15]
(see, e.g., [16] as example of earlier investigations concerning stochasticity of QCD vacuum).
The nontrivial structure of np vacuum can be described by a set of nonlocal gauge-invariant
field strength correlators (FCs). The discussion presented below is in the framework of this
scenario.

QCD sum rules [17–19] were suggested as an independent approach to npQCD
dynamics, not addressing directly confinement mechanism. The key role is played by gluon
condensate G2, which is defined as np average of the following type:

G2 =
αs
π

〈
Faμν(0)F

a
μν(0)

〉
. (1.1)

In the sum rule framework, it is a universal quantity characterizing QCD vacuum as it
is, while it enters power expansion of current-current correlators with channel-dependent
coefficients. This is the cornerstone of QCD sum rules ideology.

It is worth stressing from the very beginning thatG2 and other condensates are usually
considered as finite physical quantities. Naively in perturbation theory, one would get G2 ∼
a−4, where a is a space-time ultraviolet cutoff (e.g., lattice spacing). It is always assumed that
this “hard” contribution is somehow subtracted from (1.1) and the remaining finite quantity
results from “soft” np fields, in some analogy with Casimir effect where modification of the
vacuum by boundaries of typical size L yields nonzero shift of energy-momentum tensor by
the amount of order L−4. In QCD, the role of L is played by dynamical scale Λ−1

QCD.
The idea of np gluon condensate has proved to be very fruitful. However the relation of

G2 to confinement is rather tricky. Let us stress that since there can be no local gauge-invariant
order parameter for confinement-deconfinement transition, G2 is not an order parameter,
and, in particular, neither perturbative nor np contributions to this quantity vanish in either
phase. (Let us repeat that following [17, 18], we define G2 in (1.1) as purely np object.) On
the other hand, one can show (see details in [3]) that the scale of deconfinement temperature
is set by the condensate, or, more precisely, by its electric part: Tc ∼ G1/4

2 . Let us remind
the original estimate for the condensate [17, 18] given by G2 = 0.012 GeV4, with large
uncertainties. One clearly sees some tension between this “small” scale and a “large” mass
scale in QCD given by, for example, the mass of the lightest 0++ glueball, which is about
1.5 GeV.

The existence of two numerically different np scales in strong interaction physics is
a common feature one encounters in many models. As an early example, let us mention
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seminal discussion [20] concerning the difference between confinement scale and chiral
symmetry breaking scale. Another example is given by instanton model [21] where the mean
instanton size (taken to be about 0.3 Fm) is assumed to be smaller than mean instanton
radius (about 1 Fm) and this fact is nothing but the “diluteness” of the instanton gas in this
model. Dual superconductor picture [8, 9] provides more recent example of this sort: for
the QCD vacuum understood as the so-called type-II superconductor, the mass of diagonal
field—the “photon” (inverse London penetration depth)—is parametrically larger than the
effective Higgs mass. Correspondingly the nonabelian electric field penetrates the vacuum
forming Abrikosov fluxes (in dual analogy with the magnetic fields in conventional metal
superconductors).

Of immediate interest are recent lattice studies of relevant nonperturbative scales
[22]. The authors project each lattice link variable to specific zone in the momentum space
bound by some infrared and ultraviolet cuts—the momentum ring—and study dependence
of various nonperturbative quantities of physical interest on the location and width of this
ring. This analysis demonstrates numerically that the relevant scales are indeed different for
different quantities. It is far from obvious, however, what gauge-invariant statements based
on these results can be made (since the approach is gauge dependent).

The connections between these models and the approach discussed here were studied
in many papers (see reviews in [12–15] and references therein). For example, direct analogy
between λ and effective instanton size was analyzed in [23]. The relation between dual
superconductor picture and field correlator method was studied in details in [24, 25]. Notice
that in both cases the main advantage of field correlator method is its manifest gauge
invariance.

The phenomenon of this hierarchy of scales is of prime importance for the stochastic
scenario. It was suggested in [12–15]; see also, [26–28] that qualitative physical explanation
is the following: QCD vacuum is filled by short-distance correlated nonperturbative gluon fields.
In other words, besides gluon condensate G2, there is another important dimensionfull
parameter characterizing np dynamics of vacuum fields: correlation length λ (also denoted
as Tg in some papers). The gauge-invariant dimensionless product (G2λ

4)1/2 is about a few
percents (see below). This leads to numerous consequences, some of which are discussed in
the rest of this paper.

An immediate question to ask is about the origin of this smallness. To answer it is one
of the goals of the present paper. The key observation is the following: correlation length λ is
nothing but inverse mass of certain gluelump. Gluelumps (for details, we refer the reader to
[29, 30]) are rather unusual objects from perturbative field theory point of view. In some sense
they are analogous to heavy-light mesons. The latter can be approximated as a bound state
of fundamental color charge (light quark) in the static field of fundamental color anticharge
(heavy antiquark). In the limit of heavy mass M going to infinity, the difference between
the meson mass and M stays constant and the object as a whole is of course color singlet.
Analogously, gluelump is a singlet bound state of adjoint color charge “valent gluons” in the
static field of “infinitely heavy” adjoint color source. Roughly speaking, gluelump is what
replaces gluon propagator in gauge-invariant formulation of the theory. Of course there are
no elementary heavy particles with adjoint charge in QCD, and in this sense, gluelump cannot
be “detected” as a real particle. Nevertheless, gluelumps happen to be very useful objects in
discussions of the most fundamental properties of confining QCD vacuum (see more on that
below).

Let us illustrate the appearance of numerical hierarchy of the kind we are discussing
on a simple phenomenological example. Consider leading the following ρ-meson Regge
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trajectory:

J = α′JM
2(J) + 0.48, α′J = 0.89 GeV−2. (1.2)

This corresponds to the product

σα′J =
1

2π
= 0.16, (1.3)

where σ = 0.18 GeV2 is the confining string tension. One can say that the mass squared is
a factor “2π” larger than string tension. On the other hand, in stochastic picture one has,
parametrically, σ ∝ λ2G2. Here the smallness of string tension is controlled by two powers of
λ. Thus to get self-consistent picture with the desired hierarchy, roughly speaking, one is to
make manifest this “1/2π” factor in λ2. This is the essence of the phenomenon discussed in
the present paper.

Let us come back to the stochastic picture. Its crucial feature found in [31–33] is that
the lowest, quadratic, nonlocal FC, 〈Fμν(x)Fλσ(y)〉, describes all np dynamics with very good
accuracy. It was also shown that a simple exponential form of quadratic correlators found
on the lattice [34–38] allows to calculate all properties of lowest mesons, glueballs, hybrids,
and baryons, including Regge trajectories, lepton widths, etc.; see reviews in [2, 27, 28] and
references therein. Since the correlation length λ entering these exponents is small, potential
relativistic quantum-mechanical picture is applicable and all QCD spectrum is defined mostly
by string tension σ (which is an integral characteristic of the nonlocal correlator; see below)
and not by its exact profile. This is discussed in details in the next section.

However to establish the confinement mechanism unambiguously, one should be able
to calculate vacuum field distributions, that is, field correlators, self-consistently. In the long
run, it means that one is to demonstrate that it is essential property of QCD vacuum fields
ensemble to be characterized by correlators, which support confinement for temperatures T
below some critical value Tc and deconfinement at T > Tc.

Attempts to achieve this goal have been undertaken in [39, 40]; however, the resulting
chain of equations is too complicated to use in practice.

Another step in this direction is done in [41], where FCs are calculated via gluelump
Green’s functions and self-consistency of this procedure was demonstrated for the first time.
These results were further studied and confirmed in [42].

The main aim of this paper is to present this set of equations as a self-consistent
mechanism of confinement and to clarify qualitative details of the FC-gluelump connection.
In particular we demonstrate how the equivalence of color-magnetic and colorelectric FCs for
T = 0 ensures the Gromes relation [43, 44]. We also show, that self-consistency condition for
FC as gluelump Green’s function allows to connect the mass scale to αs, and in this way, to
express ΛQCD via string tension σ.

