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The purpose of this review is to provide basic ingredients of holographic QCD to nonexperts in
string theory and to summarize its interesting achievements in nuclear and hadron physics. We
focus on results from a less stringy bottom-up approach and review a stringy top-down model
with some calculational details.

1. Introduction

The approaches based on the Anti de Sitter/conformal field theory (AdS/CFT) corre-
spondence [1–3] find many interesting possibilities to explore strongly interacting systems.
The discovery of D-branes in string theory [4] was a crucial ingredient to put the corre-
spondence on a firm footing. Typical examples of the strongly interacting systems are
dense baryonic matter, stable/unstable nuclei, strongly interacting quark gluon plasma, and
condensed matter systems. The morale is to introduce an additional space, which roughly
corresponds to the energy scale of 4D boundary field theory, and try to construct a 5D
holographic dual model that captures certain nonperturbative aspects of strongly coupled
field theory, which are highly nontrivial to analyze in conventional quantum field theory
based on perturbative techniques. There are in general two different routes to modeling
holographic dual of quantum chromodynamics (QCD). One way is a top-down approach
based on stringy D-brane configurations. The other way is so-called a bottom-up approach
to a holographic, in which a 5D holographic dual is constructed from QCD. Despite the
fact that this bottom-up approach is somewhat ad hoc, it reflects some important features
of the gauge/gravity duality and is rather successful in describing properties of hadrons.
However, we should keep in mind that a usual simple, tree-level analysis in the holographic
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dual model, both top-down and bottom-up, is capturing the leading Nc contributions, and
we are bound to suffer from subleading corrections.

The goal of this review is twofold. First, we will assemble results mostly from simple
bottom-up models in nuclear and hadron physics. Surely we cannot have them all here. We
will devote to selected physical quantities discussed in the bottom-up model. The selection
of the topics is based on authors’ personal bias. Second, we present some basic materials that
might be useful to understand some aspects of AdS/CFT and D-brane models. We will focus
on the role of the AdS/CFT in low-energy QCD. Although the correspondence between QCD
and gravity theory is not known, we can obtain much insights on QCD by the gauge/gravity
duality.

We organize this review as follows. Section 2 reviews the gauge/gravity. Section 3
briefly discusses developments of holographic QCD and demonstrates how to build up a
bottom-up model using the AdS/CFT dictionary. After discussing the gauge/gravity duality
and modeling in the bottom-up approach, we proceed with selected physical quantities. In
each section, we show results mostly from the bottom-up approach and list some from the
top-down model. Section 4 deals with vacuum condensates of QCD in holographic QCD. We
will mainly discuss the gluon condensate and the quark-gluon mixed condensate. Section 5
collects some results on hadron spectroscopy and form factors from the bottom-up model.
Contents are glueballs, light mesons, heavy quarkonium, and hadron form-factors. Section 6
is about QCD at finite temperature and density. We consider QCD phase transition and dense
matter. Section 7 is devoted to some general remarks on holographic QCD and to list a few
topics that are not discussed properly in this article. Due to our limited knowledge, we are
not able to cover all interesting works done in holographic QCD. To compensate this defect
partially, we will list some recent review articles on holographic QCD.

In Appendices A–F, we look back on some basic materials that might be useful for
nonexperts in string theory to work in holographic QCD. In Appendix A: we review the
relation between the bulk mass and boundary operator dimension. In Appendix B: we
present a D3/D7 model and axial U(1) symmetry in the model. In Appendix C: we discuss
non-Abelian chiral symmetry based on D4/D8/D8 model. In Appendices D and E: we
describe how to calculate the Hawking temperature of an AdS black hole. In Appendix F:
we encapsulate the Hawking-Page transition and sketch how to calculate Polyakov loop
expectation value in thermal AdS and AdS black hole.

We close this section with a cautionary remark. Though it is tempting to argue that
holographic QCD is dual to real QCD, what we mean by QCD here might be mostly QCD-
like or a cousin of QCD.

2. Introduction to the AdS/CFT Correspondence

The AdS/CFT correspondence, first suggested by Maldacena [1], is a duality between gravity
theory in anti de Sitter space (AdS) background and conformal field theory (CFT). The
original conjecture states that there is a correspondence between a weakly coupled gravity
theory (type IIB string theory) on AdS5 ×S5 and the strongly coupledN = 4 supersymmetric
Yang-Mills theory on the four-dimensional boundary of AdS5. The strings reside in a higher-
dimensional curved spacetime and there exists some well-defined mapping between the
objects in the gravity side and the dual objects in the four-dimensional gauge theory. Thus, the
conjecture allows the use of non-perturbative methods for strongly coupled theory through
its gravity dual.
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Figure 1: The configurations of Nc stack of D3 branes in 10d spacetime. (a) D3 branes sweep (3+1)
dimensions in (9+1) space time. (b)Nc = 3 stack of D3 branes and all the possible classes of open strings.

2.1. Dp Brane Dynamics

The duality emerges from a careful consideration of the D-brane dynamics. A Dp brane
sweeps out (p+1) world-volume in spacetime. Introducing D branes gives open string modes
whose endpoints lie on the D branes and the open string spectrum consists of a finite number
of massless modes and also an infinite tower of massive modes. The open string end points
can move only in the parallel (p+1) directions of the brane, see Figure 1(a), and a Dp brane can
be seen as a point along its transverse directions. The dynamics of the Dp brane is described
by the Dirac-Born-Infeld (DBI) action [5] and Chern-Simons term:

SDp = −Tp
∫
dp+1x e−φ

√
−det

(
P
[
g
]
ab + 2πα′Fab

)
+ SCS (2.1)

with a dilaton e−φ. Here gab is the induced metric on Dp. P denotes the pullback and Fab is
the world-volume field strength. Tp is the tension of the brane which has the following form:

Tp =
1

(2π)pgsl
p+1
s

=
1

(2π)pgsα
′(p+1)/2

, (2.2)

and it is the mass per unit spatial volume. Here gs is the string coupling and ls is the string
length. α′ is the Regge slope parameter and related to the string length scale as ls =

√
α′.

In general, states in the closed string spectrum contain a finite number of massless modes
and an infinite tower of massive modes with masses of order ms = l−1

s = α
′−1/2. Thus, at low

energies E � ms, the higher-order corrections come in powers of α′E2 from integrating out
the massive string modes. If there areNc stack of multiple D branes, the open strings between
different branes give a non-Abelian U(Nc) gauge group; see Figure 1(b). In the low-energy
limit, we can integrate out the massive modes to obtain non-Abelian gauge theory of the
massless fields.

Now, we take p = 3 and considerNc D3 brane stacks in type IIB theory. The low-energy
effective action of this configuration gives a non-Abelian gauge theory with U(Nc) gauge
group. In addition, this gauge group can be factorized into U(Nc) = SU(Nc) ×U(1) and the
U(1) part, which describes the center of mass motion of the D3 branes, can be decoupled by
the global translational invariance. The remaining subgroup SU(Nc) describes the dynamics
of branes from each other. Therefore we see that in the low-energy limit, the massless open
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string modes on Nc stacks of D3-branes constituteN = 4SU(Nc) Yang-Mills theory [6] with
16 supercharges in (3 + 1) spacetime. From (2.1) for p = 3, we obtain the effective Lagrangian
at low energies up to the two-derivative order:

L = − 1
4πgs

Tr
(

1
4
FμνF

μν +
1
2
Dμφ

iDμφi − 1
4

[
φi, φj

]2
+
i

2
Ψ
I
ΓμDμΨI − i

2
Ψ
I
Γi
[
φi,ΨI

])

(2.3)

with a gauge field Aμ, six scalar fields φi, and four Weyl fermions ΨI .
In fact, the original system also contains closed string states. The higher-order

derivative corrections for the Lagrangian (2.3) come both in powers of α′E2 from the massive
modes and powers of the string coupling gsNc for loop corrections. It is known that the
string coupling constant gs is related by the 10-dimensional gravity constant as G(10) ∼ g2

s l
8
s

and thus the dimensionless string coupling is of order G(10)E8, which is negligible in the low-
energy limit. Therefore, at low energies closed strings are decoupled from open strings and
the physics on the Nc D3 branes is described by the masslessN = 4 super Yang-Mills theory
with gauge group SU(Nc).

