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We review the holographic multiquark states in the deconfined quark-gluon plasma. Nuclear
matter can become deconfined by extremely high temperature and/or density. In the deconfined
nuclear medium, bound states with colour degrees of freedom are allowed to exist. Using
holographic approach, the binding energy and the screening length of the multiquarks can be
calculated. Using the deconfined Sakai-Sugimoto model, the phase diagram of the multiquark
phase, the vacuum phase, and the chiral-symmetric quark-gluon plasma can be obtained. Then
we review the magnetic properties of the multiquarks and their phase diagrams. The multiquark
phase is compared with the pure pion gradient, the magnetized vacuum, and the chiral-symmetric
quark-gluon plasma phases. For moderate temperature and sufficiently large density at a fixed
magnetic field, themixed phase ofmultiquark and pion gradient is themost energetically preferred
phase.

1. Introduction

At low energy, only hadrons can be observed. Due to the large coupling of the strong
interaction on large distance scale, the genuine constituents of the nuclear matter are confined
within the baryons and mesons. They can be explored only with a high energy probe,
for example, in the deep inelastic scattering (DIS) experiments. When the energy scale
involved is sufficiently large, roughly few hundred MeVs, the interaction among quarks and
gluons become perturbatively weak, the phenomenon known as the asymptotic freedom. The
quarks and gluons subsequently become “deconfined” from the confinement of the strong
interaction.

For effectively free quarks and gluons, perturbative treatment of the Quantum
Chromodynamics (QCD) has been proven very successful in making verifiable quantitative
and reliable predictions. The QCD background calculations of the scattering of quarks
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and gluons at the Tevatron give accurate and vital results, which are crucial in providing
the benchmark for the search of New Physics beyond the Standard Model. Nevertheless,
unexpected ridge-like signals related to the strong interaction are already observed from the
collision of proton and proton at the Large Hadron Collider (LHC) [1]. Further investigations
are required in order to determine whether this ridge structure could be explained by the
perturbative QCD or if it is nonperturbative in nature.

A general picture of the deconfinement process of the quarks and gluons within
hadrons is currently incomplete at the most. Naively, from argument of the RGE
(Renormalization Group Equation) running of the beta function, effectively free quarks and
gluons are expected to appear at high energies and/or temperatures. Transition from non-
perturbative phase of nuclear matter to the perturbative regime, where the perturbative
QCD is reliable, is explored most successfully in the lattice approach. Lattice studies of the
QCD predicts the deconfinement temperature around 175MeV [2]. Nuclear matter at such
temperature would undergo a phase transition into a deconfined phase called the quark-
gluon plasma (QGP). Most bound states of light quarks wouldmelt down at this temperature
leaving free quarks and gluons in the plasma. Remarkably, themesonic states of heavy quarks
(e.g., charmonium) in the nuclear matter at such high temperature tend to persist melting
at least until 1.5Tc [3–5] due to the remaining screened Coulomb-type binding potential
between quark and antiquark. Multiquark states such as baryons can also exist in the QGP
up to certain temperatures provided that the baryonic charge density is sufficiently large.

In the confined phase, only colour singlet states can exist as free particle due to the
confinement. Above the deconfinement, quarks and gluons with colour charges can propa-
gate with more freedom in the plasma. It is therefore possible that the coloured multiquark
states such as diquarks could also exist in the deconfined nuclear medium. Similar to the
mesonic states of the heavy quarks, these multiquarks could persist melting up to relatively
high temperature above the deconfinement. We can expect the multiquarks to be abundant in
the nuclear matter when the density is large up to temperature well above the deconfinement
temperature. Consequently, it is interesting to investigate the physical properties of the
multiquarks as well as their thermodynamical phase diagram in details. Unfortunately,
perturbative QCD based on quarks and gluons is not reliable during the deconfinement phase
transition. Lattice QCD is applicable only when the baryon density is small.

An alternative approach to study the strongly coupled gauge theory is the holographic
model based on the AdS/CFT correspondence [6, 7]. A string theory in the curved
background generated by D-branes source is conjectured to be dual to the gauge theory
on the branes. The duality suggests a correspondence between the strongly coupled gauge
theory on the branes and the weakly coupled string theory in the bulk. Extension of the
duality to the finite temperature gauge theory can be done by adding a black hole horizon
to the near-horizon limit of the background spacetime [8]. Baryons and multiquarks can be
holographically constructed using the baryon vertex and strings [9–12].

In this paper, we will review the physics of the holographic multiquarks in the
quark-gluon plasma using mainly the Sakai-Sugimoto (SS) model [13, 14]. The SS model
and the holographic setup of the multiquarks is discussed in Section 2. Section 3 describes
the thermodynamical properties and the phase diagram of the multiquark nuclear phase.
Magnetic properties of the multiquark phase and the corresponding phase diagram are
discussed in Sections 4 and 5, respectively. Section 6 concludes our paper. To present the main
results of this paper, a summary table of the deconfined nuclear phase in the SSmodel is given
in Table 1.
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Table 1: Summary table of the phases in the deconfined Sakai-Sugimoto model, B represents the external
magnetic field.

B = 0 vacuum Multiquark (MQ) χS-QGP
Region in parameter
space d = 0 (i.e., μ < μsource) d > 0 (i.e., μ ≥ μsource) d > 0

0 ≤ ns � 0.3

Preferred at low μ, low T High μ, low T high T
Important
properties

Mixing of different ns-multiquarks

B /= 0 magnetized vacuum ∇ϕ MQ-∇ϕ χS-QGP

Region in
parameter space

μsource = 0 μsource = 0 μsource > 0 μsource = 0
∇ϕ = 0 ∇ϕ > 0 ∇ϕ > 0 ∇ϕ = 0
d = 0 d = (3/2)B∇ϕ d > 0 (μ ≥ μsource) d > 0
jA = 0 jA = 0 jA = 0 jA = (3/2)Bμ

0 ≤ ns � 0.3

Preferred at none Low μ, low T High μ, low T High T

Important
properties

Configuration A, B
merging at high T
and/or high B

2. Multiquark States and the Holographic Models

In addition to baryons and mesons, the possibility of multiquark states were recognized
by Gell-Mann since the proposal of the quark model. QmQ

n
-multiquark (n + m > 3) such

as the tetraquark and dibaryon were proposed since 1977 by Jaffe [15–17] using the MIT
bag model. There are theoretical models of colour-singlet multiquarks using interactions
of various origins, for example, chromomagnetism, flux tube confinement, and hadronic
molecules. Despite the theoretical possibilities, conclusive discovery of the multiquarks has
yet to be confirmed experimentally (see [18] and references therein).

Series of experimental results from RHIC suggests that the produced QGP is strongly
coupled (sQGP) [19–22]. The fact that the QGP is strongly coupled near-and-above the
deconfinement temperature Tc suggests the possibility of the existence of exotic bound states
with colour degrees of freedom in the deconfined QGP. Recall that an interaction between
two heavy quarks in the confined phase at 0 < T < Tc can be described empirically by the
screened Cornell potential

VQQ(r, T) = σr

[
1 − e−MD(T)r

MD(T)r

]
− α

r

[
e−MD(T)r

]
, (2.1)

where MD is the Debye screening mass depending on T and α is the effective coupling.
The first part represents the (colour-screened) confining force due to QCD string with the
effective string tension σ; it is around 0.20 (GeV)2 as suggested by the lattice studies. The
second part represents the effective (colour-screened) Coulomb potential due to transverse
string oscillation. By definition, the effective string tension σ vanishes at T > Tc. As a result,
only the screened Coulomb part contributes to the interaction between quarks but within the
range of screening lengthM−1

D . Yet, as suggested by [23], a short string-like configuration of
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colour fields at low T becomes longer strings at-and-near Tc which contribute to the binding
between quarks and gluons. Therefore, the bound states of gluons and quarks can exist in
both colour-singlet and colour-nonsinglet forms in the sQGP.

The studies of the multibody bound states in the sQGP were initiated by Shuryak and
colleagues [23–25]. Based on the studies in [23], three proposed multibody bound states: (i)
diquark or “polymer-chain” (qgg · · · gq); (ii) baryons (qqq); (iii) closed (3-)chains of gluons
(ggg) seem to exist only for T = (1–1.5)Tc. Importantly, the existence of these bound states
could affect the thermodynamical and hydrodynamical properties of the sQGP.

The holographicmodels of colour-singlet baryonwas originally investigated byWitten
et al. [9, 10]. In the AdS5 × S5 background, a D5-brane wrapping the subspace S5 with Nc

strings attached is proposed to be a dual description of a baryon. A holographic dual of a
k-quark (k < Nc) with colour degrees of freedom is discussed in [11] (see also [26]) for the
supersymmetric background. There is a number of interesting articles investigating various
possibilities of the multiquarks in both confined and deconfined medium, some of them
consider deformed baryon vertex [12, 27–33]. Notably, [12] uses a simplified configuration
with only one point-like baryon vertex to describe a variety of classes of the multiquarks with
and without the colour degrees of freedom. We will focus our attention to such multiquark
model in this paper.

In recent years, the AdS/CFT correspondence has attracted interests in its applicability
to the phenomenological studies of non-perturbative QCD. However, this correspondence
cannot provide the gravity dual of the large Nc QCD. As its name suggests, the AdS/CFT
have the gauge theory side, which is conformal, differing from the confining behaviour of the
real-world QCD. There has been many attempts to engineer the holographic model whose
the confining feature is taken into account [8, 34–36].

One natural way is to consider a stack of Nc D4-branes, in Type IIA string theory,
whose the world volume possesses one compact spatial direction [8]. In the near-horizon
metric of a near-extremal D4-brane, the compactified spatial circle shrinks to zero size at some
finite value of the radial direction representing a smooth cutoff of the spacetime. This feature
can provide us with the confining spacetime background in which the potential between a
holographic quark-antiquark bound state is mainly contributed by the tension of string lying
along the “hard-wall.” Consequently, the potential is linearly proportional to the separation
between two ends of the string resulting in the confinement of quarks and antiquarks in the
dual gauge theory.