Lattice computations play important role as a source of independent knowledge
about vacuum field distributions. Recently a consistency check of this picture was done
on the lattice [45] by measurement of spin-dependent potentials. The resulting FCs are
calculated and compared with gluelump predictions in [46] demonstrating good agreement
with analytic results; in particular small vacuum correlation length λ ∼ 0.1 Fm is shown to
correspond to large gluelump mass M0 ≈ 2 GeV.



Advances in High Energy Physics 5

The paper is organized as follows. In the next section, we remind the basic expressions
for Green’s functions of qq and gg systems in terms of Wegner-Wilson loops, and qualitative
picture of FCs dynamics is discussed. Section 3 is devoted to the expressions of spin-
dependent potentials in terms of FC. We also shortly discuss the lattice computations of FC.
In Section 4 FC are expressed in terms of gluelump Green’s functions, while in Section 5 the
self-consistency of resulting relations is studied. Our conclusions are presented in Section 6.

2. Wegner-Wilson Loop, Field Correlators, and Green’s Functions

Since our aim is to study confinement for quarks (both light and heavy) and also for massless
gluons, we start with the most general Green’s functions for these objects in a proper physical
background using Fock-Feynman-Schwinger representation. The formalism is built in such a
way that gauge invariance is manifest at all steps. A reader familiar with this technique can
skip this section and go directly to Section 3.

First, we consider the case of mesons made of quarks while gluon bound states are
discussed below. For quarks, one forms the initial and final state operators

Ψin,out
(
x, y
)
= ψ†(x)Γin,outΦ

(
x, y
)
ψ
(
y
)
, (2.1)

where ψ†, ψ are quark operators, Γ is a product of Dirac matrices, that is, 1, γμ, γ5, (γμγ5), . . . ,
and Φ(x, y) = P exp(ig

∫x
yAμdzμ) is parallel transporter (also known as Schwinger line or

phase factor). The meson Green’s function can be written (in quenched case) as

Gqq

(
x, y | x′, y′) = 〈Ψ+

out
(
x′, y′)Ψin(x, y)

〉
A,q

=
〈
Γ†Φ
(
x′, y′)Sq

(
y′, y
)
ΓΦ
(
y, x
)
Sq
(
x, x′)〉

A
,

(2.2)

and the quark Green’s function Sq is given in Euclidean space time (see [47, 48] and references
therein) as

Sq
(
x, y
)
=
(
m + D̂

)−1
=
(
m − D̂

)∫∞

0
ds(Dz)xy exp(−K)PA exp

(
ig

∫x
y

Aμdzμ

)
Pσ
(
x, y, s

)
,

(2.3)

where K is kinetic energy term as

K = m2s +
1
4

∫s
0
dτ

(
dzμ(τ)
dτ

)2

, (2.4)

where m is the pole mass of quark, and quark trajectories zμ(τ) with the end points x and y
are being integrated over in (Dz)xy.
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The factor Pσ(x, y, s) in (2.3) is generated by the quark spin (color-magnetic moment)
and is equal to

Pσ
(
x, y, s

)
= PF exp

[
g

∫ s
0
σμνFμν(z(τ))dτ

]
, (2.5)

where σμν = (1/4i)(γμγν − γνγμ), and PF(PA) in (2.5) and (2.3) are, respectively, ordering
operators of matrices Fμν(Aμ) along the path zμ(τ).

With (2.2) and (2.3), one easily gets

Gqq

(
x, y;A

)
=
∫∞

0
ds

∫∞

0
ds′(Dz)xy

(
Dz′
)
xye

−K−K′
Tr
(
Γ
(
m − D̂

)
Wσ

(
x, y
)
Γ†
(
m′ − D̂′

))
, (2.6)

where Tr means trace operation both in Dirac and color indices, while

Wσ

(
x, y
)
= PA exp

(
ig

∫

C(x,y)
Aμdzμ

)
Pσ
(
x, y, s

)
P ′
σ

(
x, y, s′

)
. (2.7)

In (2.7) the closed contour C(x, y) is formed by the trajectories of quark zμ(τ) and antiquark
z′ν(τ

′), and the ordering PA and PF in Pσ , P ′
σ is universal, that is, Wσ(x, y) is the Wegner-

Wilson loop (W-loop) for spinor particle.
The factors (m−D̂) and (m′−D̂′) in (2.6) need a special treatment when being averaged

over fields. As shown in Appendix 1 of [49], one can use the simple replacement

m − D̂ −→ m − ip̂, pμ =
1
2

(
dzμ

dτ

)

τ=s

. (2.8)

The representation (2.6) is exact in the limit Nc → ∞, when internal quark loops can
be neglected, and is a functional of gluonic fields Aμ, Fμν, which contains both perturbative
and np contributions, not specified at this level.

The next step is averaging over gluon fields, which yields the physical Green’s function
Gqq:

Gqq

(
x, y
)
=
〈
Gqq(x, y;A)

〉
A
. (2.9)

The averaging is done with the usual Euclidean weight exp(−Action/�), containing all
necessary gauge-fixing and ghost terms.

To proceed, it is convenient to use nonabelian Stokes theorem (see [2] for references
and discussion) for the first factor on the r.h.s. in (2.7) (corresponding to the W-loop for scalar
particle) and to rewrite it as an integral over the surface S spanned by the contourC = C(x, y):

〈W(C)〉 =
〈

TrP exp
(
ig

∫

C

Aμ(z)dzμ
)〉

=
〈

TrP exp
(
ig

∫

S

F(u)ds(u)
)〉

= TrPx exp
∞∑
n=2

(
ig
)n∫

S

〈〈F(u1) · · ·F(un)〉〉ds1 · · ·dsn = exp
∞∑
n=2

Δ(n)[S].

(2.10)
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Here F(ui)dsi = Φ(x0, ui)Faμν(ui)t
aΦ(ui, x0)dsμν(ui), and ui, x0 are the points on the surface

S bound by the contour C = ∂S. The double brackets 〈〈· · · 〉〉 stay for irreducible correlators
proportional to the unit matrix in the color space (and therefore, only spacial ordering Px

enters (2.10)). Since (2.10) is gauge-invariant, one can make use of generalized contour gauge
[50–52], which is defined by the condition Φ(x0, ui) ≡ 1. Notice that throughout the paper we
normalize trace over color indices as Tr 1 = 1 in any given representation.

Since (2.10) is an identity, the r.h.s. does not depend on the choice of the surface, which
is integrated over in dsμν(u). On the other hand, it is clear that each irreducible n-point
correlator 〈〈F · · ·F〉〉 integrated over S (these are the functions Δ(n)[S] in (2.10)) depends,
in general case, on the choice one has made for S. Therefore it is natural to ask the following
question: is there any hierarchy of Δ(n)[S] as functions of n for a given surface S?

To get the physical idea behind this question, let us take the limit of small contour C.
In this case one has for the np part of the W-loop in fundamental representation the following:

− log 〈W(C)〉np ∼ G2 · S2, (2.11)

where S is the minimal area inside the loop C. The np short-distance dynamics is governed
by the vacuum gluon condensate G2; see (1.1). Higher condensates and other possible
vacuum averages of local operators, in line with Wilson expansion, have been introduced
and phenomenologically estimated in [19]; for a review see [53].

Suppose now that the size of W-loop is not small, that is, it is larger than some typical
dynamical scale λ = O(1 GeV) to be specified below. Let us now ask the following question:
if one still wants to expand the loop formally in terms of local condensates, what would the
structure of such expansion be? It is easy to see from (2.10) that there are two subseries in
this expansion. The first one is just an expansion in n, that is, in the number of field strength
operators. It is just

〈W(C)〉 = 1 + Δ(2)[S] + Δ(3)[S] +
1
2

(
Δ(2)[S]

)2
+ · · · . (2.12)

The second series is an expansion of each Δ(n)[S] in terms of local condensates, that is,
expansion in powers of derivatives. Taking for simplicity the lowest n = 2 term, this
expansion reads

Δ(2)[S] =
∫

S

dsx

∫

S

dsy
〈〈
F(x)F

(
y
)〉〉

=
∫

S

dsx

∫

S

dsy
[
〈〈F(x)F(x)〉〉 + (x − y)μ

〈〈
F(x)DμF(x)

〉〉

+
(
x − y)μ

(
x − y)ν

〈〈
F(x)DνDμF(x)

〉〉
/2 + · · ·

]
.