2.2. AdS5 × S5 Geometry

Now we view the same system from a different angle. Since D branes are massive and carry
energy and Ramond-Ramond (RR) charge, Nc D3 branes deform the spacetime around them
to make a curved geometry. Note that the total mass of a D3 brane is infinite because it
occupies the infinite world-volume of its transverse directions, but the tension, or the mass
per unit three-volume of the D3 brane

T3 =
1

(2π)3gsl
4
s

(2.4)

is finite.
In the flat spacetime, the circumference of the circle surrounding an origin at a distance

r is 2πr, and it simply shrinks to zero if one approaches the origin. But if there is a stack of D3
branes, it deforms the spacetime and makes throat geometry along its transverse directions.
Thus, near the D3 branes, the radius of a circle around the stack approaches a constant R, an
asymptotical infinite cylinder structure, or AdS5 × S5; see Figure 2(b). The Nc D3 brane stack
is located at the infinite end of the throat and this infinite end is called the “horizon”. In the
near horizon geometry, a D3 brane is surrounded by a five-dimensional sphere S5.

To be more specific, let us start with type IIB string theory for p = 3. We find a black
hole type solution which is carrying charges with respect to the RR four-form potential. The
theory has magnetically charged D3 branes, which are electrically charged under the potential
dA4 and it is self-dual ∗F5 = F5. The low-energy effective action is

S =
1

(2π)7l8s

∫
d10x

√−g
(
e−2φ

(
R + 4

(∇ϕ)2
)
− 2

5!
F2

5

)
. (2.5)
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Figure 2: The two descriptions of the Nc D3 configuration. (a) Flat spacetime for r � R. Nc D3 branes
deform the spacetime.

We assume that the metric is spherically symmetric in seven dimensions with the RR source
at the origin; then the Nc parameter appears in terms of the five-form field RR-field strength
on the five-sphere as

∫
S5
∗F5 =Nc, (2.6)

where S5 is the five-sphere surrounding the source for a four-form field C4. Now by using the
Euclidean symmetry we get the curved metric solution [7–9] for the D3 brane:

ds2 = f(r)−1/2ημνdxμdxν + f(r)1/2
(
dr2 + r2dΩ2

5

)
, (2.7)

where

f(r) = 1 +
R4

r4
(2.8)

with the radius of the horizon R:

R2 =
√

4πgsNcα
′ =

√
4πgsNcl

2
s. (2.9)

dΩ5 is the five-sphere metric. For r � R we have f(r) 	 1 and the spacetime becomes flat
with a small correction R4/r4 = 4πgsNcl

4
s/r

4. This factor can be interpreted as a gravitational
potential since G(10) ∼ g2

s l
8
s and MD3 ∼ NcT3 ∼ Nc/gsl

4
s and thus R4/r4 ∼ GMD3/r

4. In the
near horizon limit, this gravitational effect becomes strong and the metric changes into

ds2 =
r2

R2
ημνdxμdxν +

R2

r2

(
dr2 + r2dΩ2

5

)
. (2.10)

This is AdS5 × S5.
The geometry by the D3 branes is sketched in Figure 2(b). Far away from the D3 brane

stacks, the spacetime is flat (9 + 1)-dimensional Minkowski spacetime and the only modes
which survive in the low-energy limit are the massless-closed string (graviton) multiplets,
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and they decouple from each other due to weak interactions. On the other hand, close to the
D3 branes, the geometry takes the form AdS5 × S5 and the whole tower of massive modes
exists there. This is because the excitations seen from an observer at infinity are close to
the horizon and a closed string mode in a throat should go over a gravitational potential
to meet the asymptotic flat region. Therefore, as we focus on the lower-energy limit, the
excitation modes should be originated deeper in the throat, and then they decouple from the
ones in the flat region. Thus in the low-energy limit the interacting sector lives in AdS5 × S5

geometry.

2.3. The Gauge/Gravity Duality

So far, we have considered two seemingly different descriptions of the Nc D3 brane
configuration. As we mentioned, each of the D3 branes carries the gravitational degrees of
freedom in terms of its tension, or the string coupling gs as in (2.4). So the strength of the
gravity effect due to Nc stacks of D3 branes depends on the parameter gsNc.

If gsNc � 1, from (2.9) we see that R � ls and therefore the throat geometry effect is
less than string length scale. Thus the spacetime is nearly flat and the fluctuations of the D3
branes are described by open string states. In this regime the string coupling gs is small and
the closed strings are decoupled from the open strings. Here the closed string description is
inapplicable since one needs to know about the geometry below the string length scale. If
we take the low-energy limit, the effective theory, which describes the open string modes, is
N = 4 super Yang-Mills theory with SU(Nc) gauge group.

On the other hand, if gsNc � 1, then the back-reaction of the branes on the background
becomes important and spacetime will be curved. In this limit the closed string description
reduces to classical gravity which is supergravity theory in the near horizon geometry. Here
the open string description is not feasible because gsNc is related with the loop corrections
and one has to deal with the strongly coupled open strings. Again, if we take the low-energy
limit, the interaction is described by the type IIB string theory in the near-horizon geometry,
AdS5 × S5.

The gauge/gravity correspondence is nothing but the conjecture connecting these two
descriptions of Nc D3 branes in the low-energy limit. It is a duality between the N = 4
super-Yang-Mills theory with gauge group SU(Nc) and the type IIB closed string theory in
AdS5 × S5; see Figure 3. The relation between the Yang-Mills coupling gYM and the string
coupling strength gs is given by

g2
YM = 4πgs,

(
R

ls

)4

= 4πgsNc. (2.11)

Then, the ‘t Hooft coupling λ = g2
YMNc can be expressed in terms of the string length scale:

λ =
R

l4s

4

. (2.12)

Therefore, the dependence of gsNc becomes the question of whether the ‘t Hooft coupling is
large or small, or the gauge theory is strongly or weakly coupled.
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Figure 3: The sketch of the AdS/CFT correspondence.

The two descriptions can be viewed as two extremes of r. For the sake of convenience,
we use the coordinate z = R2/r. Then, the AdS5 × S5 metric (2.10) becomes

ds2 =
R2

z2

(
ημνdxμdxν + dz2

)
+ R2dΩ2

5, (2.13)

which shows the conformal equivalence between AdS5 and flat spacetime more clearly. In
(2.13), each z-slice of AdS5 is isometric to four-dimensional Minkowski spacetime. In this
coordinate, z = 0 is the boundary of AdS5, where Yang-Mills theory lives, with identifying
xμ as the coordinates of the gauge theory. If z → ∞, the determinant of the metric goes to
zero and it is the Poincaré horizon. Here the factor R2/z2 also has some relation with the
energy scales. If the gauge theory side has a certain energy scale E, the corresponding energy
in the gravity side is (z/R)E. In other words, a gauge theory object with an energy scale E is
involved with a bulk side one localized in the z-direction at z ∼ 1/E [1, 10, 11]. Therefore, the
UV or high-energy limit corresponds to z → 0 (or r → ∞) and the IR or low-energy limit
corresponds to z → ∞ (or r → 0).