At finite temperature, the time coordinate becomes Wick-rotated, and the asymptotic
circumference of the time circle equals to the inverse of the temperature, T−1. Consequently,
the confining spacetime background at finite temperature has two compact directions. The
metric of the geometry then can be written as

ds2 =
(

u

RD4

)3/2[
δij dx

idxj + dθ21 + f(u)dθ
2
2

]
+
(
RD4

u

)3/2
[
du2

f(u)
+ u2dΩ4

]
, (2.2)

where θ1 is the Euclidean time with temperature dependent period δθ1 = β ≡ T−1, θ2 is the
compact spatial circle with period δθ2 ≡ (4π/3)(R3/2/u1/2Λ ), and f(u) ≡ 1 − (uΛ/u)

3. Notice
that f(u) equals zero for u = uΛ but equals one as u approaches infinity. This f(u) factor
renders the θ2 − u subspace a cigar-like shape, while the θ1 − u subspace has a cylindrical
shape. However, there is an alternative supergravity solutionwhose the time and the compact
spatial coordinates exchange the role. That is, θ1 is the compact spatial coordinate with fixed
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Table 2: Brane configuration of the Sakai-Sugimoto model.

0 1 2 3 4 5 6 7 8 9
Nc D4 o x x x o
Nf D8(D8) o x x x x x x x x

circumference, θ2 is the Euclidean time with period δθ2 = β = (4π/3)(R3/2/u1/2T ), and
f(u) ≡ 1 − (uT/u)

3. In other words, there are two geometries which can be the supergravity
solution. The comparison of the free energy between these two competing geometries tells
us about the deconfinement phase transition in the gauge theory side. It is important to
emphasize that the asymptotic circumference of the time circle can be variable depending on
the temperature, namely, δθ1 = T−1, while the θ2-circle has a fixed circumference. As a result,
the phase transition occurs once the asymptotic circumferences of the two circles become the
same in both geometries such that they have the same value of free energy. This gives rise
to the deconfinement transition line in the T − μ phase diagram of the holographic nuclear
matter [8, 37]. For a concise review, see [38].

2.1. The Sakai-Sugimoto Model

More realistic holographic dual of the large Nc QCD is the Sakai-Sugimoto (SS) model
[13, 14]. The brane construction of the SS model is a stack of Nc D4 branes intersecting
with Nf D8- and Nf anti-D8-branes, where Nf � Nc such that the presence of the probe
branes D8/anti-D8-branes does not affect the D4 background. This is called the probe limit,
corresponding to the quenched approximation in the lattice QCD.

Stack of Nf D8 and D8 branes are introduced as the flavour branes. They are located
at separation distance L0 along the compactified x4 direction at the boundary u → ∞. Open-
string excitation with one end on the flavour branes behave like a chiral “quark.” In the
setup where D8 and D8 are parallel in the (x4, u) projection, each chiral excitation on each
stack of branes transform independently, therefore the theory has a chiral symmetry. For the
setup where D8 and D8 connect, forming a U-shape or a V-shape configuration in the (x4, u)
projection, chiral symmetry is broken.

To obtain a SUSY broken QCD at low energy, the boundary conditions of the
superpartners in the x4 direction are chosen so that the zeroth modes vanish (Scherk-Schwarz
mechanism). For energies below the first KKmodes, the gauge theory therefore contains only
gluons and chiral quarks. If the number of the stack of D4-branes sourceNc is chosen to be 3,
this low-energy gauge theory will look exactly like QCD. The brane configuration of the SS
model is shown in Table 2.

Note that the “x” sign signifies that the coordinate is occupied by an infinite extending
direction of the D-brane world volume and the “o” signmeans that the coordinate is occupied
by a compact direction of the D-brane world volume. This holographic model is a QCD-like
theory in many aspects. (i) It is nonsupersymmetric resulting from the antiperiodicity for
superpartners around the x4 circle. (ii) It has the confining behaviour and the deconfinement
phase transition in the same way as mentioned above. In the confined phase, the x4

coordinate is the cigar-like compact direction and x0 (the Euclidean time) is the cylindrical
compact direction. In the deconfined phase, the two coordinates exchange their roles. To
summarize, the coordinates θ1 and θ2 in (2.2) can be specified in the confined and deconfined
phase as shown in Table 3.
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Table 3: Geometric assignment of the compactified bulk coordinates in the Sakai-Sugimoto model.

Confined phase (T < Tdeconf) Deconfined phase (T > Tdeconf)
θ1 x0 x4

θ2 x4 x0

f(u) 1 − (uΛ/u)
3 1 − (uT/u)

3

(iii) It has dynamical quarks resulting from the presence of the flavour branes. (iv) The
phases of chiral symmetry breaking and chiral symmetric quark-gluon plasma (χS-QGP) can
be realized. There exist two configurations of the flavour D8- and anti-D8-branes, both satisfy
the equation of motion. One is the connected configuration of the D8- and anti-D8-branes
representing the chiral symmetry breaking phase. Another is the parallel configuration of the
D8- and anti-D8-branes lying along the radial direction of the bulk spacetime representing
the chiral symmetric phase. Note that Tchiral = Tdeconf when the separation between the D8-
and anti-D8-branes L0 � 0.97R; R ≡ the radius of the x4 circle, while Tdeconf < Tchiral when
L0 � 0.97R [37].

Since the SS model is the holographic model which gives exactly the particle content
of the QCD at low energy, we will consider the holographic multiquarks in the deconfined SS
model. The idea is to construct a gravity dual of the 5-dimensional gauge theory with chiral
fermions which gives approximately the 4-dimensional QCD at low energy. The inevitable
supersymmetry of the dual gauge theory in the string construction is broken at the position
of the flavour branes used to introduce the chiral fermions. To construct the SS model, stack
of D4-branes is used as the source to generate a curved background of the type IIA string
theory. After taking the near-horizon limit and adding a black hole horizon, we arrive at the
following background metric:

ds2 =
(

u

RD4

)3/2(
f(u)dt2 + δij dxidxj + dx42

)
+
(
RD4

u

)3/2
(
u2dΩ2

4 +
du2

f(u)

)
(2.3)

F(4) =
2πNc

V4
ε4, eφ = gs

(
u

RD4

)3/4

, R3
D4 ≡ πgsNcl

3
s, (2.4)

where f(u) ≡ 1 − u3T/u
3, uT = 16π2R3

D4T
2/9. Note that the compact x4 coordinate (x4

transverse to the probe D8-branes), with arbitrary periodicity 2πR, never shrinks to zero. The
volume of the unit four-sphere Ω4 is denoted by V4 and the corresponding volume 4-form
by ε4. F(4) is the 4-form field strength, ls is the string length, and gs is the string coupling.
The dilaton in this background has u-dependence, and its value changes along the radial
direction u. This is a crucial difference in comparison to the AdS-Schwarzschild metric case
where dilaton contribution is constant.

In the Sakai-Sugimoto model of D4-D8-branes construction, the D4-brane wrapping
the S4 is used as the baryon vertex. Remarkably, it was found that the baryon can also
be realized as an instanton in the bulk of Nc D4-brane-induced background spacetime,
corresponding to baryon in the Skyrme model on the gauge theory side. This instanton can
be described in terms of the Chern-Simons action in the bulk. Therefore, these two pictures
of baryon are equivalent.

A Dn-brane wrapping an internal subspace Sn accommodate aU(1)which will couple
to certain n-form field of the string background and becomes charged under the U(1). To
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· · · · · ·

· · ·

(a) (b) (c)

Figure 1: An illustration of the holographic multiquark states (a) k-baryon with kh = k < Nc and kr =
Nc − k, (b) (Nc + k)-baryon with kh =Nc + k and kr = k, and (c) j-mesonance with kh = 2j and kr =Nc.

cancel this charge for the entire background, a number ofNc strings emerging from the vertex
is required. While a string emerging from the vertex contributes a negative U(1) charge,
a string entering the vertex in the opposite orientation contributes a positive unit of U(1)
charge. Therefore, as long as the number of strings emerging from the vertex subtracting the
number of strings entering the vertex is Nc, the configuration is allowed to exist since the
total charge of the background is still zero.

Based on the charge cancelation at the vertex, three classes of exotic multiquarks
are proposed in [12]. Namely, they are k-baryons, (Nc + k)-baryon, and j-mesonance
(strongly coupled bunch of mesons), corresponding to diquark, some exotic baryons such
as pentaquark and a bunch of mesons, respectively. We parameterize kh as the number of
hanging strings which extends from the vertex to the boundary and kr as the number of radial
strings extending from the vertex to the horizon. Figure 1 shows 3 classes of the holographic
multiquarks. Their conditions are summarized as the following.

For k-baryon,
kh + kr =Nc, kh = k. (2.5)

For (Nc + k)-baryon,

kh − kr =Nc, kh =Nc + k. (2.6)

For j-mesonance,

kh = 2j, kr =Nc. (2.7)

Note that the values of k and j can be as large asNc ×Nf .

2.2. Force Balance Condition

Using the field background shown in the last section, the total action of these exotic
multiquark states can be generally written as

S = SD4 + khSF1 + krS̃F1. (2.8)
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The DBI action of D4-brane

SDBI =
∫
dx0dξpTp, Tp =

(
e−φ(2π)pα′(p+1)/2

)−1√−det
(
g
)
, (2.9)

and the Nambu-Goto action of kh hanging strings and kr radial strings can be written as

SD4 =
τNcuc

√
f(uc)

6πα′
, SF1 =

τ

2πα′

∫L
0
dσ

√
u′2 + f(u)

(u
R

)3
, S̃F1 =

τ

2πα′
(uc − uT),

(2.10)

respectively. Note that τ is the total time over which we evaluate the action and uc is the
position where the D4-brane vertex is located.