(2.13)

It is worth mentioning (but usually skipped in QCD sum rules analysis) that the
latter series contain ambiguity related to the choice of contours in parallel transporters. The
expression (2.13) is written for the simplest choice of straight contour connecting the points x
and y (and not x and x0 or y and x0). This is the choice we adopt in what follows. In general
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case each condensate in (2.13) is multiplied by some contour-dependent function of x, y, and
x0. It is legitimate to ask whether this approximation, that is, replacement of

〈
TrΦ(x0, x)Fμν(x)Φ(x, x0)Φ

(
x0, y

)
Fρσ
(
y
)
Φ
(
y, x0

)〉
(2.14)

by

〈
TrFμν(x)Φ

(
x, y
)
Fρσ
(
y
)
Φ
(
y, x
)〉

(2.15)

affects our final results. Since the only difference between the above two expressions is
profiles of the transporters, this is the question about contour dependence of FCs. We will
not discuss this question in details in the present paper and refer an interested reader to [12–
15]. Here we only mention that the result (weak dependence on transporters’ choice) is very
natural in Abelian dominance picture since for Abelian fields the transporters exactly cancel.

Let us stress that both expansions (2.12) and (2.13) are formal since the loop is assumed
to be large. Moreover, from dimensional point of view, the terms of these two expansions mix
with each other. For example, one has nonzero v.e.v. of two operators of dimension eight:

Δ(2)[S] −→
〈
FμνD

4Fμν
〉
, Δ(3)[S] −→

〈
FμσFνσD

2Fμν
〉
, (2.16)

with no a priori reason (one could have such reasons if there is some special kinematics in
the problem, but this is not the case.) to drop any of them. Moreover, even if one assumes
that all these condensates of high orders can be self-consistently defined analogously to G2, it
remains to be seen whether the whole series converges or not.

Here the physical picture behind FC method comes into play. It is assumed (and
confirmed a posteriori in several independent ways) that if the surface S is chosen as the
minimal one, the dominant contribution to (2.10) results from v.e.v.s of the operators FDkF,
and this subseries can be summed up as (2.13). In this language, nonlocal two-point FC can
be understood as a representation for the sum of infinite sequence of local terms (2.13).

Physically the dominance of 〈FDnF〉 terms (and hence, of two-point FC) corresponds
to the fact that the correlation length is small yielding a small expansion parameter ξ =
Fλ2 � 1 (F is average modulus of np vacuum fields), or, in other words, that typical inverse
correlation length λ−1 characterizing ensemble of QCD vacuum fields is parametrically larger
than fields themselves. The dimensionless parameter ξ in terms of condensate is given by
(G2λ

4)1/2, and it is indeed small: of the order of 0.05 according to lattice estimates. One can
say that often repeated statement “QCD vacuum is filled by strong and strongly fluctuating
chromoelectric and chromomagnetic fields” is only partly correct, namely, in reality the fields
are not so strong as those of λ−1. Technically one can say that we sum up the leading subseries
in (2.10) in the same spirit as one does in covariant perturbation theory [54] for weak but
strongly varying potentials.

Thus, for understanding of confining properties of QCD vacuum dynamics, not only
scale of np fields given by G2 but also another quantity—the vacuum correlation length
λ— which defines the nonlocality of gluonic excitations is important. It is worth repeating
here that physically λ encodes information about properties of the series (2.13) and has the
same theoretical status as that of the corresponding np condensates in the following sense:
knowledge of all terms in (2.13) would allow to reconstruct λ. Of course, it is impossible in
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practice and one has to use other methods to study large distance asymptotics of FC. On
more phenomenologic level, it was discussed in [55–59], while rigorous definition was given
in the framework of the FC method (often referred to as Stochastic Vacuum Model.) (see
[12–15, 26, 60] for reviews).

It is important to find also the world-line representation for gluon Green’s function,
which is done in the framework of background perturbation theory (see [61–65] for details).
In this way one finds (where a, b are adjoint color indices and dash sign denotes adjoint
representation) that

Gab
μν

(
x, y
)
=

{∫∞

0
ds(Dz)xye

−KPa exp

(
ig

∫x
y

Âμdzμ

)
PΣ
(
x, y, s

)}ab

μν

, (2.17)

where

PΣ
(
x, y, s

)
= PF exp

(
2ig
∫s

0
F̂λσ(z(τ))dτ

)
. (2.18)

All the above reasoning about asymptotic expansions of the corresponding W-loops is valid
here as well.

Thus the central role in the discussed method is played by quadratic (Gaussian) FC of
the form

Dμν,λσ ≡ g2〈TrFμν(x)Φ
(
x, y
)
Fλσ
(
y
)
Φ
(
y, x
)〉
, (2.19)

where Fμν is the field strength and Φ(x, y) is the parallel transporter. Correlation lengths λi for
different channels are defined in terms of asymptotics of (2.19) at large distances: exp(−|x −
y|/λi). The physical role of λi is very important since it distinguishes two regimes: one expects
validity of potential-type approach describing the structure of hadrons of spatial size R and
at temporal scale Tq for λi � R, Tq, while in the opposite case, when λi � R, Tq the description
in terms of spatially homogeneous condensates can be applied.

At zero temperature, the O(4) invariance of Euclidean space-time holds and FC (2.19)
is represented through two scalar functions D(z), D1(z) (where z ≡ x − y) as follows(all
treatment in this paper as well as averaging over vacuum fields is done in the Euclidean
space. Notice that only after all Green’s functions are computed, analytic continuation to
Minkowskii space-time can be accomplished) :

Dμν,λσ(z) =
(
δμλδνσ − δμσδνλ

)
D(z) +

1
2

[
∂

∂zμ
(zλδνσ − zσδνλ) + ∂

∂zν

(
zσδμλ − zλδμσ

)]
D1(z).

(2.20)

One has to distinguish from the very beginning perturbative and np parts of the
correlators D(z), D1(z). Beginning with the former, one easily finds at tree level that

Dp,0(z) = 0, D
p,0
1 (z) = C2

(
f
)4αs
π

1
z4
, (2.21)
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where C2(f) is fundamental Casimir C2(f) = (N2
c − 1)/2Nc. At higher orders, situation

becomes more complicated. Namely, one has at n-loop order

Dp,n(z) = Dp,0
1 (z) ·G(n)(z), D

p,n

1 (z) = Dp,0
1 (z) ·G(n)

1 (z), (2.22)

where the gauge-invariant functions G(n)(z), G(n)
1 (z) have the following general structure:

G(n)(z), G(n)
1 (z) ∼ αns

[
cn
(
logμz

)n + · · · ], (2.23)

where cn is numerical coefficient and μ is renormalization scale, and we have omitted
subleading logarithms and constant terms in the r.h.s.; explicit expressions for the case n = 1
can be found in [66, 67].

Naively one could take perturbative functions Dp,n(z), Dp,n

1 (z) written above and
use them for computations of W-loop or static potentials in Gaussian approximation. This,
however, would be incorrect. The reason is that at any given order in perturbation expansion
over αs one should take into account perturbative terms of the given orders coming from all
FCs, and not only from the Gaussian one. For example, at one loop level, the function Dp,1(z)
is nonzero which naively would correspond to area law at perturbative level. Certainly this
cannot be the case since self-consistent renormalization program for W-loops is known not to
admit any terms of this sort [68, 69]. Technically in FC language, the correct result is restored
by cancelation of contributions proportional toDp,1(z) to all observables by the terms coming
from triple FC (see details in [70]).