The operator-field correspondence between operators in the four-dimensional gauge
theory and corresponding dual fields in the gravity side was given in [2, 3]. Then the
AdS/CFT correspondence can be stated as follows,

〈
Te

∫
d4xφ0(x)O(x)

〉
CFT

= Zsugra, (2.14)
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where φ0(x) = φ(x, u → ∞) and the string theory partition function Zsugra at the boundary
specified by φ0 has the form

Zsugra = e−Ssugra(φ(x,u))|u→∞. (2.15)

The relation (2.14) implies that the generating functional of gauge-invariant operators in CFT
can be matched with the generating functional for tree diagrams in supergravity.

3. Holographic QCD

Ever since the advent of the AdS/CFT correspondence, there have been many efforts, based
on the correspondence, to study nonperturbative physics of strongly coupled gauge theories
in general and QCD in particular.

Witten proposed [12] that we can extend the correspondence to non-supersymmetric
theories by considering the AdS black hole and showed that this supergravity treatment
qualitatively well describes strong coupled QCD (or QCD-like) at finite temperature: for
instance, the area law behavior of Wilson loops, confinement/deconfinement transition of
pure gauge theory through the Hawking-Page transition, and the mass gap for glueball states.
In [13] symmetry breaking by expectation values of scalar fields were analyzed in the context
of the AdS/CFT correspondence, which is essential to encode the spontaneous breaking of
chiral symmetry in a holographic QCD model. Regular supergravity backgrounds with less
supersymmetries corresponding to dual confining N = 1 super-Yang-Mills theories were
proposed in [14, 15]. It has been shown by Polchinski and Strassler [16] that the scaling of
high-energy QCD scattering amplitudes can be obtained from a gravity dual description in
a sliced AdS geometry whose IR cutoff is determined by the mass of the lightest glueball.
Important progress towards flavor physics of QCD has been made by adding flavor degrees
of freedom in the fundamental representation of a gauge group to the gravity dual description
[17]. Chiral symmetry breaking and meson spectra were studied in a nonsupersymmetric
gravity model dual to large Nc nonsupersymmetric gauge theories [18], where flavor quarks
are introduced by a D7-brane probe on deformed AdS backgrounds. Using a D4/D6 brane
configuration, the authors of [19] explored the meson phenomenology of large Nc QCD
together with U(1)A chiral symmetry breaking. They showed that the chiral condensate
scales as 1/mq for large mq. A remarkable observation made in [19] is that in addition
to the confinement/deconfinement phase transition the model exhibits a possibility that
another transition set by Tfund could happen in deconfined phase, T > Tdeconf, where Tdeconf =
MKK/(2π). Since the value ofMKK is around 1 GeV, we can estimate Tdeconf ∼ 160 MeV. In this
case for Tdeconf < T < Tfund there exist free unbound quarks and meson bound sates of heavy
quarks and above Tfund the meson states dissociate into free quarks, which in some sense
mimics the dissociation of heavy quarkonium in quark-gluon plasma (QGP). However, we
should note that meson bound states in Dp/Dq systems are deeply bound, while the heavy
quarkonia in QCD are shallow bound states. In this sense the bound state that disappears
above Tfund could be that of strange quarks rather than charmonium or bottomonium [20].

To attain a realistic gravity dual description of (large Nc) QCD, non-Abelian chiral
symmetry is an essential ingredient together with confinement. Holographic QCD models,
which are equipped with the correct structure for the problem, namely, chiral symmetry
and confinement, have been suggested in top-down and bottom-up approaches. They are
found to be rather successful for various hadronic observables and for certain processes
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dominated by large Nc. Based on a D4/D8/D8 model, Sakai and Sugimoto studied hadron
phenomenology in the chiral limit mq = 0, and the chiral symmetry breaking geometrically
[21, 22]. More phenomenological holographic QCD models were proposed [23–25]. In
[23, 24], chiral symmetry breaking is realized by a nonzero chiral condensate whose value
is fitted to meson data from experiments. Hadronic spectra and light-front wave functions
were studied in [26] based on the “Light-Front Holography” which maps amplitudes in
extra dimension to a Lorentz invariant impact separation variable ζ in Minkowski space at
fixed light-front time. Light-Front Holography has led to many successful applications in
hadron physics including light-quark hadron spectra, meson and baryon form factors, the
nonperturbative QCD coupling, and light-front wave-functions; see [27–29] for a review on
this topic. In [30], a relation between a bottom-up holographic QCD model and QCD sum
rules was analyzed.

Now, we demonstrate how to construct a bottom-up holographic QCD model by
looking at a low-energy QCD. For illustration purposes, we compare our approach with
the (gauged) linear sigma model. The D3/D7 model is summarized in Appendix B with
some calculational details. For a review of the linear sigma model, we refer to [31]. Some
material in this section is taken from [32]. Suppose that we are interested in two-flavor QCD
at low energy, roughly below 1 GeV. In this regime usually we resort to the effective models
or theories of QCD for analytic studies since the QCD lagrangian does not help much.

To construct the holographic QCD model dual to two flavor low-energy QCD with
chiral symmetry, we first choose relevant fields. To do this, we consider composites of quark
fields that have the same quantum numbers with the hadrons of interest. For instance, in
the linear sigma model we introduce pion-like and sigma-like fields: 
π ∼ q
τγ5q and σ ∼ qq,
where 
τ is the Pauli matrix for isospin. In the AdS/CFT dictionary, this procedure may be
dubbed operator/field correspondence: one-to-one mapping between gauge-invariant local
operators in gauge theory and bulk fields in gravity sides. Then we introduce

qLγ
μtaqL ←→ Aa

Lμ(x, z),

qRγ
μtaqR ←→ Aa

Rμ(x, z),

qαRq
β

L ←→
(

2
z

)
Xαβ(x, z).

(3.1)

An interesting point here is that the 5D mass of the bulk field is not a free parameter of the
model. This bulk mass is determined by the dimension Δ and spin p of the dual 4D operator
in AdSd+1. For instance, consider a bulk field X(x, z) dual to q(x)q(x). The bulk mass of
X(x, z) is given by m2

X = (Δ − p)(Δ + p − d) with Δ = 3, p = 0, and d = 4, and so m2
X = −3. For

more details, see Appendix A.
To write down the Lagrangian of the linear sigma model, we consider (global) chiral

symmetry of QCD. Since the mass of light quark ∼ 10 MeV is negligible compared to the QCD
scale ΛQCD ∼ 200 MeV, we may consider the exact chiral symmetry of QCD and treat quark
mass effect in a perturbative way. Under the axial transformation, q → e−iγ5
τ ·
θ/2q, the pion-
like and sigma-like states transform as 
π → 
π + 
θσ and σ → σ − 
θ · 
π . From this, we can
obtain terms that respect chiral symmetry such as 
π2 + σ2. Similarly we ask the holographic
QCD model to respect chiral symmetry of QCD. In AdS/CFT, however, a global symmetry
in gauge theory corresponds local symmetry in the bulk, and therefore the corresponding
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holographic QCD model should posses local chiral symmetry. This way vector and axial-
vector fields naturally fit into chiral Lagrangian in the bulk as the gauge boson of the local
chiral symmetry.