Now let us write the force condition. As will be seen later, this is the equilibrium
condition for the existence of the multiquark states. Assume the vertex to be a point at the
cusp position uc that does not receive any distortion from the attached strings. The distortion
of the baryon vertex due to the attached strings is discussed in details in [39, 40]. Because of
the spherical symmetry of the configuration in the (x1, x2, x3) subspace, the action is sensitive
to only the variation in the holographic direction u. The variation of the action gives the
volume term as well as the surface term. The equation of motion is obtained by requiring
that the volume term and surface term vanishes separately. The volume term gives the Euler-
Lagrange equation which determines the shape of the hanging strings. On the other hand, the
surface term provides the equilibrium condition of the configuration at the tip uc under the
variation in the u direction, that is, the force balance condition at the cusp. It can be written
as [12]

Nc

3
G0(x) − khB + kr = 0, (2.11)

where

G0(x) ≡ 1 + x3/2√
1 − x3

, x ≡ uT
uc

< 1, B ≡ u′c√
u′c

2 + f(uc)(uc/RD4)
3
. (2.12)

Obviously, B is always less than one, thus we obtain the equilibrium condition

kh >
Nc

3
G0(x) + kr. (2.13)

Together with (2.5), (2.6), and (2.7), we obtain the lower bound of the hanging string
parameter for each multiquark configuration as

for k-baryon,

kh = k >
Nc

6
(G0(x) + 3), (2.14)

for (Nc + k)-baryon,

kh =Nc + k >
Nc

3
G0(x) + k, (2.15)
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for j-mesonance,

j >
Nc

6
(G0(x) + 3). (2.16)

Note that G0(x) = 1 at T = 0 and it is an increasing function of the temperature.

2.3. Binding Energy and Screening Length

Theoretically, all of these bound states are allowed to exist. But a question arises which
multiquark state is more stable than another. This can be addressed by considering the
binding energies of each class of the multiquarks. Naturally, the binding energy of each of
these holographic bound states is the total energy of the configuration subtracted by the
energy of the free quarks. Similar to the calculation of Wilson loop in [41], the binding energy
in the largeNc limit could be estimated to be the total classical action divided by τ .

The solution or the shape of the hanging strings can be obtained by using the Nambu-
Goto action from (2.10), the regulated energy of the hanging strings (subtracted by energy of
the free quarks) is

EF1 =
1
2π

∫L
0
dσ

√
u′2 +

(
u

RD4

)3

f(u) − 1
2π

∫∞

uT

du. (2.17)

From the equilibrium condition corresponding to the surface term, that is, (2.11) and (2.12),
we obtain

u′2c =
f(uc)B2

1 − B2

(
uc
RD4

)3

, (2.18)

where

B = B(kh, kr , x) =
Nc

3kh
G0(x) +

kr
kh
. (2.19)

Consider SF1 in (2.10), the Lagrangian,

L =

√
u′2 + f(u)

(u
R

)3
, (2.20)

does not explicitly depend on σ, such that we can define the constant of motion

H ≡ L − u′ ∂L
∂u′

= const. (2.21)

This leads to
f(uc)(uc/RD4)

3√
u′2c + f(uc)(uc/RD4)

3
=

f(u)(u/RD4)
3√

u′2 + f(u)(u/RD4)
3
. (2.22)

Eliminating u′c using (2.18) and (2.22), we have the relation

u′2 =
f(u)2(u/RD4)

6

f(uc)(uc/RD4)
3(1 − B2)

− f(u)(u/RD4)
3. (2.23)
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Using the above equation, we obtain the size of the radius of the multiquark state as

L =
R3/2

D4

u1/2c

∫∞

1
dy

√√√√ (
1 − x3)(1 − B2)(

y3 − x3
)(
y3 − x3 − (1 − x3)(1 − B2)

) , (2.24)

and together with (2.17), we also have

EF1 =
uc
2π

⎧⎨
⎩
∫∞

1
dy

⎡
⎣
√√√√ y3 − x3(

y3 − x3
) − (1 − x3)(1 − B2)

− 1

⎤
⎦ − (1 − x)

⎫⎬
⎭. (2.25)

Therefore, the total energy of the vertex D-brane and the radial strings are

E =
NcuT
2π

(√
1 − x3

3x
+
(
kh
Nc

)E
x
+
(
kr
Nc

)
1 − x
x

)

∼ N2
c

L2
,

(2.26)

where E represents the terms within the brace of (2.25).
By numerical calculations, we compare the E/Nc (the energy per degrees of freedom)

versus L (the size of radius of the bound states) of the 3 classes of the multiquark as
in Figure 2. The deeper the binding energy is, the harder the multiquark will melt in the
thermal bath. From Figure 2, the colour singlet Nc-baryon has deeper binding well than
the (k < Nc)-baryon and (Nc + k)-baryon. As expected, the (k < Nc)-multiquark is bound
more tightly as k gets larger. For (Nc + k)-baryon, the bound state is less tightly bound, as
k increases. Similarly, a j-mesonance has the binding energy less than j mesonic states. It
becomes closer to j mesons as j grows.

The screening length L∗ can also be numerically calculated. It is defined to be the
value at which the binding energies become zero from negative values at small distances. The
numerical results, as shown in Figure 3, indicate that the multiquark states of all classes have
smaller screening lengths as the temperature increases, with approximately L∗ ∼ 1/T for a
fixed k, k, and j. Furthermore, L∗ is larger as k and j increases for k-baryon and j-mesonance,
respectively, while it is smaller as k increases for (Nc+k)-baryon. Interestingly, the saturation
of j-mesonance’s screening length occurs as j → ∞, where L∗

j-mesonance approaches the
screening length of a meson L∗

meson.

3. Thermodynamic Properties of Holographic Multiquark

In the non-antipodal SS model, the holographic plasma can have two distinctive phase
transitions; a deconfinement and the chiral symmetry restoration [37]. The deconfinement
could occur at lower temperature than the chiral symmetry restoration. For the temperature
in between the two transitions, quarks and gluons are deconfined from the confining flux tube
but still interact strongly among each other through the remaining screened Coulomb-type
SU(Nc) potential. Therefore, it is possible to have the multiquark phase in the temperature
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E
/
N

c

L
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0.05

0

−0.05
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−0.2

−0.25

k

Nc Nc + k1

Nc + k2

Figure 2: Comparison of the potential per Nc between Nc-baryon, k-baryon, and (Nc + k)-baryon for
k/Nc = 0.8, k1/Nc = 2/3, and k2/Nc = 2 at temperature T = 0.25.

range between that of the deconfinement and the chiral phase transition. This is consistent, at
least in a qualitative way, with the studies of the multibody bound states in the sQCD in the
framework of the real QCD [23]mentioned in the previous section.

To actually understand the physics of deconfined QGP, it is thus crucial to investigate
the thermodynamical properties of the holographic multiquark phase. In order to extract
the thermodynamic potential from the gravity dual model, the path integral approach in
quantum gravity [42] has been used. In this technique, the time direction is circled with
period β = 1/T in the same manner as the thermal circle in the finite temperature quantum
field theory. As discussed in [43] based on the early works [44, 45], the grand canonical
potential, or the Gibbs free energy, Ω(T, μ) has the leading contribution from the classical
Euclidean action of the bulk theory in the grand canonical ensemble, that is,Ω(T, μ) ∼ Son-shell

bulk .
Similarly, the Helmholtz free energy F(T, nb) has the leading contribution from the Legendre
transform with respect to the baryonic charge of the classical Euclidean action, that is,
F(T, nb) ∼ S̃on-shell

bulk in the canonical ensemble. If we are interested in the situation of nonfixed
baryon number density but fixed chemical potential, the relevant thermodynamic potential
is the grand canonical potential.

The deconfinement phase transition can be realized as the Hawking-Page transition
due to the competition between the action of the background geometry corresponding to the
confined phase and the action of the background corresponding to the deconfined phase [8].
Since the coloured multiquark matter can exist only in the deconfined phase (however, the
colour-singlet multiquarks such as a baryon can also exist in the confined phase), its grand
canonical potential in the Sakai-Sugimoto model is β times the combination of the classical
action of the deconfining spacetime geometry and the configuration of flavour sector, which
includes Nf D8-D8-branes, the probe D4-brane vertex, and the radial strings. Note that the
part of hanging strings, extending from the baryon vertex to the flavour branes, is neglected,
and we assume that there is no distortion of the vertex due to the connecting strings (such
distortion is discussed in [39, 40]). As a result, the baryon vertex is embedded into the flavour
branes and becomes an instanton on them.
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Figure 3: (a) the screening lengths of k-baryons with respect to k, (b) the screening lengths of (Nc + k)-
baryons with respect to k, and (c) the screening lengths of j-mesonance with respect to j for T = 0.15−0.35.

Intriguingly, whereas the deconfining spacetime geometry action (scales as N2
c )

dominates the action of the fundamental matter sector (scales asNcNf), the dominating part
can be ignored in the consideration of the holographic phase transition in the deconfined
phase. Above the deconfinement, the multiquarks phase competes with the vacuum phase
and the chiral-symmetric quark-gluon plasma. In this section, we will explore the phase
diagram of the deconfined nuclear matter especially the region of the parameter space where
themultiquark phase is dominant. Thenwewill study the thermodynamics of themultiquark
nuclear matter in the dilute and dense limits.
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Figure 4: Configurations of χS-QGP (a) vacuum (b), and multiquark nuclear phase (c) in x4 −u projection.

3.1. Phase Diagram

In order to determine a phase diagram, we need to find which phase of nuclear matter is
thermodynamically preferred to others in a particular region of the parameter space. For
the grand canonical ensemble at a fixed μ, the thermodynamically preferred phase is the
configuration with the grand canonical potential smaller than that of all other phases.

We will first determine the brane configuration in the presence of the external sources
by minimizing the classical action. The position of the tip uc of the D8-D8 will be determined
from the equilibrium condition at the tip. The resulting brane configuration corresponds
to the multiquark nuclear phase. On the other hand, the vacuum phase corresponds to
the configuration with zero sources and density, and the χS-QGP phase is dual to the
brane configuration with parallel branes without a tip. The x4 − u projecion of the brane
configuration for each deconfined phase is schematically shown in Figure 4. Then we will
define the normalized grand canonical potential using the action of the D8-branes. The action
of each brane configuration is divergent from the limit u → ∞. By subtracting with the
action of the vacuum configuration, we can regulate the grand canonical potential of each
configuration. By comparing the grand canonical potential of each phase, we finally draw a
phase diagram in (μ, T) parameter space.