In view of this general property of cluster expansion, it is more natural just to take
relation Dp,n(z) ≡ 0 as valid at arbitrary n, having in mind that proper number of terms from
(2.12) has to be included to get this result. Thus we assume that the following decomposition
takes place:

D(z) = Dnp(z), D1(z) = D
p

1(z) +D
np

1 (z), (2.24)

and D(z) has a smooth limit when z → 0. As for D1(z), its general asymptotic at z → 0
reads as

D1(z) =
c

z4
+
a2

z2
+O
(
z0
)
, (2.25)

where c and a2 weakly (logarithmically) depend on z. Notice that by D1(0), we always
understand np “condensate” part in what follows:

G2 =
6Nc

π2

(
Dnp(0) +Dnp

1 (0)
)
. (2.26)

The term 1/z2 deserves special consideration. One may argue that at large distances
the simple additivity of perturbative and np contributions to VQQ potential is violated [71].
It is interesting whether this additivity holds at small, distances and, in particular, mixed
condensate a2 was suggested in [72] and argued to be phenomenologically desirable.
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As we demonstrate below, our approach is self-consistent with a2 = 0, that is,
when perturbative-np additivity holds at small distances and there is no dimension-two
condensate. However, at intermediate distances, a complicated interrelation occurs, which
does not exclude (2.25) being relevant in this regime.

We proceed with general analysis of (2.19). As proved in [12–15], D(z), D1(z) do not
depend on relative orientation of plane (μν), plane (λσ), and vector zα. This orientation can
be of the following 3 types: (a) planes (μν) and (λσ) are perpendicular to the vector zα; (b)
planes (μν) and (λσ) are parallel or intersecting along one direction and zα lies in one of
planes; (c) planes (μν) and (λσ) are perpendicular and zα lies necessarily in one of them.

It is easy to understand that this classification is O(4) invariant, and therefore, one can
assign indices a, b, c to Dμν,λσ , resulting in general case in three different functions. Physically
speaking, case (a) refers to, for example, color magnetic fields Fik, Flm with zα in the 4th
direction, and the corresponding FCs will be denoted asD⊥(z). Case (b) refers to, for example,
the color electric fields Ei(x), Ek(y), connected by the same temporal links along 4th axis, and
the corresponding FCs are denoted asD‖(z). Finally, in case (c) onlyD1 part survives in (2.20)
and it will be given by the subscript EH, DEH

1 .
In case of zero temperature, when O(4) invariance holds, these three functions D⊥(z),

D‖(z), and DEH
1 (z) are easily expressed via D(z), D1(z) :

D⊥(z) = D(z) +D1(z),

D‖(z) = D(z) +D1(z) + z2 ∂D1(z)
∂z2

,

DEH
1 (z) ≡ D1(z)

(2.27)

(note that just D⊥, D‖ were measured on the lattice in [34–38]). For nonzero temperature, the
correlators of color-electric and color-magnetic fields can be different and in general there are
five FCs: DE(z), DE

1 (z), D
H(z), DH

1 (z), and DEH
1 (z). As a result, one obtains the full set of

five independent quadratic FCs which can be defined as follows:

g2〈TrHi(x)ΦHj

(
y
)
Φ+〉 = δij

(
DH(z) +DH

1 (z) + z2 ∂D
H
1

∂z2

)
− zizj

∂DH
1

∂z2
,

g2〈TrEi(x)ΦEj
(
y
)
Φ+〉 = δij

(
DE(z) +DE

1 (z) + z
2
4

∂DE
1

∂z2

)
+ zizj

∂DE
1

∂z2
,

g2〈TrHi(x)ΦEj
(
y
)
Φ+〉 = eijkzkz4

∂DEH
1

∂z2
.

(2.28)

It is interesting that the structure (2.28) survives for nonzero temperature, where O(4)
invariance is violated: it tells that (2.28) give the most general form of the FCs. Note
that at zero temperature, DH = DE, DH

1 = DE
1 at coinciding point; the O(4) invariance
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requires that colorelectric and colormagnetic condensates coincide: g2〈TrHi(x)Hi(x)〉 =
g2〈TrEj(x)Ej(x)〉; hence,

DH(0) +DH
1 (0) = DE(0) +DE

1 (0). (2.29)

Here we assume that the np part of all FCs is finite.
At z/= 0 for zero temperature, FCs can be expressed through D⊥(z), D‖(z) which do

not depend on whether Ei or Hk enters in them, since, for example, DE
‖ can be transformed

into DH
‖ by an action of O(4) group elements (the same for DE

⊥ , DH
⊥ ). From this, one can

deduce that both D1 and D do not depend on subscripts E, H for zero temperature and DEH
1

coincides with D1.
Below we will illustrate this coincidence by concrete calculations of DE, DH , and so

forth, through the gluelump Green’s functions and show that the corresponding correlation
lengths satisfy the relations (with obvious notations)

λE = λH ≡ λ; λE1 = λH1 = λEH1 ≡ λ1. (2.30)

As shown below, all correlation lengths λj appear to be just inverse masses of the
corresponding gluelumps λj = 1/Mj .

Having analytic expressions for FCs, one might ask that how to check them versus
experimental and lattice data. On experimental side in hadron spectroscopy, one measures
masses and transition matrix elements, which are defined by dynamical equation, and the
latter can be used of potential type due to smallness of λj . In static potential, only integrals
over distance enter and the spin-independent static potential can be written as [12–15, 73, 74]

VQQ(r) = 2
∫ r

0
(r − λ)dλ

∫∞

0
dνDE

(√
λ2 + ν2

)
+
∫ r

0
λdλ

∫∞

0
DE

1

(√
λ2 + ν2

)
.

(2.31)

At this point one should define how perturbative and np contributions combine in DE,
DE

1 , and this analysis was done in [70]. Making use of (2.21) together with definition of the
string tension [12–15], one yeilds

σE =
1
2

∫∫
d2zDE(z). (2.32)

One obtains from (2.31) the standard form of the static potential for N = 3 at distances r �
λEas

VQQ(r) = σ
Er − 4αs(r)

3r
+O
(
λE

r
, α2

s

)
. (2.33)

As argued below, λE ≈ 0.1 Fm, so that the form (2.33) is applicable in the whole range of
distances r > 0.1 Fm provided that asymptotic freedom is taken into account in αs(r) in
(2.33).
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At the smallest values of r, r � λE, one would obtain a softening of confining term,
σr → cr2 [12–15], which is not seen in accurate lattice data at r � 0.2 Fm [75, 76], imposing
a stringent limit on the value of λE; λE � 0.1 Fm; see discussion in [76].

3. Spin-Dependent Potentials and FC

We now turn to the spin-dependent interactions to demonstrate that FC can be extracted
from them [73, 74, 77–79]. V ′

1(r), V
′
2(r), V3(r), V4(r), plus static term V ′

QQ
(r) contain in integral

form all five FCs: DE,DE
1 , D

H,DH
1 , D

HE
1 , and one can extract the properties of the latter from

the spin-dependent potentials. This procedure is used recently for comparison of analytic
predictions [46] with the lattice data [45].

To express spin-dependent potentials in terms of FC, one can start with the W-loop
(2.7), entering as a kernel in the qq Green’s function, where quarks q, q can be light or heavy.
Since both kernels Pσ , P ′

σ contain the matrix σμνFμν, the terms of spin-spin and spin-orbit
types appear. As before, we keep Gaussian approximation, and in this case spin-dependent
potentials can be computed not only for heavy but also for light quarks. They have the
following Eichten-Feinberg form [80]:

V
(diag)
SD (R) =

(−→σ 1
−→
L1

4μ2
1

−
−→σ 2

−→
L2

4μ2
2

)(
1
R

dε

dR
+

2dV1(R)
RdR

)

+
−→σ 2

−→
L1 − −→σ 1

−→
L2

2μ1μ2

1
R

dV2

dR
+
−→σ 1

−→σ 2V4(R)
12μ1μ2

+

(
3−→σ 1

−→
R−→σ 2

−→
R − −→σ 1

−→σ 2R
2
)
V3

12μ1μ2R2
.