We keep the chiral symmetry in the Lagrangian since it will be spontaneously broken.
Then we should ask how to realize the spontaneous chiral symmetry breaking. In the linear
sigma model, we have a potential term like (( 
π2 + σ2) − c2)2 that leads to spontaneous chiral
symmetry breaking due to a nonzero vacuum expectation value of the scalar field σ, 〈σ〉 = c.
In this case the explicit chiral symmetry due to the small quark mass could be mimicked by
adding a term −εσ to the potential which induces a finite mass of the pion, m2

π ∼ ε/c. In a
holographic QCD model, the chiral symmetry breaking is encoded in the vacuum expectation
value of a bulk scalar field dual to qq. For instance, in the hard wall model [23, 24], it is
given by 〈X〉 = mqz + ζz3, where mq and ζ are proportional to the quark mass and the chiral
condensate in QCD. In the D3/D7 model, chiral symmetry breaking can be realized by the
embedding solution as shown in Appendix B.

The last step to get to the gravity dual to two flavor low-energy QCD is to ensure the
confinement to have discrete spectra for hadrons. The simplest way to realize it might be to
truncate the extra dimension at z = zm such that the radial direction z of dual gravity runs
from zero to zm. Since the radial direction corresponds to an energy scale of a boundary gauge
theory, 1/zm maps to ΛQCD.

Putting things together, we could arrive at the following bulk Lagrangian with local
SU(2)L × SU(2)R, the hard wall model [23, 24]:

SHW =
∫
d4x

∫
dz
√
g Tr

[
− 1

4g2
5

(
F2
L + F

2
R

)
+ |DX|2 + 3|X|2

]
, (3.2)

where DμX = ∂μX − iALμX + iXARμ and AL,R = Aa
L,Rt

a with Tr(tatb) = (1/2)δab. The bulk
scalar field is defined by X = X0e

2iπata , where X0 ≡ 〈X〉. Here g5 is the five-dimensional
gauge coupling, g2

5 = 12π2/Nc. The background is given by

ds2 =
1
z2

(
dt2 − d
x2 − dz2

)
, 0 ≤ z ≤ zm. (3.3)

Instead of the sharp IR cutoff in the hard wall mode, we may introduce a bulk potential that
plays a role of a smooth cutoff. In [33], this smooth cutoff is introduced by a factor e−Φ with
Φ(z) = z2 in the bulk action, the soft wall model. The form Φ(z) = z2 in the AdS would
ensure the Regge-like behavior of the mass spectrum m2

n ∼ n. The action is given by

SSW =
∫
d4x

∫
dze−Φ

√
g Tr

[
− 1

4g2
5

(
F2
L + F

2
R

)
+ |DX|2 + 3|X|2

]
. (3.4)

Here we briefly show how to obtain the 4D vector meson mass in the soft wall model. The
vector field is defined by V = AL + AR. With the Kaluza-Klein decomposition V a

μ (x, z) =
g5
∑

nvn(z)ρ
a
μ(x), we obtain

∂z
(
e−B∂zvn

)
+m2

ne
−Bvn = 0, (3.5)
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where B = Φ(z) −A(z) = z2 + log z in the AdS geometry (3.3). With vn = eBψn, we transform
the equation of motion into the form of a Schrödinger equation:

ψ ′′n − V (z)ψn = −m2
nψn, (3.6)

where V (z) = z2 + 3/(4z2). Here mn is the mass of the vector resonances, and ρ meson
corresponds to n = 0. The solution is well known in quantum mechanics and the eigenvalue
m2
n is given by [33]

m2
n = 4c(n + 1), (3.7)

where c is introduced to restore the energy dimension.
The finite temperature could be neatly introduced by a black hole in AdSd+1, where d

is the dimension of the boundary gauge theory. The background is given by

ds2 =
1
z2

(
f(z)dt2 − d
x2 − dz2

f(z)

)
, (3.8)

where f(z) = 1 − zd/zd
h
. The temperature of the boundary gauge theory is identified with

the Hawking temperature of the black hole T = d/(4πzh). In Appendices D and E, we try
to explain in a comprehensive manner how to calculate the Hawking temperature of a black
hole.

Now we move on to dense matter. According to the AdS/CFT dictionary, a chemical
potential in boundary gauge theory is encoded in the boundary value of the time component
of the bulk U(1) gauge field. To be more specific on this, we first consider the chemical
potential term in gauge theory:

Lμ = μqq†q. (3.9)

Then, we introduce a bulk U(1) gauge field Aμ which is dual to qγμq. According to the
dictionary, A0(z → 0) ∼ c1z

d−Δ−p + c2z
Δ−p, we have A0(z → 0) ∼ μq. In the hard wall

model, the solution of the bulk U(1) vector field is given by

At(z) = μ + ρz2, (3.10)

where μ and ρ are related to quark chemical potential and quark (or baryon) number density
in boundary gauge theory. It is interesting to notice that in chiral perturbation theory, a
chemical potential is introduced as the time component of a gauge field by promoting the
global chiral symmetry to a local gauge one [34, 35].

4. Vacuum Structures

At low energy or momentum scales roughly smaller than 1 GeV, r > 1 fm, QCD exhibits
confinement and a nontrivial vacuum structure with condensates of quarks and gluons. In
this section, we discuss the gluon condensate and quark-gluon mixed condensate.
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The gluon condensate 〈Ga
μνG

μν
a 〉 was first introduced, at zero temperature, in [36]

as a measure for nonperturbative physics in QCD. The gluon condensate characterizes the
scale symmetry breaking of massless QCD at quantum level. Under the infinitesimal scale
transformation

x′μ = (1 + δλ)xμ,

A′μ = (1 − δλ)Aμ,

q′ =
(

1 − 3
2
δλ

)
q,

(4.1)

the trace of the energy momentum tensor reads schematically

∂μJ
μ

D = Tμμ 	 −〈
αs
π
Ga
μνG

μν
a 〉. (4.2)

Here JμD is the dilatation current, αs is the gauge coupling, and Tμν is the energy-momentum
tensor of QCD. Due to Lorentz invariance, we can write 〈Tμν〉 = −εvacη

μν, where εvac is the
energy of the QCD vacuum. Therefore, the value of the gluon condensate sets the scale of the
QCD vacuum energy. In addition, the gluon condensate is important in the QCD sum rule
analysis since it enters in the operator product expansion (OPE) of the hadronic correlators
[36]. At high temperature, the gluon condensate is useful to study the nonperturbative nature
of the QGP. For instance, lattice QCD results on the gluon condensate at finite temperature
[37, 38] indicate that the value of the gluon condensate shows a drastic change around Tc
regardless of the number of quark flavors. The change in the gluon condensate could lead to
a dropping of the heavy quarkonium mass around Tc [39].