Start with the DBI action of the D8-branes

SD8 = −μ8

∫
d9Xe−φ Tr

√
−det

(
gMN + 2πα′FMN

)
, (3.1)

where gMN is the induced metric of the D8-world volume and the field strength tensor of the
gauge groupU(Nf) living in theNf flavour branes is

F = dA + iA ∧A. (3.2)

While the full D8-brane world-volume gauge fields is

A = ASU(Nf ) +
1√
2Nf

Â, (3.3)
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we turn on only the time component of the diagonal subgroup U(1) part, Â/
√
2Nf in order

to introduce the finite chemical potential, or equivalently finite baryon density [43, 46]. From
the deconfining spacetime metric, (2.3), the DBI action of the D8-branes becomes

SD8 = N
∫
duu4

√
f(u)

(
x′
4(u)
)2 + u−3(1 − (â′0(u))2), (3.4)

where the factor N is defined to be

N ≡ μ8βNfΩ4V3R
5

gs
, (3.5)

as the result of integrating out all world-volume coordinates except the holographic direction
u. And â are defined as

â =
2πα′Â
R
√
2Nf

. (3.6)

The action does not depend on â0, hence we can define a constant

d ≡ δSD8

δF̂0u

(3.7)

=
uâ′0(u)√

f(u)
(
x′
4(u)
)2 + u−3(1 − (â′0(u))2)

, (3.8)

which can be interpreted as the electric displacement field along the holographic direction.
Similarly for the variation of action with respect to x4(u), we can define another constant of
motion, says Γ, so that we can rearrange to obtain

(
x′
4(u)
)2 = 1

u3f(u)

[
f(u)

(
u8 + u3d2)
Γ2

− 1

]−1
, (3.9)

from which at large u

x4(u) ≈ L0

2
− 2
9

Γ
u9/2

, (3.10)

where L0 is the separation between D8 and D8 branes at u → ∞ defined by

L0 ≡ 2
∫∞

uc

x′
4(u)du. (3.11)

The parameter Γ can be thought of as the curvature of the D8-D8-branes around the cusp. It
becomes zero when the flavour embedding is in the parallel configuration representing the
chiral-symmetric QGP. According to [47], this means that it can be used as an order parameter
of the nuclear matter/χS-QGP phase transition.
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Wewill set L0 = 1 to allow the possibility of the chiral symmetry restoration as separate
phase transition from the deconfinement. Apply the equilibrium condition at the cusp uc (see
the appendix), we obtain Γ in terms of x′

4(uc),

Γ =
f(uc)

√
u8c + u3cd2√

f(uc)
(
x′
4(uc)

)2 + u−3c x′
4(uc) (3.12)

= u3cf(uc)

[(
u5c + d

2
)
− d2η2c(T, ns)

9f(uc)

]
, (3.13)

where

ηc(T, ns) ≡ 1 +
1
2

(
uT
uc

)3

+ 3ns
√
f(uc). (3.14)

Note that the formula of x′
4(uc) is derived from the variation of the total action, in which the

D8-branes action has been transformed to possess the dynamical variable d rather than a′0,

∂S̃total

∂uc
=
∂
(
S̃D8 + SD4 + S̃F1

)
∂uc

= 0. (3.15)

This is reminiscent of the way we obtain the equilibrium condition of the multiquark vertex,
(2.11), minimizing the surface terms with respect to uc.

It is important to emphasize that the parameter ns is the number of radial strings
in the unit of Nc. Due to the zero length of the hanging strings, we cannot distinguish the
different classes of multiquarks proposed in Section 2 for a particular value of ns, but some
possibilities, j-mesonance for example, can be ruled out by examining their thermodynamic
stability. This will be shown in this subsection.

Before going further to calculate the classical action, let us comment about the electric
displacement d. It has been shown in [48] that it is related to the baryon number density.
The baryon number density corresponds to the number density of instantons, n4, on the D8-
branes. It also contributes to the Chern-Simons (CS) action of the flavour branes [13].

Beginning with the D8-brane CS term [49]

SCS
D8 =

μ8

3!

∫
R4×R+×S4

C3 ∧ Tr
(
2πα′F)3. (3.16)

It is convenient to rescale the RR (Ramond-Ramond) field following the Appendix of [13]
such that

SCS
D8 =

1
48π3

∫
R4×R+×S4

C3 ∧ TrF3

=
1

48π3

∫
R4×R+×S4

F4 ω5(A),

(3.17)
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where the last expression is obtained through the integration by part. F4 = dC3 is the RR
4-form field strength and ω5(A) is the CS 5-form:

ω5(A) = Tr
(
AF2 − 1

2
A3F +

1
10

A5
)
, (3.18)

satisfying dω5 = TrF3. Using the fact that integrating the F4 flux over the S4 in the Nc D4-
branes background gives

1
2π

∫
S4
F4 =Nc, (3.19)

and the relevant term is only the first term in the CS 5-form, (3.18), once turning on only the
time-component of the diagonalU(1)V field, we obtain

SCS
D8 =

Nc

24π2

∫
R4×R+

1√
2Nf

Â0 ∧ Tr(F ∧ F). (3.20)

Assuming a uniform distribution of D4-branes in R
3 at u = uc, we have [50]

1
8π2

Tr(F ∧ F) = R−3n4δ(u − uc)d3x du, (3.21)

where n4 is defined to be the (dimensionless) number density of instantons, or the wrapped
D4-branes, at u = uc. From the viewpoint that the low-energy effective theory on the D8-brane
includes the Skyrme model [13], it is natural to interpret n4 as the baryon number density.

Using (3.6), (3.20), and (3.21), we obtain

SCS
D8 =

n4NcβV3

2πα′R2

∫∞

uc

du â0(u) δ(u − uc). (3.22)

From both the DBI and CS parts of D8-branes action, the equation of motion with respect to
theU(1) gauge field gives [48]

n4 =
2πα′R2N
βV3Nc

d. (3.23)

Note that this reflects the one-dimensional electrostatic effect in which the point electric
charges are put at uc, generating constant electric field in the holographic direction.

The normalized grand canonical potential from the holographic model can be defined
using the D-brane action as

Ω
(
μ
)
=

1
NSD8[x4(u), â0(u)]cl. (3.24)

Since the D-brane action diverges from the limit u → ∞ of the integration, the grand
canonical potential needs to be regulated by subtracting with the grand canonical potential
of the vacuum phase at the same temperature.
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Apart from the grand canonical potential, the chemical potential also needs to be
holographically identified in the dual bulk theory. To this end, the time component of the
U(1)V gauge field Â0 is taken into account. From the field/operator matching scheme,
a bulk field evaluated at u → ∞, that is, the boundary of the spacetime background
plays a role as the source of the dual operator in the generating function of correlation
functions in quantum field theory. In other words, this nonnormalizable mode of the bulk
field is dual to the coefficient of the field operator. Since the chemical potential is the
coefficient of the charge density operator term, it can be holographically identified as
Â0(∞). By rescaling for convenience, we can write the dimensionless chemical potential
as

μ = â0(∞). (3.25)

Similarly, the baryon number density in our normalization is given by

nb = −∂Ω
(
T, μ
)

∂μ
= d, (3.26)

even though the true baryon number density is n4 defined in (3.23). Consequently, d can
then be used to denote the baryon number density.

Since the free energy in the canonical ensemble is the combination of the on-shell
Legendre-transformed D8-brane action and the source term, it is convenient to obtain μ
through

μ =
∂FE(T, d)

∂d
, (3.27)

where the free energy is holographically defined as the Legendre-transformed D8-brane
action plus the source terms

FE(T, d) =
1
N
(
S̃D8[T, x4(u), d(u)]on-shell + Ssource(T, d, uc)

)
. (3.28)

The Legendre-transformed action S̃D8 is given by

S̃D8 = SD8 +N
∫∞

uc

d(u)âV
′

0 du, (3.29)

= N
∫∞

uc

duu4
√
f(u)

(
x′
4(u)
)2 + u−3

√
1 +

d2

u5
(3.30)
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The chemical potential can then be written as

μ =
1
N

⎧⎨
⎩
∫∞

uc

du

(
δS̃D8

δd(u)
+
δS̃D8

δx′
4

∂x′
4

∂d

)∣∣∣∣∣
on-shell

T,L0,uc

+
∂uc
∂d

∣∣∣∣
T,L0

(
∂S̃D8

∂uc
+
∂Ssource

∂uc

)∣∣∣∣∣
on-shell

d,T,L0

+
∂Ssource

∂d

∣∣∣∣
T,L0,uc

⎫⎬
⎭.

(3.31)

The second, third, and fourth terms drop out. It is clear from (3.15) corresponding to the
equilibrium at the cusp that the third and fourth terms vanish. For the second term, it is
because δS̃D8/δx

′
4(u) is constant as can be seen from (3.30) that S̃D8 depends only on x′

4.
Integrating over the remaining gives ∂L0/∂d, which is zero, due to the scale fixing condition
L0 = 1. Hence we obtain

μ =
∫∞

uc

â′0(u) +
1
N

∂Ssource

∂d

∣∣∣∣
T,L0,uc

. (3.32)

Now, it is ready to express the grand canonical potential for the multiquark (baryon
corresponds to ns = 0) phase. Using (3.24), (3.4), (3.8), (3.9), we obtain the formulae of the
grand canonical potential for the multiquark matter. The chemical potential can be calculated
from (3.32) by eliminating a′0 via (3.8) and substituting (3.9). The grand canonical potential
and the baryon chemical potential of the phases can be expressed as the following:

Nuclear (Including Exotics) Phase

Ωnuc =
∫∞

uc

du

[
1 − Γ2

f(u)(u8 + u3d2)

]−1/2
u5√
u5 + d2

, (3.33)

μnuc =
∫∞

uc

du

[
1 − Γ2

f(u)(u8 + u3d2)

]−1/2
d√

u5 + d2
+
1
3
uc

√
f(uc) + ns(uc − uT ). (3.34)

Recall that Γ depends on uc, d, T and ns according to (3.12) and (3.14). The last two terms in
(3.34) come from the derivative of the source-term action with respect to d.