(3.1)

Spin-spin interaction appears in Wσ in (2.7) which can be written as

exp

⎧
⎨
⎩−g

2

2

∫ s1

0
dτ1

∫ s2

0
dτ2

〈(
σ(1)B σ(1)E

σ(1)E σ(1)B

)

z1

(
σ(2)B σ(2)E

σ(2)E σ(2)B

)

z2

〉⎫⎬
⎭, (3.2)

where z1,2 = z(τ1,2), and spin-orbit interaction arises in (2.19) from the products
〈σμνFμνdsρλFρλ〉.

It is clear that the resulting interaction will be of matrix form (2 × 2) × (2 × 2)
(not accounting for Pauli matrices). If one keeps only diagonal terms in σμνFμν (as the
leading terms for large μi ≈ M) then one can write for the spin-dependent potentials the
representation of the Eichten-Feinberg form (3.1).

At this point one should note that the term with dε/dR in (3.1) was obtained from the
diagonal part of the matrix (m− D̂)σμνFμν, namely, as product iσkDk ·σiEi; see [73, 74, 77, 78]
for details of derivation, while all other potentials Vi, i = 1, 2, 3, 4 are proportional to FCs
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〈HiΦHkΦ〉. One can relate FCs of colorelectric and colormagnetic fields to DE, DE
1 , DH , DH

1
defined by (2.28) with the following result:

1
R

dV1

dR
= −
∫∞

−∞
dν

∫R
0

dλ

R

(
1 − λ

R

)
DH(λ, ν),

1
R

dV2

dR
=
∫∞

−∞
dν

∫R
0

λdλ

R2

[
DH(λ, ν) +DH

1 (λ, ν) + λ2 ∂D
H
1

∂λ2

]
,

V3 = −
∫∞

−∞
dνR2 ∂D

H
1 (R, ν)
∂R2

,

V4 =
∫∞

−∞
dν

(
3DH(R, ν) + 3DH

1 (R, ν) + 2R2 ∂D
H
1

∂R2

)
,

1
R

dε(R)
dR

=
∫∞

−∞
dν

∫R
0

dλ

R

[
DE(λ, ν) +DE

1 (λ, ν) +
(
λ2 + ν2

)∂DE
1

∂ν2

]
.

(3.3)

One can check that Gromes relation [43, 44] acquires the form [79]

V ′
1(R) + ε

′(R) − V ′
2(R) =

∫∞

−∞
dν

[∫R
0
dλ
(
DE(λ, ν) −DH(λ, ν)

)
+

1
2
R
(
DE

1 (R) −DH
1 (R)

)]
.

(3.4)

For T = 0, when DE = DH , DE
1 = DH

1 , the Gromes relations are satisfied identically;
however, for T > 0 electric and magnetic correlators are certainly different and Gromes
relation is violated, as one could tell beforehand; since for T > 0, the Euclidean O(4)
invariance is violated.

4. Gluelumps and FC

In this section we establish a connection of FC D(z) and D1(z) with the gluelump Green’s
functions.

To proceed, one can use the background field formalism [61–65, 81–83], where the
notions of valence gluon field aμ and background field Bμ are introduced, so that total gluonic
field Aμ is written as

Aμ = aμ + Bμ. (4.1)

The main idea we are going to adopt here is suggested in the second paper of [39, 40]. To be
self-contained, let us explain it here in simple form. First, we single out some color index a
and fix it at a given number. Then in color components we have, by definition, that

Ac
μ = δacaaμ + (1 − δac)Bcμ, (4.2)
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and there is summation neither over a in the first term nor over c in the second. As a result,
the integration measure factorizes

∫∏
c

DAc
μ =
∫
Daaμ

∫∏
c /=a

DBcμ, (4.3)

so one first averages over the fields Bcμ, and after that one integrates over the fields aaμ. The
essential point is that the integration over DBcμ provides colorless adjoint string attached to
the gluon aaμ, which keeps the color index “a” unchanged in the course of propagation of
gluon a in background made of B. This is another way of saying that gluon field of each
particular color enters QCD Lagrangian quadratically. Despite the fact that such separation of
the measure is a kind of trick, the formation of adjoint string is the basic physical mechanism
behind this background technic, and it is related to the properties of gluon ensemble: even
for Nc = 3, one has one color degree of freedom aaμ and 7 fields Bcμ; also confining string is
a colorless object, and therefore, the singled-out adjoint index “a” can be preserved during
interaction process of the valence gluon aaμ with the background (Bcμ). These remarks to be
used in what follows make explicit the notions of the valence gluon and background field.

We assume the background Feynman gaugeDμaμ = 0 and assign field transformations
as follows:

aμ −→ U+aμU, Bμ −→ U+
(
Bμ +

i

g
∂μ

)
U. (4.4)

As a result, the parallel transporter Φ(x, y) = P exp ig
∫x
yBμ(z)dz keeps its transformation

property, and every insertion of aμ between Φ transforms gauge covariantly. In what follows
we will assume that Φ is made entirely of the field Bμ. Note that in the original cluster
expansion of the W-loop W(B + a) in FC [81–83]

W(B + a) =
〈

TrP exp ig
∫

C

(
Bμ + aμ

)
dzμ

〉
, (4.5)

it does not matter whether (Bμ+aμ) or Bμ enters Φ′s since those factors cancel in the sum. Thus
we assume from the beginning that Φ′s are not renormalized, since such renormalization is
unphysical anyway according to what have been said above.

As for renormalization having physical meaning, it is known [68, 69] to reduce to the
charge renormalization and renormalization of perimeter divergences on the contour C. For
static quarks, the latter reduces to the mass renormalization.

In background field formalism, one has an important simplification: the combination
gBμ is renorminvariant [61–65, 68, 69], and so is any expression made of Bμ only. This
point is important for comparison of FC with those of the lattice correlators in [45, 46].
Renormalization constants for field strengths Zb used there account for finite size of
plaquettes and they are similar to the lattice tadpole terms.

Now we turn to the analytic calculation of FC in terms of gluelump Green’s function.
To this end, we insert (4.1) into (2.19) and have for Fμν(x) the following:

Fμν(x) = ∂μAν − ∂νAμ − ig
[
Aμ,Aν

]
= D̂μaν − D̂νaμ − ig

[
aμ, aν

]
+ F(B)

μν . (4.6)
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Here, the term F
(B)
μν contains only the field Bbμ. It is clear that when one averages over field aaμ

and sums finally over all color indices a, one actually exploits all the fields with color indices
from F

(B)
μν , so that the term F

(B)
μν can be omitted, if summing over all indices a is presumed to

be done at the end of calculation.
As a result, Dμν,λσ can be written as

Dμν,λσ

(
x, y
)
= D(0)

μν,λσ
+D(1)

μν,λσ
+D(2)

μν,λσ
, (4.7)

where the superscripts 0, 1, 2 refer to the power of g coming from the term ig[aμ, aν].
We can address now an important question about the relation between FCs and

gluelump Green’s functions. We begin with 1-gluon gluelump, whose Green’s function reads

G
(1g)
μν

(
x, y
)
=
〈

Traaμ(x)Φ̂
(
x, y
)
aν
(
y
)〉
. (4.8)

According to (4.4), G(1g)
μν (x, y) is a gauge-invariant function.

As shown in [41], the first term in (4.7) is connected to the functions DE
1 , DH

1 and it
can be written as follows:

D
(0)
μν,λσ

(
x, y
)
=

g2

2N2
c

{
∂

∂xμ

∂

∂yλ
G

(1g)
νσ

(
x, y
)
+ perm

}
+ Δ(0)

μν,λσ
, (4.9)

where Δ(0)
μν,λσ

contains contribution of higher FCs, which we systematically discard.

On the other hand, one can find G
(1g)
μν (x, y) from the expression [47, 48] written as

G
(1gl)
μν

(
x, y
)
= Tra

∫∞

0
ds(Dz)xy exp(−K)

〈
WF

μν

(
Cxy

)〉
, (4.10)

where the spin-dependent W-loop is

WF
μν

(
Cxy

)
= PPF

{
exp
(
ig

∫
Bλdzλ

)
expF

}

μν

, (4.11)

and the gluon spin factor is expF ≡ exp(2ig
∫s

0dτF̂B(z(τ))) with F̂B made of the background
field Bμ only.