In holographic QCD, the gluon condensate figures in a dilaton profile according to the
AdS/CFT since the dilaton is dual to the scalar gluon operator Tr(GμνG

μν). The 5D gravity
action with the dilaton is given by

S = γ
1

2κ2

∫
d5x

√
g

[
R +

12
R2
− 1

2
∂Mφ∂

Mφ

]
, (4.3)

where γ = +1 for Minkowski metric, and γ = −1 for Euclidean signature. We work with
Minkowski metric for most cases in this paper. The solution of this system is discovered in
[40, 41] by solving the coupled dilaton equation of motion and the Einstein equation:

ds2 =
(
R

z

)2(√
1 − c2z8ημνdx

μdxν + dz2
)
, (4.4)

and the corresponding dilaton profile is given by

φ(z) =

√
3
2

log

(
1 + cz4

1 − cz4

)
+ φ0, (4.5)
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where φ0 is a constant. At z = 1/c1/4 there exists a naked singularity that might be resolved
in a full string theory consideration. Near the boundary z → 0,

φ(z) ∼ cz4. (4.6)

Therefore, c is nothing but the gluon condensate up to a constant. Unfortunately, however, c is
an integration constant of the coupled dilaton equation of motion and the Einstein equation,
and therefore, it will be determined by matching with physical observables. In [41], the value
of the gluon condensate is estimated by the glueball mass. An interesting idea based on the
circular Wilson loop calculation in gravity side is proposed to calculate the value of the gluon
condensate G2 ≡ 〈(αs/π)Ga

μνG
a
μν〉 [42]. The value is determined to be G2 = 0.010±0.0023 GeV

at zero temperature [42]. A phenomenological estimation of the gluon condensate in QCD
sum rules gives 〈(αs/π)Ga

μνG
μν
a 〉 	 0.012 GeV4 [36].

Now we consider quark-gluon-mixed condensate 〈qσμνGμνq〉, which can be regarded
as an additional order parameter for the spontaneous chiral symmetry breaking since the
quark chirality flips via the quark-gluon operator. Thus, it is naturally expressed in terms of
the quark condensate as

〈qσμνGμνq〉 = m2
0〈qq〉. (4.7)

In [43], an extended hard wall model is proposed to calculate the value ofm2
0. The bulk action

of the extended model is given by

S =
∫
d5x

√
g Tr

[
|DX|2 + 3|X|2 − 1

4g2
5

(
F2
L + F

2
R

)
+ |DΦ|2 − 5Φ2

]
, (4.8)

where Φ is a bulk scalar field dual to the 4D operator on the left-hand-side of (4.7). Then the
chiral condensate and the mixed condensate are encoded in the vacuum expectation value of
the two scalar fields:

〈X(x, z)〉 = 1
2

(
m̂z + σz3

)
,

〈Φ(x, z)〉 = 1
6

(
c1z

−1 + σMz5
)
,

(4.9)

where c1 is the source term for the mixed condensate and σM represents the mixed condensate
σM = 〈qRσμνGμνqL〉. Taking c1 = 0, a source-free condition to study only spontaneous
symmetry breaking, we determine the value of the mixed condensate or m2

0 by considering
various hadronic observables. In this sense the mixed condensate is not calculated but fitted
to experimental data like the chiral condensate in the hard wall model. The favored value of
the m2

0 in [43] is 0.72 GeV2. A new method to estimate the value of m2
0 in is suggested in [44],

where a nonperturbative gauge invariant correlator (the nonlocal condensate) is calculated
in dual gravity description to obtain m2

0. With inputs from the slopes for the Regge trajectory
of vector mesons and the linear term of the Cornell potential, they obtained m2

0 = 0.70 GeV2,
which is comparable to that from the QCD sum rules, 0.8 GeV2 [45].
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5. Spectroscopy and Form Factors

Any newly proposed models or theories in physics are bound to confront experimental data,
for instance, hadron masses, decay constants, and form factors. In this section, we consider
the spectroscopy of the glueball, light meson, heavy quarkonium, and hadron form factors in
hard wall model, soft wall model, and their variants.

5.1. Glueballs

Glueballs are made up of gluons with no constituent quarks in them. The glueball states are
in general mixed with conventional qq states; so in experiments we may observe these mixed
states only. Their existence was expected from the early days of QCD [46, 47]. For theoretical
and experimental status of glueballs, we refer to [48, 49].

The spectrum of glueballs is one of the earliest QCD quantities calculated based on
the AdS/CFT duality. In [12], Witten confirmed the existence of the mass gap in the dilaton
equation of motion on a black hole background, implying a discrete glueball spectrum with
a finite gap. Extensive studies on the glueball spectrum were done in [50, 51] and also
comparisons between the supergravity results and lattice gauge theory results were made.

Now we consider a scalar glueball (0++) on R3 × S1 as an example [50]. When the
radius of the circle S1 is very small R → 0, only the gauge degrees of freedom remain and
the gauge theory is effectively the same as pure QCD3 [12, 50]. Using the operator/field
correspondence, we first find operators that have the quantum numbers with glueball states
of interest and then introduce a corresponding bulk field to obtain the glueball masses. In this
case we are to solve an equation of motion for a bulk scalar field φ, which is dual to trF2 in
the AdS5 Euclidean black hole background. The equation of motion for φ is given by

∂μ
(√

g∂νφg
μν) = 0, (5.1)

and the metric is

ds2 =

(
ρ2 − b

4

ρ2

)−1

dρ2 +

(
ρ2 − b

4

ρ2

)
dτ2 + ρ2 + (d
x)2 + dΩ2

5, (5.2)

where τ is for the compactified imaginary time direction. For simplicity, we assume that φ is
independent of τ [12, 50] and seek a solution of the form φ(ρ, x) = f(ρ)ek·x, where 
k is the
momentum in R3. Then the equation of motion for f(ρ) reads

ρ−1 d

dρ

((
ρ4 − b4

)
ρ
df

dρ

)
+m2 = 0, (5.3)

where m2 is the three-dimensional glueball mass, m2 = −k2 [12, 50]. By solving this
eigenvalue equation with suitable boundary conditions, regularity at the horizon (ρ = b),
and normalizability f ∼ ρ−4 at the boundary (ρ → ∞), we can obtain discrete eigenvalues,
the three-dimensional glueball masses. In the context of a sliced AdS background of the
Polchinski and Strassler set up [16], which is dual to confining gauge theory, the mass ratios
of glueballs are studied in [52, 53].
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More realistic or phenomenology-oriented approaches follow the earlier develop-
ments. In the soft wall model the mass spectra of scalar and vector glueballs and their
dependence on the bulk geometry and the shape of the soft wall are studied in [54]. The
exact glueball correlators are calculated in [55], where the decay constants as well as the
mass spectrum of the glueball are also obtained in both hard wall and soft wall models. Here
we briefly summarize the scalar glueball properties in the soft wall model [54, 55]. Following
a standard path to construct a bottom-up mode, we introduce a massless bulk scalar field φ
dual to the scalar gluon operator Tr(FμνFμν) to write down the bulk action as [54]

S ∼
∫
d5√ge−ΦgMN

(
∂Mφ

)(
∂Nφ

)
, (5.4)

where Φ = z2 as in the soft wall model. The equation of motion for φ(q, z) can be transformed
to a one-dimensional Schrödinger form:

ψ ′′ − V (z)ψ = q2ψ, (5.5)

where ψ = e−(Φ+3 ln z)/2φ with q2 = m2 [54]. The glueball mass spectrum is then given as the
eigenvalue of the Schrödinger type equation with regular eigenfunction at z = 0 and z =∞:

m2
n = 4(n + 2)c̃, (5.6)

where n is an integer, n = 0, 1, 2, . . . . c̃ is introduced to make the exponent Φ dimensionless,
Φ = c̃z2, and it will be fit to hadronic data. Since the vector meson mass in the soft wall
model is m2

n = 4(n + 1)c̃, we calculate the ratio of the lightest (n = 0) scalar glueball mass
m2
G0 to the ρ meson mass to obtain m2

G0/m
2
ρ = 2 [54]. The properties of the glueball at finite

temperature are studied in the hard wall model [56] and also in the soft wall model [56, 57]
by calculating the spectral function of the glueball in the AdS black hole backgroudn. The
spectral function is related to various Green functions, and it can be defined by the two-point
retarded Green function as ρ(ω, 
q) = −2 ImGR(ω, 
q). The retarded function can be computed
in the real-time AdS/CFT, following the prescription proposed in [58]. Both studies using the
soft wall model predicted that the dissociation temperature of scalar glueballs is far below the
deconfinement (Hawking-Page) transition temperature of the soft wall model. See Section 6.1
and Appendix F for more on the Hawking-Page transition. Note that below the Hawking-
Page transition temperature, the AdS black hole is unstable. In [56], the melting temperature
of the scalar glueball from the spectral functions is about 40–60 MeV, while the deconfinement
temperature of the soft wall model is about 190 MeV [59]. This implies that we have to build
a more refined holographic QCD model to have a realistic melting temperature [56, 57].