There are at least other two phases that compete with the multiquark phase: the
vacuum phase and the chiral-symmetric QGP phase. From the above formula of Ωnuc and
μnuc, we can obtain the grand canonical potential and the chemical potential of the vacuum
simply by (i) setting d = 0, (ii) dropping the source terms in (3.34), (iii) changing the lower
bound of integration from uc to u0, and (iv) replacing Γ by the constant of motion in the
vacuum configuration, from δSD8/δx

′
4, Γ0 = f(u0)u

8
0. Thus we obtain

Vacuum Phase, d = 0

Ωvac =
∫∞

u0

du

[
1 − Γ20

f(u)u8

]−1/2
u5/2. (3.35)
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Similarly, the grand canonical potential and the chemical potential of the χS-QGP phase can
be obtained by setting x′

4(u) = 0, reflecting its parallel configuration, and turning off the
source terms. That is, setting Γ = 0 in (3.33) and (3.34), changing lower bound of integration
to uT and dropping the source terms in (3.34) give

χS-QGP Phase, x′
4(u) = 0

Ωqgp =
∫∞

uT

du
u5√
u5 + d2

, (3.36)

μqgp =
∫∞

uT

du
d√

u5 + d2
. (3.37)

The phase transition in the parameter space (μ, T) is obtained by comparing the grand
canonical potential between two phases at a particular T and μ. Let us say the transition
between phase 1 with the grand canonical potential Ω1 and phase 2 with Ω2. Phase 1 is
thermodynamically preferred once Ω1 < Ω2 and vice versa. There is a first order phase
transition when Ω1 = Ω2. This kind of phase transition can be seen in the transition between
the vacuum and χS-QGP phases and the transition between the χS-QGP and the nuclear
matter. However, the phase transition between the vacuum and nuclear matter phases is of
the second-order as seen from (3.34). The density d is continuous near μ = μonset, which is
μnuc(d = 0), and behaves as d ∼ (μnuc − μonset). Note that this reflects the absence of the
interactions between the multiquarks and baryons. As a result, the critical chemical potential
defined to be the value, at which

∂d

∂μ
= −∂

2Ω
∂μ2

(3.38)

has a discontinuity, is given by μonset. By numerical calculations, the phase transition lines
can be obtained as shown in Figure 5. The phase diagram between the chiral-broken vacuum
and the chiral symmetric QGP phases was first obtained in [51]. The phase diagram of
all 3 deconfined phases including the baryonic nuclear phase (without the multiquarks) is
originally discussed in [48].

This phase diagram also shows the presence of the multiquark phase which can be
mixed in the region of normal baryon phase (with ns = 0), say B + C for ns = 0.1, and C for
ns = 0.3. The multiquark matter with 0 < ns < 0.5 is less stable than the normal baryon due
to the larger value of the grand canonical potential. Above ns = 0.3, it can be shown that the
multiquark phase is unstable to density fluctuations, that is, ∂μ/∂d < 0, in some regions of
high T and certain range of μ. For approximately ns > 0.5, the multiquark phase is unstable
thermodynamically to density fluctuations for most of the temperatures.

If the multiquark matter can exist in the quark-gluon plasma, it should mix with the
normal baryon states in thermal equilibrium with the populations following the Boltzmann
factor

exp
(
− E

kBT

)
, (3.39)

where E is the binding energies for the states. It is interesting to explore more about the
population of these multiquark states in the quark-gluon plasma potentially produced in the
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Figure 5: The phase diagram of deconfined nuclear matters in the Sakai-Sugimoto model. Multiquark
phase is shown as the region on the lower right corner where it is divided into 3 parts according to the
value of the colour strings ns. A, B, C represent the region where multiquark phase with ns = 0 (Nc-
baryon), 0.1, 0.3 is the most thermodynamically preferred.

heavy-ion collision experiments such as the RHIC and the LHC. Existence of thesemultiquark
states contribute significantly to the hydrodynamical and thermodynamical properties of the
deconfined plasma.

3.2. Thermodynamic Relations

In the grand canonical ensemble, the grand canonical potential GΩ is the function of the
dynamical variables: the volume V , the temperature T , and the chemical potential μ. Its
differential is

dGΩ = −PdV − SdT −Ndμ, (3.40)

where the coefficients P , S, andN are the pressure, entropy, and the total number of particles,
respectively. It is better to understand the system of QGP in terms of volume density of
extensive parameters. Let us define the volume density of GΩ, S, and N to be Ω, s, and d,
respectively. Hence, the pressure is

P = −GΩ

V
≡ −Ω(T, μ). (3.41)

From (3.26) and (3.41), we use the chain rule to obtain

∂P

∂d

∣∣∣∣
T

=
∂μ

∂d

∣∣∣∣
T

d, (3.42)

so that

P(d, T, ns) = μ(d, T, ns)d −
∫d
0
μ
(
d′, T, ns

)
d
(
d′), (3.43)

where we have assumed that the regulated pressure is zero when there is no nuclear matter,
that is, d = 0.
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While the equations of motion cannot be obtained analytically, we can find them in the
limit of very small and very large density. Using (3.34) and (3.43), we take d ≈ 0 and use the
binomial expansion, then (see [52] for details)

P � α0
2
d2 − 3β0(ns)

4
d4, (3.44)

where

α0 ≡
∫∞

u0

du
u−5/2

1 − f0u80/fu8
,

β0(ns) ≡
∫∞

u0

du
u−5/2

2
√
1 − f0u80/fu8

(
f0u

3
0

fu8 − f0u80

(
1 − η20

9f0
− u50
u5

)
+

1
u5

)
.

(3.45)

Note that we have used the fact that ηc of (3.14) becomes η0 + O(d), where η0 is ηc with uc
replaced by u0. Similarly, f0 is defined to be f(u)with u = u0. On the other hand, for the limit
of large d in (3.34), the pressure from (3.43) becomes [12]

P � 2
35

(
Γ(1/5)Γ(3/10)

Γ(1/2)

)
d7/5. (3.46)

Numerically, the relations between the pressure and the density of the multiquark
matter for different values of ns are plotted in Figure 6. This is consistent with the results of
analytic calculations that P ∼ d2 for small d and P ∼ d7/5 for large d. Since the relations are
not sensitive to the change of T , therefore we present only the plots at T = 0.03. The transition
from small to large d is apparent at dc � 0.072. We can also see the dependence of pressure
on ns from the plots. The pressure of the multiquarks with larger ns is smaller for small d. On
the other hand, the pressure of the multiquarks with smaller ns is merely slightly larger in
the large d limit. Actually, the pressure is nearly insensitive to the changing of ns for d > dc
as is implied from (3.46).

From the differential of the free energy, the entropy density can be written as

s = −∂FE

∂T
, (3.47)

where FE is the free energy density which relates to the grand potential density as FE =
Ω + μd. Using (3.41), the entropy density becomes

s =
∂P

∂T
−
(
∂μ

∂T

)
d. (3.48)

Since the pressure P and the contribution of D8-branes to the baryon chemical potential (μ −
μsource) are insensitive to the changing of the temperature, the entropy density is dominated
by the derivative of μsource with respect to T , That is,

s � −
(
∂μsource

∂T

)
d. (3.49)
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Figure 6: Pressure versus density of the multiquark phase in logarithmic scale at T = 0.03, zoomed in
around the transition region.

It is found numerically in [52] that uc is approximately constant with respect to the
temperature range between the gluon deconfinement and the chiral symmetry restoration,
we thus obtain

∂μsource

∂T
=

∂

∂T

(
1
3
uc

√
f(uc) + ns(uc − uT )

)

≈ −
(
16π2/9

)3
T5

u20

√
1 − (uT/u0)

3
− ns 32π

2T

9
,

(3.50)

such that

s ≈
(
16π2/9

)3
T5d

u20

√
1 − (uT/u0)

3
+ ns

32π2Td

9
. (3.51)

The entropy density has the temperature dependence ∼T5 for small ns, whereas it is
dominated by the colour term, that is, s ∝ nsT , for larger ns. This agrees with the numerical
results shown in Figure 7. We already know that the free quarks and gluons in the χS-QGP
have the entropy density scales as T6 [48]. Intriguingly, the presence of the colour charges
of multiquarks implies that the multiquark matter in the sQGP behave less like free particles
with the weaker temperature dependence s ∼ nsT . Also confirmed numerically in Figure 7 is
the linear dependence of the entropy density to the density d.

From (3.43), it is important to note that the pressure is mainly contributed from the
flavour D8-brane part since μsource is mostly constant with respect to the density. This is
because the constant part of μwith respect to the density will cancel out when substituted into
(3.43). Conversely, the entropy density is mainly contributed from the source term, namely,
the vertex and radial strings.

Lastly, the dependence of the baryon chemical potential μ on d is plotted in Figure 8.
The μ − d relation is found to be mostly independent of the temperature. It is found that the
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Figure 7: Entropy versus temperature of the multiquark phase in logarithmic scale for ns = 0 (a), 0.3 (b).
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Figure 8: The baryon chemical potential versus number density of the multiquark phase at T = 0.03.

relation can be well approximated by the power lawwith μ ∼ d for small density and μ ∼ d2/5

for large density. The difference indicates that the behaviour of multiquark quasiparticles is
more like fermions as a consequence of the DBI action [48].
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4. Magnetic Properties of Holographic Multiquarks in
the Quark-Gluon Plasma

In the deconfined SS model, the multiquark phase has been shown to be the most
thermodynamically preferred in the extremely dense andwarm condition (in the temperature
range above the deconfinement but below the chiral symmetry restoration). It is possible
that the real dense and warm QCD soup also energetically prefers the multiquark phase in
such condition. In the early universe, during the electroweak phase transition, the Higgs
mechanism could create enormous magnetic fields in the boundary region between two
domains with different vacuum expectation values [53]. These gigantic fields could have
crucial impact on the phase transitions of the warm nuclear soup at later epoch. Collision of
energetic charged particles at the hadron and heavy ion colliders could produce extremely
large magnetic fields in the vicinity of the collision point. At RHIC and LHC, it has been
estimated that the induced local magnetic fields could be as large as 1014-15 Tesla [54]. Finally,
magnetic fields of order of 1010 Tesla could be produced by the magnetars on the large
astrophysical scale [55]. Therefore, it is interesting to investigate the effects of extremely
strong magnetic fields to the multiquark phase above the deconfinement temperature.