Analogous expression can be constructed for Green’s function of 2-gluon gluelump. It
is given by the following expression :

G
(2gl)
μν,λσ

(
x, y
)
=
〈

Tra
(
fabcfdefaaμ(x)a

b
ν(x)T

cΦ̂
(
x, y
)
Tf × adλ

(
y
)
aeσ
(
y
))〉

≡N2
c

(
N2

c − 1
)(
δμλδνσ − δμσδνλ

)
G(2gl)(z).

(4.12)
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At small, distances G(2gl)(x, y) is dominated by the perturbative expansion terms

G(2gl)(z) ∼ 1
z4
, (4.13)

however, as we already discussed in details, all these perturbative terms are canceled by
those from higher FCs (triple, quartic, etc.); therefore, expansion in fact starts with np terms
of dimension four.

To identify the np contribution to G(2gl)(z), we rewrite it as follows:

G(2gl)(z) =
∫∞

0
ds1

∫∞

0
ds2(Dz1)0x(Dz2)0x TrWΣ(C1, C2), (4.14)

where the two-gluon gluelump W-loop WΣ(C1, C2) is depicted in Figure 6 and can be written
as (in the Gaussian approximation)

TrWΣ(C1, C2) = exp
{
−1

2

∫

s

∫
dπμν(u)dπλσ(v)

〈
F̂μν(u)Φ̂F̂λσ(v)

〉}
, (4.15)

and the total surface S consists of 3 pieces, as shown in Figure 4, as follows:

Fμνdπμν(u) = Fμνdsμν(u) − 2igdτ
(
F̂(u)

)
, (4.16)

where (F̂) has Lorentz tensor and adjoint color indices Fabij and lives on gluon trajectories,
that is, on the boundaries of Si. In full analogy with (4.9), we have that

D(z) =
g4(N2

c − 1
)

2
G(2gl)(z). (4.17)

The crucial point is that Green’s functions (4.9), (4.14) can be calculated in terms of the
same FCs D(z), D1(z). Indeed one has that

G(w)(z) =
〈
f
∣∣exp(−Hw|z|)

∣∣i〉, (4.18)

where the index w stays for 1-gluon or 2-gluon gluelump Hamiltonians. The latter are
expressed via the same FCs D(z), D1(z) (see [84–86] and references therein):

Hw = H0
[
μ
]
+ ΔHL

[
μ, ν
]
+ ΔHCoul[D1] + ΔHstring[D, ν], (4.19)

where the last term Hstring[D, ν] depends on D(z) via the adjoint string tension

σadj =
9
4

∫∞

0
d2zD(z), (4.20)
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Figure 1

and Hamiltonian depends on einbein fields μ and ν. The term corresponding to perimeter
Coulomb-like interaction ΔHCoul[D1] depends on D1(z) (compare with (2.31), (3.1)).

The self-consistent regimes correspond to different asymptotics of the solutions to
these equations. In Coulomb phase of a gauge theory, both H1g , H2g exhibit no mass gap,
that is, large-z asymptotic of (4.18) is power like. The function D(z) vanishes in this phase
and W-loop obeys perimeter law. In the confinement phase realized in Yang-Mills theory at
low temperatures, a typical large-z pattern is given by

D(z), D1(z) ∼ exp
(
−|z|
λi

)
, (4.21)

that is, there is a mass gap for both H1g , H2g .
Confining solutions are characterized by W-loops obeying area law. In other words,

Hamiltonians expressed in terms of interaction kernels depending on D(z), D1(z) exhibit
mass gap if these kernels are confining. On the other hand, the same mass gap plays a role
of inverse correlation length of the vacuum. This should be compared with well-known
mean-field technique. In our case the role of mean-field is played by quadratic FC, which
develops nontrivial Gaussian termD(z). Notice that the exponential form of its large distance
asymptotics exp(−|z|/λ) (and not, let’s say, exp(−z2/λ2)) is dictated by spectral expansion of
the corresponding Green’s function at large distances.

Full solution of the above equations is a formidable task not addressed by us here.
Instead, as a necessary prerequisite, we check below different asymptotic regimes and
demonstrate self-consistency of the whole picture.

We begin with small distance region. The np part of contribution to D1(z) at small
distances comes from two possible sources: the area law term (first exponent and the
expF term in (4.11)). Both contributions are depicted in Figures 1 and 2, respectively. We
will disregard the term expF in this case, since for the one-gluon gluelump it does not
produce hyperfine interaction and only gives rise to the np shift of the gluon mass, which
anyhow is eliminated by the renormalization (see the appendix for more details). This is in
contrast to the two-gluon gluelump Green’s function generatingDE,DH , where the hyperfine
interaction between two gluons is dominating at small distances.

As a result, (4.8) without the expF term yields

D1(z) =
4C2
(
f
)
αs

π

1
z4

+
g2

12
G2. (4.22)

It is remarkable that the sign of the np correction is positive.
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Figure 2

At large distances, one can use the gluelump Hamiltonian for one-gluon gluelump
from [30] to derive the asymptotics [41]

D1(z) =
2C2
(
f
)
αsM

(1)
0 σadj

|z| e−M
(1)
0 |z|, |z|M(1)

0 � 1, (4.23)

where M(1)
0 = (1.2 ÷ 1.4)GeV for σf = 0.18 GeV2 [29, 30].

We now turn to the FC D(z) as was studied in [41]. The relation (4.17) connects D(z)
to the two-gluon gluelump Green’s function, studied in [30] at large distances. Here we need
its small-z behavior and we will write it in the form

G(2gl)(z) = G(2gl)
p (z) +G(2gl)

np (z), (4.24)

where G(2gl)
p (z) contains purely perturbative contributions which are subtracted by higher-

order FCs, while G(2gl)
np (z) contains np and possible perturbative-np interference terms. We

are interested in the contribution of the FC 〈FF〉 to G(2gl)(z), when z tends to zero.
One can envisage three types of contributions as follows.
(a) The first one is due to product of surface elements dsμνdsλσ , which gives for small

surface the factor exp(−g2〈FF〉S2
i /24Nc), similar to the situation discussed for D1. This is

depicted in Figure 4.
(b) The second one is contribution of the type dτ1dτ2〈FF〉, where dτ and dτ2 belong

to different gluon trajectories, 1 and 2, as depicted in in Figure 5. This is the hyperfine gluon-
gluon interaction, taken into account in [30] in the course of the gluelump mass calculations
(regime of large z); however, in that case mostly the perturbative part of 〈FF〉 contributes
(due to D1). Here we keep in 〈FF〉 only the NP part and consider the case of small z.

(c) Again the third is the term dτidτj , but now i = j. This is actually a part of the
gluon selfenergy correction, which should be renormalized to zero, when all (divergent)
perturbative contributions are added. As we argued in Appendix of [41], we disregard this
contribution here, as well as in the case of D1(z) (one-gluon gluelump case). Now we treat
both contributions (a) and (b).
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(a) In line with the treatment of D1, (4.22), one can write the term representing two-
gluon gluelump as two nearby one-gluon gluelumps which yield for D(z) the
following:

ΔDa(z) = −g
4NcG2

4π2
. (4.25)

(b) In this case one should consider the diagram given in Figure 5. which yields the
answer (for details see the appendix)

G
(2gl)
b (z) =

4N2
c

N2
c − 1

∫
d4wd4w′D(w −w′)

(4π2)4(w − z)2w2(w′ − z)2w′2
, (4.26)

which contributes to D(z) as

ΔDb(z) = 2N2
c g

4h(z), (4.27)

where at small z, h(z) ≈ (D(λ0)/64π4)log2(λ0
√
e/z)and λ0 is of the order of

correlation length λ.
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At large distances, one uses the two-gluon gluelump Hamiltonian as in [29] and finds
the corresponding spectrum and wave functions; see [29] and Appendix 5 of [41] for details.
As a result, one obtains in this approximation

D(z) =
g4(N2

c − 1
)

2
0.1σ2

fe
−M(2)

0 |z|, M
(2)
0 |z| � 1, (4.28)

where M(2)
0 is the lowest two-gluon gluelump mass found in [30] to be about M(2)

0 = (2.5 ÷
2.6)GeV.