5.2. Light Mesons

There have been an armful of works in holographic QCD that studied light meson
spectroscopy. Here we will try to summarize results from the hard wall model, soft wall
model, and their variants.

In Table 1, we list some hadronic observables from hard wall models to see if the results
are stable against some deformation of the model. In the table, ∗ means input data and the
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Table 1: Meson spectroscopy from the hard-wall model and from its variations: Model I [60], Model II
[43], Model A [23], and Model B [23]. The experimental data listed in the last column are taken from the
particle data group [62]. All results are given in units of MeV except for the condensate and the ratio of
two condensates.

Model I Model II Model A Model B Experiment
mρ 775.8∗ 775.8 775.8∗ 832 775.49 ± 0.34
ma1 1348 1244 1363 1220 1230 ± 40
fπ 92.4∗ 80.5 92.4∗ 84.0 92.4 ± 0.35
F1/2
ρ 334 330 329 353 345 ± 8
F1/2
a1 481 459 486 440 433 ± 13
mπ 139.6∗ 139.3 139.6∗ 141 139.57 ± 0.00035
gρππ 4.46 4.87 4.48 5.29 6.03 ± 0.07

model with no ∗ is a fit to all seven observables: Model A and Model B from the hard wall
model [23], Model I from a hard wall model in a deformed AdS geometry [60], and Model II
from a hard wall model with the quark-gluon-mixed condensate [43]. In [24], the following
deformed AdS background is considered:

ds2 =
π

2zm sin[πz/(2zm)]

(
dt2 − dxidxi − dz2

)
, 0 ≤ z ≤ zm, (5.7)

and it is stated that the correction from the deformation is less than 10%. The backreaction on
the AdS metric due to quark mass and chiral condensate is investigated in [60]. One of the
deformed backgrounds obtained in [60] phenomenologically reads

ds2 =
1
z2
e−2B(z)

(
dt2 − dxidxi − dz2

)
, 0 ≤ z ≤ zm, (5.8)

where B(z) = (m2
q/24)z2 + (mqσ/16)z4 + (σ2/24)z6. In Table 1, we quote some results from

this deformed background. Dynamical (back-reacted) holographic QCD model with area-law
confinement and linear Regge trajectories was developed in [61].

We remark that the sensitivity of calculated hadronic observables to the details of the
hard wall model was studied in [63] by varying the infrared boundary conditions, the 5D
gauge coupling, and scaling dimension of qq operator. It turns out that predicted hadronic
observables are not sensitive to varying scaling dimension of qq operator, while they are
rather sensitive to the IR boundary conditions and the 5D gauge coupling [63].

In addition to mesons, baryons were also studied in the hard wall model [64–67]. It is
pointed out in [65, 66] that one has to use the same IR cutoff of the hard wall model zm for
both meson and baryon sectors.

Now we collect some results from the soft wall model [33]. There were two nontrivial
issues to be resolved in the original soft wall model. Firstly, so called, the dilaton factor Φ ∼ z2

is introduced phenomenologically to explain m2
n ∼ n. The dilaton factor is supposed to be

a solution of gravity-dilaton equations of motion. Secondly, the chiral symmetry breaking
in the model is a bit different from QCD since the chiral condensate is proportional to the
quark mass in the soft wall model. In QCD, in the chiral limit, where the quark mass is
zero, the chiral condensate is finite that characterizes spontaneous chiral symmetry breaking.
Several attempts have made to improve these aspects and to fit experimental values better
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Table 2: Meson spectroscopy from the modified soft wall model [69]. We show the center values of
experimental data. In [69] the experimental data are mostly taken from the particle data group [62], while
ρ(1282) is from [76]. All results are given in units of MeV.

n ρ-meson ρ experiment a1-meson a1 experiment

1 475 775.5 1185 1230
2 1129 1282 1591 1647
3 1429 1465 1900 1930
4 1674 1720 2101 2096
5 1884 1909 2279 2270
6 2072 2149 — —
7 2243 2265 — —

[68–71]. In [69], a quartic term in the potential for the bulk scalar X dual to qq is introduced
to the soft wall model to incorporate chiral symmetry breaking with independent sources
for spontaneous and explicit breaking; thereby the chiral condensate remains finite in the
chiral limit. Then, the authors of [69] parameterized the vev of the bulk scalar X0 such that it
satisfies constraints from the AdS/CFT at UV and from phenomenology at IR:X0 ∼ mqz+σz3

as z → 0 and X0 ∼ z as z → ∞. The constraint at IR is due to the observation [72]
that chiral symmetry is not restored in the highly excited mesons. Note that X0 ∼ z keeps
the mass difference between vector and axial-vector mesons constant as z → ∞. With the
parameterized X0, they obtained a dilaton factor Φ(z) [69]. We list some of results of [69] in
Table 2. An extended soft wall model with a finite UV cutoff was discussed in [73, 74]. In [75],
the authors studied a dominant tetra-quark component of the lightest scalar mesons in the
soft wall model, where a rather generic lower bound on the tetra-quark mass was derived.

As long as confinement and non-Abelian chiral symmetry are concerned, the Sakai-
Sugimoto model [21, 22] based on a D4/D8/D8 brane configuration (see Appendix C) is the
only available stringy model. In this model, properties of light mesons and baryons have been
greatly studied [21, 22, 77–84].

In a simple bottom-up model with the Chern-Simons term, it was also shown that
baryons arise as stable solitons which are the 5D analogs of 4D skyrmions and the properties
of the baryons are studied [85].

5.3. Heavy Quarkonium

The properties of heavy quark system both at zero and at finite temperature have been the
subject of intense investigation for many years. This is so because, at zero temperature,
the charmonium spectrum reflects detailed information about confinement and interquark
potentials in QCD. At finite temperature, due to the small interaction cross-section of the
charmonium in hadronic matter, the charmonium spectrum is expected to carry information
about the early hot and dense stages of relativistic heavy ion collisions. In addition, the
charmonium states may remain bound even above the critical temperature Tc. This suggests
that analyzing the charmonium data from heavy ion collision inevitably requires more
detailed information about the properties of charmonium states in QGP. Therefore, it is
very important to develop a consistent nonperturbative QCD picture for the heavy quark
system both below and above the phase transition temperature. For a recent review on heavy
quarkonium see, for example, [86].
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Now we start with the hard wall model to discuss the heavy quarkonium in a bottom-
up approach. A simple way to deal with the heavy quarkonium in the hard wall model
was proposed in [87]. Since the typical energy scales involved for light mesons and heavy
quarkonia are quite different, we may introduce an IR cutoffs zHm for heavy quarkonia in the
hard wall model which is different from the IR cutoff for light mesons, 1/zLm ∼ 300 MeV. Note
that in the hard wall model there is a one-to-one correspondence between the IR cutoff and
the vector meson mass 1/zm ∼ mV . In [87], the lowest vector cc (J/ψ) mass ∼ 3 GeV is used as
an input to fix the IR cutoff for the charmonium, 1/zHm 	 1.32 GeV. With this, the mass of the
second resonance is predicted to be ∼ 7.2 GeV, which is quite different from the experiment
m′ψ ∼ 3.7 GeV. This is in a sense generic limitation of the hard wall model whose predicted
higher resonances are quite different from experiments. Moreover, having two different IR
cutoffs in the hard wall model may cause a problem when we treat light quark and heavy
quark systems at the same time. In the soft wall model, the mass spectrum of the vector
meson is given by [33]

m2
n = 4(n + 1)c. (5.9)

For charmonium system, again the lowest mode (J/ψ) is used to fix c,
√
c 	 1.55 GeV.