To mimic behaviour of the strongly coupled nuclear matter in the presence of a
uniformmagnetic field, we turn on another component of theU(1) ⊂ U(Nf) field denoted as
aV3 . The nonnormalizable modes of aV3 are identified with the vector potential of the magnetic
field B (not to be confused with B used in Section 2), defined in units of 1/2πα′. We choose
the direction of the magnetic field so that

aV3 = Bx2. (4.1)

As before, the baryon chemical potential μ of the corresponding gaugematter at the boundary
is identified with the nonnormalizable mode of the DBI-gauge field by

μ = aV0 (u −→ ∞). (4.2)

Additional sources of the baryonic charge in terms of the instanton and strings
contribute the following action

Ssource = Nd(uc)
[
1
3
uc
√
f(uc) + ns(uc − uT )

]

� Ndμsource,

(4.3)

where ns = kr/Nc is the number of radial strings in the unit of 1/Nc as in the zero magnetic
field case. The electric displacement, d(uc) ≡ ∂L/∂aV

′
0 |uc , representing the baryonic charge

density from the D4 at uc has been approximated to be d (the exact value is d−(3/2)BaA1 (∞)).
This action does not contain the gauge fields of the flavour branes and thus does not affect the
equations of motion. However, it contributes tidal weight to the total configuration, pulling
down the flavour branes closer to the horizon. The scale-fixing condition L0 = 1 is determined
by the equilibrium between this tidal weight of the additional sources (including the tension
of the colour strings) and the tension of the flavour branes. The position uc of the tip of the
connecting branes determined from this condition will also depend on the magnetic field in
presence.
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The response of the flavour branes to the magnetic field is encoded in the axial aA1
component of the U(1) induced through the Chern-Simons action of the branes in the bulk.
In the boundary gauge theory, this corresponds to the axial anomaly described by the Wess-
Zumino-Witten action [56]. The non-normalizable mode of aA1 at the boundary is identified
with the response of the chiral condensate to the external magnetic field, aA1 (u → ∞) ≡ ∇ϕ,
which we will call the pion gradient.

The D-brane and the Chern-Simons action of the configuration can be calculated
straightforwardly to be

SD8 = N
∫∞

uc

duu5/2

√
1 +

B2

u3

√
1 + f(u)

(
a′A1
)2 − (a′V0 )2 + f(u)u3x′2

4 ,
(4.4)

SCS = −3
2
N
∫∞

uc

du
(
∂2a

V
3 a

V
0 a

A′
1 − ∂2aV3 aV

′
0 a

A
1

)
, (4.5)

whereN =NcR
2
D4/(6π

2(2πα′)3) defines the brane tension. To preserve the gauge invariance
of the total action in the situation where the gauge transformation does not vanish at the
spatial infinity, addition of surface terms effectively results in the factor 3/2 in the Chern-
Simons action [57].

Appearance of horizon in the background spacetime connects classical behaviour of
the bulk physics to the physics of the quantum gaugematter at the boundary in a holographic
manner. The brane-bulk interaction provides a solid correspondence between bulk fields and
operators of the gauge theory on the boundary. Classical solutions of the gauge fields on the
D8-D8 probe as well as its geometric configuration will describe physics of the dense strongly
coupled nuclearmatter in the presence of the external magnetic field in a holographicmanner.

By conventional variational method, the equations of motion with respect to the gauge
field components are given by the Euler-Lagrange equation with respect to the gauge field
component aV0 , a

A
1 ,

√
u5 + B2u2f(u)a′A1√

1 + f(u)
(
a′A1
)2 − (a′V0 )2 + f(u)u3x′2

4

= jA − 3
2
Bμ + 3BaV0 , (4.6)

√
u5 + B2u2a′V0√

1 + f(u)
(
a′A1
)2 − (a′V0 )2 + f(u)u3x′2

4

= d − 3
2
BaA1 (∞) + 3BaA1 . (4.7)

Note that d, jA are the baryon charge density and current density of the dual gauge matter at
the boundary (u → ∞) given by

jμ(x, u −→ ∞) ≡ δSeom

δAμ

∣∣∣∣∣
u→∞

≡
(
d,�jA

)
.

(4.8)
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They can be presented with the gauge fields as

d =

√
u5 + B2u2a′V0√

1 + f(u)
(
a′A1
)2 − (a′V0 )2 + f(u)u3x′2

4

∣∣∣∣∣∣∣
∞

− 3
2
BaA1 (∞),

jA =

√
u5 + B2u2f(u)a′A1√

1 + f(u)
(
a′A1
)2 − (a′V0 )2 + f(u)u3x′2

4

∣∣∣∣∣∣∣
∞

− 3
2
Bμ.

(4.9)

The action does not explicitly depend on x4, consequently the associate constant of
motion allows us to rewrite x′

4(u) as the following:

(
x′
4(u)
)2 = 1

u3f(u)

⎡
⎣u3[f(u)(C(u) +D(u)2) − (jA − (3/2)Bμ + 3BaV0

)2]
F2

− 1

⎤
⎦

−1

, (4.10)

where

F =
u3c
√
f(uc)

√
f(uc)

(
C(uc) +D(uc)2

)
− (jA − (3/2)Bμ + 3BaV0 (uc)

)2
x′
4(uc)√

1 + f(uc)u3cx′2
4 (uc)

, (4.11)

and C(u) ≡ u5 + B2u2, D(u) ≡ d + 3BaA1 (u) − 3B∇ϕ/2.
From the scale-fixing condition

L0 = 2
∫∞

uc

x′
4(u)du = 1, (4.12)

the position of the tip uc of the brane configuration is determined by the equilibrium of forces
to be, (see the appendix),

(
x′
4(uc)

)2 = 1
fcu

3
c

⎡
⎢⎣ 9
d2

(
fc
(
Cc +D2

c

) − (jA − (3/2)Bμ + 3BaV0 (uc)
)2)

(
1 + (1/2)(uT/uc)

3 + 3ns
√
fc
)2 − 1

⎤
⎥⎦. (4.13)

The introduction of the Chern-Simons interaction of the gauge fields to the magnetic field
results in the dependence of x′

4 on the gauge field aV0 , a
A
1 . It is consequently required to solve

(4.6), (4.7), and (4.12) simultaneously. Since the physical parameters, μ,∇ϕ, also depend on
the gauge field components by aV0 (∞) = μ, aA1 (∞) = ∇ϕ, we need a triple-shooting algorithm
to solve for the solutions numerically.

Under the boundary conditions aV0 (uc) = μsource, a
A
1 (uc) = 0, the values of uc, μ,∇ϕ

are chosen so that they solve the equations of motion and satisfy aV0 (∞) = μ, aA1 (∞) = ∇ϕ.
If the solutions also satisfy the scale fixing condition (4.12), we keep the solutions, otherwise
we adjust the value of uc and repeat the shooting procedure.
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Figure 9: Position uc of the vertex for ns = 0 (normal baryon) and fixed jA = 0 as a function of (a) d with
fixed B = 0.10, T = 0.10, (b) B with fixed d = 1, T = 0.10, (c) T with fixed B = 0.10, d = 1. The lower (blue)
line is the configuration A with uc close to uT , and the upper (red) line is the configuration B with large
separation between uc and uT .

4.1. Two Multiquark Configurations and the Multiquark Merging

The numerical solutions obtained by the shooting algorithm reveal two possible multiquark
configurations, one with small and one with large uc. The small-uc configuration (configura-
tion A) has longer stretch in the u-direction, therefore it contains higher gluon content and
larger energy. The free energy of this configuration is consequently larger than the large-uc
configuration (configuration B) and becomes less energetically favoured. The relationships
between uc and the baryonic density, the magnetic field, and the temperature are shown in
Figure 9 (from [58]).

From Figure 9, the density dependence of the two configurations shows that as
density increases, configurations A and B diverge from each other. They become two
distinctive phases at large densities. On the other hand, the increase of magnetic field and
temperature merges the two configurations together. At the critical field and/or temperature,
configurations A and B merge and disappears (i.e., they do not satisfy the scale-fixing
condition anymore).

In Figure 10, the chemical potential and the pion gradient response of the multiquark
phase are plotted as functions of the magnetic field for the multiquark phase with the
number of colour strings ns = 0, 0.1, 0.2. Magnetic merging occurs at higher field for the
multiquarks with smaller ns. Interestingly, the less-preferred configuration A has a negative
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Figure 10: Comparison between the baryon chemical potential (a) and the pion gradient (b) as a function
of B at fixed jA = 0, d = 1, T = 0.10; for ns = 0 (normal baryon), the bottom graph; ns = 0.10, the middle
graph; ns = 0.20, the top graph. The blue lines are the configurationAwith uc close to uT , and the red lines
are the configuration Bwith large separation between uc and uT .

linear response ∇ϕ to the magnetic field for small fields. Thorough investigation in [58]
reveals that both multiquark configuration A, B are more thermodynamically preferred
than the magnetized vacuum, and each configuration is stable under density fluctuations
since

∂2FE

∂d2
=
∂μ

∂d
> 0, (4.14)

where the free energy FE will be defined in the next subsection.
We would like to emphasize that there are actually two possible multiquark phases

for the deconfined nuclear matter at finite density. Even though phase B is more energetically
preferred, both multiquark phases could coexist in general situation. Large magnetic field
or high temperature could merge the two multiquark configurations into one. Remarkably
once they merge, the multiquark can no longer exist since it does not satisfy the scale fixing
condition. They would either turn into a multiquark configuration with larger density or a
chiral-symmetric QGP. We will discuss more on the thermodynamic properties and phase
diagram of the multiquark phases in the subsequent sections.