We will discuss the resulting properties of D(x) and D1(x) in the next section.

5. Discussion of Consistency

We start with the check consistency for D(z). As is shown above, D(z) has the following
behavior at small z :

D(z) ≈ −4Ncα
2
s

(
μ(z)
)
G2 +N2

c

α2
s

(
μ(z)
)

2π2
D(λ0)log2

(
λ0
√
e

z

)
. (5.1)

Since αs(μ(z)) ∼ 2π/β0 log(Λz)−1, the first term is subleading at z → 0 and the last term on
the r.h.s. tends to a constant

D(0) =
N2

c

2π2
D(λ0)

(
2π
β0

)2

. (5.2)

From (5.2) one can infer that D(0) ≈ 0.15D(λ0) for Nc = 3, where λ0 � λE. So D(z) is an
increasing function of z at small z, z � λ0, and for z � λ, one observes exponential falloff.
The qualitative picture illustrating this solution for D(z) is shown in Figure 5.

This pattern may solve qualitatively the contradiction between the values of D(0)
estimated from the string tension Dσ(0) � σ/πλ2 ≈ 0.35 GeV4 and the value obtained in
naive way from the gluon condensate DG2(0) = (π2/18)G2 ≈ (0.007 ÷ 0.012)GeV4. One can
see that Dσ(0) ≈ (30 ÷ 54)DG2(0). This seems to be a reasonable explanation of the mismatch
discussed in Section 1.
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As shown in [41], the large distance exponential behavior is self-consistent, since
(assuming that it persists for all z, while small-z region contributes very little) from the
equality σ = πλ2Dσ(0), comparing with (4.28), one obtains

0.1 · 8π2α2
s

(
N2

c − 1
)
σ2
f =

σf

πλ2
, (5.3)

where in αs(μ) the scale μ corresponds roughly to the gluelump average momentum (inverse
radius) μ0 ≈ 1 GeV. Thus (5.3) yields αs(μ0) ≈ 0.4 which is in reasonable agreement with αs
from other systems [87].

We end this section with discussion of three points as follows.
(1) D(z) and D1(z) have been obtained here in the leading approximation, when

gluelumps of minimal number of gluons contribute 2 for D(z) and 1 for D1(z). In the higher
orders of O(αs), one has an expansion of the type

D(z) = D(2gl)(z) + c1α
3
sD

(1gl)(z) + c2α
3
sD

(3gl)(z) + · · · ,

D1(z) = D(1gl)(z) + c′1α
3
sD

(2gl)(z) + · · · .
(5.4)

Hence the asymptotic behavior forD(z) will contain exponent ofM(1)
0 |z| too, but with a small

preexponent coefficient.
(2) The behavior of D(z), D(np)

1 (z) at small z is defined by NP terms of dimension
four, which are condensate G2 as in (2.11) and the similar term from the expansion of expF,
namely,

〈
expF

〉
= 1 + 4g2

∫s
0
dτ

∫s′

0
dτ ′
〈
F(u(τ))F

(
u
(
τ ′
))〉

+ · · ·, (5.5)

therefore, one does not encounter mixed terms like O(m2/z2); however, if one assumes that
expansion of 〈F(0)F(z)〉 starts with terms of this sort as it was suggested in [72], then one
will have a self-consistent condition for the coefficient in front of this term.

(3) To study the difference between DE
1 , DH

1 at T ≤ Tc, one should look at (4.9) and
compare the situation, when μ = λ = 4, ν = σ = i and take z = x − y along the 4th axis (for
DE

1 ), while for DH
1 one takes μ = λ = i, ν = σ = k, and the same z. One can see that in both

cases one ends up with the one-gluon gluelump Green’s function Gμν (4.10) which in the
lowest (Gaussian) approximation is the same Gμν = δμνf(z), and f(z) is the standard lowest
mass (and lowest angular momentum) Green’s function.

Hence DE
1 = DH

1 in this approximation, and for T = 0, this is an exact relation, as
discussed above. Therefore,

λ1 = λE1 = λH1 =
1

M
(1)
0

, M
(1)
0 ≈ 1.2 ÷ 1.4 GeV, λ1

∼= 0.2 ÷ 0.15 Fm. (5.6)

The value M(1)
0 in (5.6) is taken from the calculations in [30]. The same is true for DE, DH , as

it is seen from (4.12), where G(2gl) corresponds to two-gluon subsystem angular momentum
L = 0 independently of μν, λσ.
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Hence one obtains

λ ≡ λE = λH =
1

M
(2)
0

, λ ∼= 0.08 Fm, M
(2)
0 ≈ 2.5 GeV, (5.7)

where the value M(2)
0 ≈ 2.5 GeV is taken from [30].

6. Conclusions

We have derived, following the method of [61–65], the expressions for FC D(z), D1(z) in
terms of gluelump Green’s functions. This is done in Gaussian approximation. The latter are
calculated using Hamiltonian where np dynamics is given by Dnp(z), Dnp

1 (z). In this way one
obtains self-coupled equations for these functions, which allow two types of solutions: (1)
Dnp(z) = 0, Dnp

1 (z) = 0, that is, no np effects at all; (2)Dnp(z), Dnp

1 (z) are nonzero and defined
by the only scale, which should be given in QCD, for example, string tension σ or ΛQCD. All
other quantities are defined in terms of these basic ones. We have checked consistency of self-
coupled equations at large and small distances and found that to the order O(αs) no mixed
perturbative-np terms appear. The functionD1(z) can be represented as a sum of perturbative
and np terms, while D(z) contains only np contributions.

We have found a possible way to explain the discrepancy between the average values
of field strength taken from G2 and from σ by showing that D(z) has a local minimum at
z = 0 and grows at z ∼ λ. Small value of λ and large value of the gluelump mass Mgl = 1/λ ≈
2.5 GeV explain the lattice data for λ ≈ 0.1 Fm. Thus the present paper argues that relevant
degrees of freedom ensuring confinement are gluelumps, described self-consistently in the
language of FCs.

Appendix

Nonperturbative Contributions to D1(z) and D(z) at Small z

We start with D1(z) expressed via gluelump Green’s function in (4.8), (4.10) Gμν(z) =
δμνf(z).

The leading NP behavior at small z, proportional to 〈F(x)F(y)〉, is obtained from the
amplitudes, shown in Figures 1 and 2. For the amplitude of Figure 1, one can use the vacuum
average of the W-loop (2.11) in the limit of small contours and neglect the factor expF in
(4.11). One obtains the adjoint loop

〈
W
(
Cxy

)〉
= exp

⎛
⎜⎝−

g2
〈(
Faμν(0)

2
)〉

24Nc
γS2

⎞
⎟⎠, (A.1)
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where γ = C2(adj)/C2(f) = 2N2
c/(N

2
c − 1) (original derivation in [41] referred to the

fundamental loop). Proceeding as in Appendix 2 of [41], one obtains the NP correction ΔD1

as

ΔD1a = C2
(
adj
) g2

12Nc
G2 =

g2

12
G2, (A.2)

where we have introduced the standard definition [17, 18] G2 ≡ (αs/π)〈Faμν(0)Faμν(0)〉. One
can check that ΔD1 = O(N0

c ).
We turn now to the amplitude of Figure 2. The corresponding f(x) for x → 0 can be

written as follows:

Δf1b(x) =
∫
d4ud4vG(0, u)G(u, v)G(v, x)4π2N2

cG2, (A.3)

where the gluon Green’s function G(x, y) for small |x−y| can be replaced by the perturbative
part: G(x, y) → G0(x, y) = 1/4π2(x − y)2.