Then the mass of the second resonance ψ ′ is mψ ′ 	 4.38 GeV, which is 20% away from the
experimental value of 3.686 GeV [87]. Additionally, the mass of heavy quarkonium such
as J/ψ at finite temperature is calculated to predict that the mass decreases suddenly at
Tc and above Tc it increases with temperature. Furthermore, the dissociation temperature
is determined to be around 494 MeV in the soft wall model [87].

To compare heavy quarkonium properties obtained in a holographic QCD study with
lattice QCD, the finite-temperature spectral function in the vector channel within the soft wall
model was explored in [88]. The spectral function is related to the two-point retarded Green
function by ρ(ω, 
q) = −2 ImGR(ω, 
q). The retarded function can be computed following
the prescription [58]. Thermal spectral functions in a stringy set-up, D3/D7 model, were
extensively studied in [89]. To deal with the heavy quarkonium in the soft wall model, two
different scales (cρ and cJ/ψ) are introduced. It is observed in [88] that a peak in the spectral
function melts with increasing temperature and eventually is flattened at T 	 1.2Tc. It is also
shown numerically that the mass shift squared is approximately proportional to the width
broadening [88]. Another interesting finding in [88] is that the spectral peak diminishes at
high momentum, which could be interpreted as the J/ψ suppression under the hot wind
[90, 91]. A generalized soft wall mode of charmonium is constructed by considering not only
the masses but also the decay constants of the charmonium, J/ψ and ψ ′ [92]. They calculated
the spectral function as well as the position of the complex singularities (quasinormal
frequencies) of the retarded correlator of the charm current at finite temperatures. A predicted
dissociation temperature is T ≈ 540 MeV, or 2.8Tc [92].

Alternatively, heavy quarkonium properties can be studied in terms of holographic
heavy-quark potentials. Since the mass of heavy quarks is much larger than the QCD scale
parameter ΛQCD ∼ 200 MeV, the nonrelativistic Schrödinger equation could be a useful tool
to study heavy quark bound states:

(
− �2

2mr
+ V (r)

)
Ψ(r) = EΨ(r), (5.10)
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wheremr is the reduced mass,mr = mQ/2. A tricky point with potential models for quarkonia
is which potential is to be used in the Schrödinger equation: the free energy or the internal
energy. In the context of the AdS/CFT, there have been a lot of works on holographic heavy
quark potentials [93–103]. Hou and Ren calculated the dissociation temperature of heavy
quarkonia by solving the Schrödinger equation with holographic potentials [99]. They used
two ansätze of the potential model: the F-ansatz (U-ansatz) which identifies the potential in
the Schrödinger equation with the free energy (the internal energy), respectively. With the F-
ansatz, J/ψ does not survive above Tc, while the dissociation temperature of Υ is (1.3–2.1)Tc.
For the U-ansatz, J/ψ dissolves into open charm quarks around (1.2–1.7)Tc and Υ dissociates
at about (2.5–4.2)Tc.

We finish this subsection with a summary of the discussion in [20] on the usefulness of
Dq/Dp systems in studying heavy quark bound states. A Dq/Dp system may be good for ss
bound states at high temperature since the mesons in the Dq/Dp system are deeply bounded,
while heavy quarkonia are shallow bound states. However, there exist certain properties of
heavy quarkonia in the quark-gluon plasma that could be understood in the D4/D6 model
such as dissociation temperature.

5.4. Form Factors

Form factors are a source of information about the internal structure of hadrons such as
the distribution of charge. We take the pion electromagnetic form factor as an example.
Consider a pion-electron scattering process π± + e− → π± + e− through photon exchange.
The cross section of this process measured in experiments is different from that of Mott
scattering which is for the Coulomb scattering of an electron with a point charge. This
deviation is parameterized into the pion form factor Fπ(q2), where q2 is given by the energy
and momentum of the photon q2 = ω2 − 
q2. If the pion is a structureless point particle, we
have Fπ = 1. The pion electromagnetic form factor is expressed by, with the use of Lorentz
invariance, charge conjugation, and electromagnetic gauge invariance:

(
p1 + p2

)
μFπ

(
q2
)
=
〈
π
(
p2
)∣∣Jμ∣∣π(p1

)〉
, (5.11)

where q2 = (p2 − p1)
2 and Jμ is the electromagnetic current, Jμ =

∑
fefqfγμqf . The pion charge

radius is determined by

〈r2
π〉 = 6

∂Fπ
(
q2)

∂q2
|q2=0. (5.12)

In a vector meson dominance model, where the photon interacts with the pion only via vector
mesons, especially ρ meson, the pion form factor is given by

Fπ
(
q2
)
=

m2
ρ

m2
ρ − q2 − imρΓρ

(
q2
) . (5.13)
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Then we obtain the pion charge radius
√
〈r2

π〉 =
√

6/mρ 	 0.63 fm. The experimental value is√
〈r2

π〉 = 0.672 fm [104]. To evaluate the form factor, we consider the three-point correlation
function of two axial vector currents which contains nonzero projection onto a one pion state
and the external electromagnetic current:

Γμαβ
(
p1, p2

)
= −

∫
dx

∫
dye(−ip1x+ip2y)

〈
0
∣∣∣T{J†α5(x)Jμ(0)Jβ5

(
y
)}∣∣∣0〉. (5.14)

Alternatively, we can consider two pseudoscalar currents instead of the axial vector currents.
The three-point correlation function can be decomposed into several independent Lorentz
structures. Among them we pick up the Lorentz structure corresponding to the pion form
factor:

〈
0
∣∣Jβ5

∣∣p2
〉〈
p2
∣∣Jμ∣∣p1

〉〈
p1

∣∣∣J†α5

∣∣∣0〉 	 f2
πFπ

(
q2
)
pα1p

β

2

(
p
μ

1 + pμ2
)
. (5.15)

Note that 〈0|Jα5|p〉 = ifπpα, where |p〉 is a one pion state. For more details on the form factor,
we refer to [105–107].