4.2. Thermodynamic Properties of the MQ-∇ϕ Phase

The holographic principle conjectures that the partition function of the string theory in the
bulk is equal to the partition function of the gauge theory on the boundary. The free energy
of the gauge matter at the boundary is equivalent to the string action in the bulk, namely, the
DBI action up to a periodicity factor [59]. The D8-brane action from (4.4) can be calculated to
be

SD8 = N
∫∞

uc

duC(u)

√√√√√ f(u)
(
1 + f(u)u3x′2

4

)
f(u)

(
C(u) +D(u)2

)
− (jA − (3/2)Bμ + 3BaV0

)2 . (4.15)
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Figure 11: Relation between u0 and external magnetic field B of the vacuum for (a) the temperature T =
0.02–0.15, the upper lines have higher temperatures, (b) u0 saturates to the approximate value of 1.23 at
large field for all temperatures (only T = 0.10 curve is shown here).

The action is divergent from the limit u → ∞ and we need to regulate it using the action of
the magnetized vacuum. For the magnetized vacuum, the field aV0 , a

A
1 , the baryon density,

and chemical potential are set to zero giving

S
[
magnetized vacuum

]
=
∫∞

u0

√
C(u)

(
1 + f(u)u3x′2

4

)∣∣∣∣
vac
du, (4.16)

where

x′
4(u)
∣∣
vac =

1√
f(u)u3

(
f(u)u3C(u)/f(u0)u30C(u0) − 1

) . (4.17)

The position u0 is the tip of the connecting brane configuration, since there is no source,
x′
4(u0) → ∞ and the branes and antibranes connect smoothly. Figure 11 shows u0 as a

function of the magnetic field and temperature. The value of u0 converges to approximately
1.23 for high fields for all temperatures.

The regulated free energy at fixed density is then defined to be

FE(d, B) ≡ Ω
(
μ, B
)
+ μd, (4.18)

where Ω(μ, B) = S[a0(u), a1(u)](e.o.m.) − S[magnetized vacuum], and the total action
S[a0(u), a1(u)](e.o.m.) is given by SD8 + SCS.

The corresponding magnetization at fixed density is subsequently

M(d, B) = − ∂FE(d, B)
∂B

∣∣∣∣
d

. (4.19)

For ns = 0, 0.1, 0.2 we can plot the free energy andmagnetization of the multiquark-∇ϕmatter
as a function of the magnetic field as shown in Figure 12. Configuration A has larger free
energy and magnetization than configuration B. The magnetic merging is clearly visible at
critical fields. The critical field for multiquark with higher number of colour strings ns is
smaller, reflecting less stability. The magnetization is approximately linear for small fields for
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Figure 12: The free energy and magnetization of the multiquarks nuclear matter at fixed jA = 0, d = 1, and
T = 0.10 for ns = 0 (red), 0.10 (green), 0.20 (blue). The upper lines are the configuration A with uc close to
uT , and the lower lines are the configuration Bwith large separation between uc and uT .

both configurations. The free energy of configuration A is clearly larger than configuration
B, implying that it is less energetically preferred. Here and henceforth, we will focus our
consideration to the multiquarks in configuration B.

For moderate fields B = 0.05–0.15, we can study the temperature dependence of the
baryon chemical potential and the free energy of the MQ-∇ϕ phase as shown in Figure 13.

Remarkably, they inherit the temperature dependence from the factor
√
f(u) =

√
1 − u3T/u3

in the spacetime metric of the background SS model,

μ = μ0(d, B)

√
1 −
(
T

T0

)6

, (4.20)

F = F0(d, B)

√
1 −
(
T

T0

)6

, (4.21)

where for d = 1, B = 0.10, μ0 = 1.1849, F0 = 0.7976, respectively. The best-fit values of T0
for the chemical potential and the free energy are 0.269 and 0.233, respectively. Note that the
characteristic temperature T0 of the chemical potential is slightly larger than the value of the
free energy due to the additional temperature dependence of the uc in the free energy case
[60]. It should be noted that the temperature dependence becomes significant for T � 0.10.

When the magnetic field is applied to the multiquark phase, the chiral condensate
responds to the field by developing the pion gradient ∇ϕ in the direction of the applied field.
For moderate fields, the response is linear,∇ϕ ∝ B, as we can see from Figure 10. The induced
domain wall is stable among the multiquarks, carrying baryon density d∇ϕ = 3B∇ϕ/2 [56].

Figure 14 shows the relationship between the pion gradient and the magnetic field in
the temperature range T = 0.02–0.15. For d = 1, the slope m (or the linear response) of the

response ∇ϕ to B depends on the temperature approximately asm = m0

√
1 − (T/T0)

6, and

∇ϕ � Bm0

√
1 −
(
T

T0

)6

, (4.22)

wherem0 = 0.347, T0 = 0.177.



Advances in High Energy Physics 31

0.04 0.06 0.08 0.1 0.12 0.14 0.16

T

1.165

1.17

1.175

1.18

1.185

μ

T0 = 0.269

(a)

0.04 0.06 0.08 0.1 0.12 0.14 0.16

T

T0 = 0.233

0.77

0.78

0.79

FE

(b)

Figure 13: For d = 1, B = 0.10, (a) the baryon chemical potential as a function of T , the best-fit curve
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6 with μ0 = 1.1849, T0 = 0.269; (b) the free energy as a function of T , the
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6 with F0 = 0.7976, T0 = 0.233. Other curves within the range
B = 0.05–0.15 can also be fitted well with the same T0.
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Figure 14: (a) The pion gradient versus magnetic field for T = 0.02–0.15 at d = 1, lower lines have higher
temperatures. (b) The linear response or slope of the linear function between the pion gradient and the
magnetic field as a function of the temperature for the range B = 0.05–0.15 and density d = 1. The red line

is the best-fit curve in the formm0
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6 withm0 = 0.347, T0 = 0.177.

The pion gradient is induced naturally by the magnetic field as a result of axial
anomaly in the boundary gauge theory. It can be described by the Wess-Zumino-Witten
action in the chiral perturbation theory whilst the similar effect is represented by the Chern-
Simons action of the string theory in the bulk [56]. The pion gradient forms a domain
wall which also carries baryonic charge and contributes to the total baryon density of the
gauge matter. However, the population of the baryon density from the domain wall in the
MQ-∇ϕ phase decreases as the total density grows. This is shown in Figure 15. The ratio
R∇ϕ ≡ d∇ϕ/d = 3B∇ϕ can be approximated by a power law of the density as

R∇ϕ � (const.)d−6/5,

� 3B2m0

2d

√
1 −
(
T

T0

)6

,

(4.23)

as a result of (4.22).
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Figure 15: (a) The pion gradient as a function of B for density d = 1, 10, 100 at T = 0.10. (b) The density ratio
of the pion gradient with respect to the total baryon density of the multiquark phase at B = 0.10 and T =
0.10 in the double-log scale.

As the nuclear matter gets denser, the linear response of the chiral condensate to the
magnetic field becomes smaller. The multiquark contribution to the baryonic charge density
becomes dominant. In the extremely dense situation, the dominating phase of the deconfined
nuclear matter is the multiquark with tiny mixture of the pion gradient when the magnetic
field is present.

The remaining important issue is whether the MQ-∇ϕ phase is more thermodynam-
ically preferred than other phases such as the pure pion gradient and the chiral-symmetric
QGP. Under which circumstances that the MQ-∇ϕ phase is the most preferred and what the
phase diagram of the deconfined nuclear matter in the SSmodel looks like are to be discussed.

5. Comparison to Other Phases

In the presence of the magnetic field, there are 4 possible nuclear phases in the deconfined
SS model. For zero baryonic charge density and currents, there is a brane configuration
corresponding to a magnetized vacuum. For nonzero baryon density, there are 3 possible
brane configurations corresponding to 3 different nuclear phases:

MQ-∇ϕ Phase

jA = 0, μsource = aV0 (uc), ∇ϕ = aA1 (∞), aA1 (uc) = 0,

Pure Pion Gradient Phase

The same conditions with the MQ-∇ϕ phase except, μsource = 0, aV0 (uc)/= 0, d =
(3/2)B∇ϕ, x′

4(uc) → ∞,

χS-QGP

x′
4(u) = 0 and ∇ϕ = aA1 (∞) = 0, μsource = aV0 (uc = uT ) = 0, jA = (3/2)Bμ (in order to satisfy

the equation of motion at uT with f(uT ) = 0).
The pure pion gradient phase corresponds to the brane configuration with no

instanton at the tip uc, where D8 and D8 connect and thus μsource = 0. The chiral condensate
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Figure 16: The free energy as a function of the density of the pure pion gradient phase compared to the
multiquark-∇ϕ phase at fixed d = 1.0, T = 0.

responds to the magnetic field by generating a gradient in the direction of the field. The
induced domain wall carries baryonic charge density according to d = 3B∇ϕ/2 [56]. Since
there is no instanton at the tip, the branes connect smoothly just like in the case of vacuum
and x′

4(uc) → ∞.
The χS-QGP phase corresponds to the brane configuration with the D8 parallel to the

D8. Both branes never connect, and the distance between them in the direction x4 is fixed to
L0. There is also no instanton source at the tip and μsource = 0. Chiral symmetry demands that
aA1 (∞) = ∇ϕ = 0. Remarkably, the equation of motion in the bulk automatically governs that
the axial current is generated with jA = 3Bμ/2, a linear response of the magnetic field [57].

In the following subsections, we will compare the MQ-∇ϕwith the pure pion gradient
phase and subsequently the χS-QGP phase. By using the free energy at fixed density, it will be
demonstrated that the pure pion gradient is always less energetically preferred than the MQ-
∇ϕ for sufficiently large chemical potential. The second order phase transition lines between
the 2 phases are drawn. TheMQ-∇ϕ phase is shown to bemore preferred than the χS-QGP for
moderate fields and temperatures. For very large field and temperature, the χS-QGP phase is
the most thermodynamically preferred at a fixed density. Phase diagrams between the MQ-
∇ϕ and the χS-QGP for a fixed magnetic field and temperature are drawn and approximated
with the power law.