Taking into account that ΔD1(x) = −(2g2/N2
c )(d/dx

2)Δf(x), one obtains for x → 0
the following:

ΔD1b(x) = 2g2G2I(x), (A.4)

where we have defined

I(x) = − d

dx2

∫
d4ud4v

(4π2)2u2(u − v)2(v − x)2
. (A.5)

The integral I(0) diverges at small v and large u, v. The latter divergence is removed
since at large argumentsG(x, y) is damped by confining force, keeping the propagating gluon
nearby the 4th axis x4 = y4 = 0 where the static gluonic source resides. One can estimate
I(x → 0) ∼ O((ln(λ2/x2))α). Since G2 is connected to D, D1, then

G2 =
3Nc

π2

(
DE(0) +DE

1 (0) +D
H(0) +DH

1 (0)
)
, (A.6)

and one can see in (A.4) that coefficients of DE
1 on both sides of (A.4) have the same

order of magnitude and the same sign, suggesting a self-consistency on this preliminary
level. However, as we argued before and in [41], this contribution is actually gluon mass
renormalization, which is zero. This is especially clear when 〈FF〉 in Figure 2 is replaced by
its perturbative part.

We turn now to the most important case of the confining FCDE(x). The corresponding
two-gluon gluelump amplitude is depicted in Figure 3, and the np contributions to DE(x) are
given in Figures 4 and 5.
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We start with the amplitude of Figure 4, which can be represented as a doubled
diagram of Figure 1, and therefore, the contribution to the two-gluon gluelump Green’s
function G(2gl)(x) will be

G(2gl)(x) =
1

(4π2x2)2
− γG2

24Nc(4π2)
. (A.7)

Now using relation (2.11), one obtains for the np contribution of Figure 4

ΔDa(x) =
g4(N2

c − 1
)

2
ΔG(2gl)(x) = −g

4Nc

4π2
G2. (A.8)

Note that this contribution is finite at x → 0, however, with the negative sign. We now
turn to the np contribution of Figure 5, which can be obtained from (4.12) inserting there
the product of operators F̂fg(w)d4wF̂f ′g ′(w′)d4w′, where fg(f ′g ′) are adjoint color indices,
F̂fg = FaTafg = Fa(−i)fafg . Using the formulas

fabcfa′bc =Ncδaa′ , fabcfadefbdffceg =
N2

c

2
δfg, (A.9)

one arrives at the expression

ΔDb(x) = 2N2
c g

4h(x),

h(x) =
∫
d4wd4w′D

(
w −w′)G(w)G

(
w′)G(w − x)G(w′ − x),

(A.10)

where G(y) is the gluon Green’s function in the two-gluon gluelump; the gluon is connected
at large distances by two strings to another gluon and to the static gluon source; see Figure 5.
At small x (we take it along axis 4 for convenience), the integral in h(x) grows when G(y) is
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close to the 4th axis and becomes the free gluon G(y) → G0(y) = 1/4π2y2. As a result, one
obtains

h(x) −→ h0(x) =
∫
d4wd4w′

(4π2)4

D(w −w′)

w2w′2(w − x)2(w′ − x)2
, (A.11)

and one should have in mind that the integral for x → 0 diverges both at small and at large
w,w′. The smallw,w′ region will give the termsO(ln(λ2

0/x
2)), and at largew,w′, the integral

is protected by the falloff of G(y) at large y due to confinement; therefore, we must imply in
the integrals in (A.11) the upper limits for w, w′ at some λ0 � 1/√σadj. Then introducing for
w(w, w4) polar coordinates |w| = ρ sin θ, w4 = ρ cos θ (and the same for w′), one arrives at
the integral

∫π
0

sin2θdθ

ρ2 − 2xρ cos θ + x2
=

π

2ρ2

(
ρ ≥ x), (A.12)

or (π/2x2) (x ≥ ρ), and finally one has the estimate of contribution to (A.10) from the region
of small w,w′ (w|w|, |w′| � λ0) as

h(x) ≈ D(λ0)

4(4π2)2
log2
(
λ0
√
e

x

)
. (A.13)

And finally for D(x), one obtains (omitting the perturbative term in (A.7))

D(x) = −g
4Nc

4π2
G2 +

N2
c

2π2
α2
sD(λ0)log2

(
λ0
√
e

x

)
. (A.14)

Note that the last term on the r.h.s. dominates at small x and compensates the decrease
of the α2

s term since

α2
s(x)ln

2
(
λ0
√
e

x

)
∼=
(

4π ln
(
λ0
√
e/x
)

β0 ln(1/x2Λ2)

)
−→
(

4π
β0

)2

(x −→ 0). (A.15)

Hence,

D(x < λ0) ≈
N2

c

2π2

(
4π
β0

)2

D(λ0) < D(λ0). (A.16)
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[44] N. Brambilla, D. Gromes, and A. Vairo, “Poincaré invariance and the heavy-quark potential,” Physical
Review D, vol. 64, no. 7, Article ID 076010, 2001.

[45] Y. Koma and M. Koma, “Spin-dependent potentials from lattice QCD,” Nuclear Physics B, vol. 769, no.
1-2, pp. 79–107, 2007.

[46] A. M. Badalian, A. V. Nefediev, and Yu. A. Simonov, “Dynamical suppression of the spin-orbit
interaction in hadrons,” JETP Letters, vol. 88, no. 3, pp. 151–156, 2008.

[47] Yu. A. Simonov and J. A. Tjon, “The Feynman-Schwinger representation in QCD,” Annals of Physics,
vol. 300, no. 1, pp. 54–87, 2002.

[48] Yu. A. Simonov and J. A. Tjon, “The Feynman-Schwinger representation for the relativistic two-
particle amplitude in field theory,” Annals of Physics, vol. 228, no. 1, pp. 1–18, 1993.

[49] Yu. A. Simonov, “Heavy-light mesons and quark constants fB , fD in the vacuum correlator method,”
Zeitschrift für Physik C, vol. 53, no. 3, pp. 419–431, 1992.

[50] S. V. Ivanov and G. P. Korchemskij, “Some supplements of the nonperturbative gauges,” Physics
Letters B, vol. 154, no. 2-3, pp. 197–201, 1985.

[51] V. I. Shevchenko and Yu. A. Simonov, “Generalized coordinate gauge, nonabelian Stokes theorem and
the dual QCD Lagrangian,” Physics Letters B, vol. 437, no. 1-2, pp. 146–152, 1998.

[52] L. Lukaszuk, E. Leader, and A. Johansen, “Contour gauges, canonical formalism and flux algebras,”
Nuclear Physics B, vol. 562, no. 1-2, pp. 291–314, 1999.

[53] B. L. Ioffe, “QCD (Quantum chromodynamics) at low energies,” Progress in Particle and Nuclear
Physics, vol. 56, no. 1, pp. 232–277, 2006.

[54] A. O. Barvinsky and G. A. Vilkovisky, “The generalized Schwinger-DeWitt technique in gauge
theories and quantum gravity,” Physics Reports A, vol. 119, no. 1, pp. 1–74, 1985.



Advances in High Energy Physics 29

[55] M. B. Voloshin, “On dynamics of heavy quarks in a non-perturbative QCD vacuum,” Nuclear Physics
B, vol. 154, no. 3, pp. 365–380, 1979.

[56] M. B. Voloshin, “Precoulombic asymptotics for energy levels of heavy quarkonium,” Sov. J. Nucl.
Phys., vol. 36, pp. 162–143, 1982.

[57] D. Gromes, “Space-time dependence of the gluon condensate correlation function and quarkonium
spectra,” Physics Letters B, vol. 115, no. 6, pp. 482–486, 1982.

[58] U. Marquard and H. G. Dosch, “Potential and sum-rule approach in QCD,” Physical Review D, vol. 35,
no. 7, pp. 2238–2243, 1987.

[59] M. Campostrini, A. Di Giacomo, and S. Olejnı́k, “On the possibility of detecting gluon condensation
from the spectra of heavy quarkonia,” Zeitschrift für Physik C, vol. 31, no. 4, pp. 577–582, 1986.
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