5.1. Multiquark-Domain Wall versus Pure ∇ϕ Phase

The pure pion gradient phase has been explored in details in [56] using the effective field
theory with the anomalous WZW action. The zero-temperature behaviour in the confined
SS model and the bottom-up AdS/QCD model is studied in [47] and [61], respectively.
Reference [62] compares the pure pion gradient phase with the χS-QGP by approximating
f(u) � 1 for the pure pion gradient phase. In this subsection, we will present the results from
[63] where the full temperature dependence is taken into consideration.

Figure 16 shows the free energy at fixed density d = 1 of the pure ∇ϕ and the MQ-
∇ϕ phases as functions of the magnetic field. Apparently, the MQ-∇ϕ is more energetically
preferred than the pure pion gradient. At higher densities, since μ ∼ d for the pure ∇ϕ [63]
and μ ∼ dn, n < 1 for the MQ-∇ϕ, the dominant term μd in the free energy will make the MQ-
∇ϕ phase even more energetically preferred (with smaller free energy). It has been confirmed
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Figure 17: The onset chemical potential of the multiquark-∇ϕ phase as a function of T, B (for B →
∞, u0 = 1.23 is used). These lines can be served as the transition lines between the ∇ϕ phase on the
left and multiquark-∇ϕ phase (ns = 0) on the right. The dotted line represents schematic transition to the
chiral-symmetric QGP phase.

numerically down to d = 0.1 that the MQ-∇ϕ is always more thermodynamically preferred
than the pure ∇ϕ phase.

However, in the region of the parameter space, where the baryon chemical potential
is smaller than the onset chemical potential of the multiquarks, only pure ∇ϕ phase can
exist. The curve of the onset chemical potential of the multiquarks can thus be served as
the second order transition line between the two phases. It depends on both the temperature
and magnetic field in presence given by

μonset =
1
3
uc

√
f(uc) + ns(uc − uT ), (5.1)

where uc is a function of both B and T . The phase diagram (μ, T) between the pure ∇ϕ and
MQ-∇ϕ is shown in Figure 17.

The dotted line in the phase diagram represents a schematic transition from a chirally
broken nuclear phases to the chiral-symmetric QGP phase. The transition from the pure ∇ϕ
to the χS-QGP is investigated in [62]. Transition between the MQ-∇ϕ and the χS-QGP will be
discussed in the next subsection.

5.2. Multiquark-Domain Wall versus χS-QGP Phase

In this subsection, we explore the phase diagram of theMQ-∇ϕ and the χS-QGP phases. For a
fixed density, the baryon chemical potential and the free energy of each phase can be plotted
as in Figure 18 [58, 60]. The MQ-∇ϕ is energetically preferred for small and intermediate
fields for a fixed density. As the field increases further, the chiral-symmetric QGP becomes
more favourable. At even larger fields, the curve of the χS-QGP has a break signifying a
phase transition to the lowest Landau level [62, 64].

The phase diagrams (d, B) for fixed temperature and (d, T) for fixed magnetic field are
presented in Figure 19. At given magnetic field and temperature, the MQ-∇ϕ phase is more
energetically preferred for a sufficiently large density. Dense nuclear matter prefers to form
multiquark states even in the presence of the magnetic field. Nevertheless, for a given density,
sufficiently high field and temperature will make the MQ-∇ϕ phase less preferred than the
χS-QGP.



Advances in High Energy Physics 35

0 1 2 3 4 5

B

7

7.5

8

8.5

9

9.5

10

μ

(a)

1 2 3 4 5

B

450

500

550

600

650

FE

(b)
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Figure 19: The phase diagram of the dense nuclear phases involving multiquarks when gluons are
deconfined for (a) T = 0.10 and (b) B = 0.20. The chiral-symmetric quark-gluon plasma and the chirally
broken MQ-∇ϕ phase are represented by χS and χSB, respectively, ns is the number of colour strings in
fractions of 1/Nc.

The transition lines between the χS-QGP and the MQ-∇ϕ phases in the (d, B) phase
diagram can be approximated with a power law,

B ∼ d0.438(0.436), (5.2)

for multiquarks with nS = 0(0.2) at T = 0.10. This is weaker than the power-law B ∼ d2/3

of the χS-QGP transition to the lowest Landau level studied in [64]. On the other hand, the
transition line in the (d, T) phase diagram is weaker than a logarithm, yet still an increasing
function of d.
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6. Conclusions

In this paper, we review the development of the holographic multiquark states in the
deconfined quark-gluon plasma. We discuss their physical properties such as the binding
energy, the screening length, the thermodynamical properties and the equation of state. Using
the Sakai-Sugimoto model, we also explore the possible phase diagram of the multiquark
matter. The multiquark phase is the most energetically preferred when the density and/or
the baryon chemical potential is sufficiently large and the temperature is not too high. Even
though the multiquark states with colour degrees of freedom are less preferred than the
colour-singlet baryons, they are more energetically favoured than the other phases in such
dense condition.

The magnetic properties and the magnetic phase diagram of the multiquark matter are
subsequently reviewed. There are 2 possible holographic multiquark configurations, both of
them are stable under density fluctuations. High magnetic field and temperature merge the 2
configurations into one. Once they merge, they transit to the multiquark configurations with
larger densities, or to the chiral-symmetric QGP phase. In the region of the parameter space
with sufficiently large densities and moderate fields at a fixed temperature, the magnetized
multiquark phase is the most thermodynamically preferred. For a fixed magnetic field,
sufficiently high temperature will melt the multiquarks into quarks and gluons regardless
of the density.

In the region of parameter space with small density and baryon chemical potential
(μ < μonset of the multiquarks), another magnetized nuclear phase called the pure pion
gradient is dominant. When chiral symmetry is broken, an external strong magnetic field
could induce a response of the chiral condensate in the direction of the applied field.
The generated pion gradient also carries baryonic charge density and the corresponding
chemical potential. However, once μ > μonset of the multiquarks, the multiquark
phase is always energetically preferred than the pure pion gradient. Inevitably, the pion
gradient is also induced in the multiquark matter under the external field and render
the multiquark matter in a mixed MQ-∇ϕ phase. The population of the pion gradient
in the mixed phase is found to be a decreasing function with respect to the baryon
density.

Appendix

Force Condition of the Multiquark Configuration

The forces on the D4-brane in the flavour D8-branes are balanced among three forces from the
tidal weight of the D4-brane, the force from the strings attached to the D4, and the force from
the D8-branes. Varying the total action with respect to uc gives the surface term. Together
with the scale-fixing condition 2

∫∞
uc
dux′

4(u) = L0 = 1, we obtain [48]

x′
4(uc) =

(
L̃(uc) − (∂Ssource/∂uc)

)
∂S̃/∂x′

4

∣∣∣∣∣∣∣
uc

, (A.1)

as the condition on uc.
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The Legendre transformed action is given by

S̃ =
∫∞

uc

L̃
(
x′
4(u), d

)
du

= N
∫∞

uc

du

√
1

f(u)
+ u3x′2

4

×
√
f(u)

(
C(u) +D(u)2

)
−
(
jA − 3

2
Bμ + 3BaV0

)2

,

(A.2)

where C(u) ≡ u5 + B2u2, D(u) ≡ d + 3BaA1 (u) − 3B∇ϕ/2. It is calculated by performing
Legendre transformation with respect to aV ′

0 and aA′
1 , respectively. Note that the Chern-

Simons action is also included in the total action during the transformations.
The Chern-Simons term with the derivatives aV ′, aA′ eliminated is

SCS = −N3
2
B

∫∞

uc

du

(
aV0
(
jA − (3/2)Bμ + 3BaV0

) − f(u)D(u)aA1
)√

1/f(u) + u3x′2
4√

f(u)
(
C(u) +D(u)2

)
− (jA − (3/2)Bμ + 3BaV0

)2 . (A.3)

Lastly, in order to compute x′
4(uc)we consider the source term [12]

Ssource = Nd(uc)
[
1
3
uc

√
f(uc) + ns(uc − uT )

]
(A.4)

� Ndμsource, (A.5)

where ns = kr/Nc is the number of radial strings in the unit of 1/Nc. We have approximated
the electric displacement at the position of the D4 brane source, d(uc) ≡ −∂L/∂aV ′

0 |uc = d −
(3/2)BaA1 (∞)with d.

From (A.1), (A.2), (A.3), (A.5), and setting aV0 (uc) = μsource, a
A
1 (uc) = 0 we can solve

to obtain

(
x′
4(uc)

)2 = 1
fcu

3
c

⎡
⎢⎣ 9
d2

(
fc
(
Cc +D2

c

) − (jA − (3/2)Bμ + 3BaV0 (uc)
)2)

(
1 + (1/2)(uT/uc)

3 + 3ns
√
fc
)2 − 1

⎤
⎥⎦, (A.6)

where fc ≡ f(uc), Cc ≡ C(uc), Dc ≡ D(uc).
When we fix the parameter ns, the temperature T , the baryon density d, the axial

current jA = 0 (by minimizing the action with respect to aA1 (∞)), and setting aA1 (uc) =
0, aV0 (uc) = μsource, then the position uc of the D4-brane is completely determined as a function
of the magnetic field B. Once the equations of motion are solved, the value of μ = aV0 (∞) and
aA1 (∞) are determined.

In the case of nomagnetic field and finite baryon density, the force balance condition at
the tip can be obtained simply by using (A.6). It can be done by setting all spatial components
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of bulk U(1) gauge fields to be zero, leaving only the time component nonvanishing. This
results in Cc = u5c and Dc = d. Therefore, we obtain

(
x′
4(uc)

)2 = 1
fcu

3
c

⎡
⎢⎣ 9
d2

fc
(
u5c + d

2)(
1 + (1/2)(uT/uc)

3 + 3ns
√
fc
)2 − 1

⎤
⎥⎦, (A.7)

implying the force balance condition at the tip.
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