In a holographic QCD approach, we can easily evaluate the three-point correlation
function of two axial vector currents (or two pseudoscalar currents) and the external
electromagnetic current. In [108], the form factors of vector mesons were calculated in
the hard wall model and the electric charge radius of the ρ-meson was evaluated to be
〈r2

ρ〉 = 0.53 fm2. The number from the soft wall model is 〈r2
ρ〉 = 0.655 fm2 [109]. The approach

based on the Dyson-Schwinger equations predicted 〈r2
ρ〉 = 0.37 fm2 [110] and 〈r2

ρ〉 = 0.54 fm2

[111]. The quark mass (or pion mass) dependence of the charge radius of the ρ-meson was
calculated in lattice QCD: for instance, with mπ 	 300 MeV, 〈r2

ρ〉 = 0.55 fm2 [112]. The pion
form factor was studied in the hard wall model [113] and in a model that interpolates between

the hard wall and soft wall models [114]. The results obtained are
√
〈r2

π〉 = 0.58 fm [113] and

in [114]
√
〈r2

π〉 = 0.500 fm,
√
〈r2

π〉 = 0.576 fm, depending on their parameter choice. The
gravitational form factors of mesons were calculated in the hard wall model [115, 116]. The
gravitational form factor of the pion is defined by

〈
πb(p′)∣∣∣Θμν(0)

∣∣πa(p)〉 = 1
2
δab

[(
gμνq2 − qμqν

)
Θ1

(
q2
)
+ 4PμPνΘ2

(
q2
)]
, (5.16)

where Θμν is the energy momentum tensor, q = p′ − p, and P = (p′ + p)/2. There are
also interesting works that studied various form factors in holographic QCD [117–120].
Form factors of vector and axial-vector mesons were calculated in the Sakai-Sugimoto model
(Figure 4) [121].

6. Phases of QCD

Understanding the QCD phase structure is one of the important problems in modern theo-
retical physics; see [122–126] for some recent reviews. However, a quantitative calculation of
the phase diagram from the first principle is extraordinarily difficult.
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Figure 4: QCD phase diagram.

Basic order parameters for the QCD phase transitions are the Polyakov loop which
characterizes the deconfinement transition in the limit of infinitely large quark mass and the
chiral condensate for chiral symmetry in the limit of zero quark mass. The expectation value
of the Polyakov loop is loosely given by

〈L〉 ≈ lim
r→∞

e−βV (r), (6.1)

where V (r) is the potential between a static quark-antiquark pair at a distance r, and β ∼ 1/T .
The expectation value of the Polyakov loop is zero in confined phase, and it is finite in
deconfined phase, while the chiral condensate, which is the simplest order parameter for
the chiral symmetry, is nonzero with broken chiral symmetry, vanishing with a restored
chiral symmetry. Apart from these order parameters, there are thermodynamic quantities
that are relevant to study the QCD phase transition. The equation of state is one of them.
The energy density, for instance, has been found to rise rapidly at some critical temperature.
This is usually interpreted as deconfinement: liberation of many new degrees of freedom. The
fluctuations of conserved charges such as baryon number or electric charge [127–130] are also
an important signal of the quark-hadron phase transition. The quark (or baryon) number
susceptibility, which measures the response of QCD to a change of the quark chemical
potential, is one of such fluctuations [127, 131].

The nature of the chiral transition of QCD depends on the number of quark flavors
and the value of the quark mass. For pure SU(3) gauge theory with no quarks, it is first
order. In the case of two massless and one massive quarks, the transition is the second-order
at zero or small quark chemical potentials, and it becomes the first order as we increase the
chemical potential. The point where the second order transition becomes the first order is
called tricritical point. With physical quark masses of up, down, and strange, the second
order at zero or low chemical potential becomes the crossover, and the tricritical point turns
into the critical end point.



22 Advances in High Energy Physics

6.1. Confinement/Deconfinement Transition

We first discuss the deconfinement transition. In holographic QCD, the confinement to
deconfinement phase transition is described by the Hawking-Page transition [132], a phase
transition between the Schwarzschild-AdS black hole and thermal AdS backgrounds. This
identification was made in [12]. One simple reasoning for this identification is from the
observation that the Polyakov expectation value is zero on the thermal AdS geometry, while
it is finite on the AdS black hole. See Appendix F for some more description of the Hawking-
Page transition and the Polyakov expectation in thermal AdS and AdS black hole. In low-
temperature confined phase, thermal AdS, which is nothing but the AdS metric in Euclidean
space, dominates the partition function, while at high temperature, AdS-black hole geometry
does. This was first discovered in the finite volume boundary case in [12]. In the bottom-up
model, it is shown that the same phenomena happen also for infinite boundary volume if
there is a finite scale associated with the fifth direction [59].

Here we briefly summarize the Hawking-Page analysis of [59] done in the hard wall
model. In the Euclidean gravitational action given by

Sgrav = − 1
2κ2

∫
d5x

√
g

(
R +

12
L2

)
, (6.2)

where κ2 = 8πG5 and L is the length scale of the AdS5, there are two solutions for the
equations of motion derived from the gravitational action. The one is the sliced thermal AdS
(tAdS):

ds2 =
L2

z2

(
dτ2 + dz2 + d
x2

3

)
, (6.3)

where the radial coordinate runs from the boundary of tAdS space z = 0 to the cut-off zm.
Here τ is for the compactified Euclidean time-direction with periodicity β′. The other solution
is the AdS black hole (AdSBH) with the horizon zh:

ds2 =
L2

z2

(
f(z)dτ2 +

dz2

f(z)
+ d
x2

3

)
, (6.4)

where f(z) = 1−(z/zh)4. The Hawking temperature of the black hole solution is T = 1/(πzh),
which is given by regularizing the metric near the horizon. At the boundary z = ε the
periodicity of the time-direction in both backgrounds is the same and so the time periodicity
of the tAdS is given by

β = πzh
√
f(ε). (6.5)

Now we calculate the action density V , which is defined by the action divided by the common
volume factor of R3. The regularized action density of the tAdS is given by

V1(ε) =
4L3

κ2

∫β′
0
dτ

∫zIR

ε

dz

z5
, (6.6)
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and that of the AdSBH is given by

V2(ε) =
4L3

κ2

∫πzh
0

dτ

∫z
ε

dz

z5
, (6.7)

where z = min(zm, zh). Then, the difference of the regularized actions is given by

ΔVg = lim
ε→ 0

[V2(ε) − V1(ε)] =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

L3πzh
κ2

1
2z4

h

, zm < zh,

L3πzh
κ2

(
1
z4
m

− 1
2z4

h

)
, zm > zh.

(6.8)

When ΔVg is positive (negative), tAdS (AdSBH) is stable. Thus, at ΔVg = 0 there exists a
Hawking-Page transition. In the first case zm < zh, there is no Hawking-Page transition and
the tAdS is always stable. In the second case zm > zh, the Hawking-Page transition occurs at

Tc =
21/4

(πzm)
, (6.9)

and at low temperature T < Tc (at high temperature T > Tc) the thermal AdS (the AdS black
hole) geometry becomes a dominant background. When we fix the IR cutoff by the ρ meson
mass, we obtain 1/zm = 323 MeV and Tc = 122 MeV. In the soft wall model, Tc = 191 MeV
[59].

This work has been extended in various directions. The authors of [133] revisited
the thermodynamics of the hard wall and soft wall model. They used holographic
renormalization to compute the finite actions of the relevant supergravity backgrounds and
verify the presence of a Hawking-page type phase transition. They also showed that the
entropy, in the gauge theory side, jumps from N0 to N2 at the transition point [133]. In
[134], the extension was done by studying the thermodynamics of AdS black holes with
spherical or negative constant curvature horizon, dual to a non-supersymmetric Yang-Mills
theory on a sphere or hyperboloid respectively. They also studied charged AdS black holes
[135] in the grand canonical ensemble, corresponding to a Yang-Mills theory at finite chemical
potential, and found that there is always a gap for the infrared cutoff due to the existence of
a minimal horizon for the charged AdS black holes with any horizon topology [134]. With
an assumption that the gluon condensate melts out at finite temperature, a Hawking-Page
type transition between the dilaton AdS geometry in (4.4) and the usual AdS black hole has
studied in [136].

The effect of the number of quark flavors Nf and baryon number density on
the critical temperature was investigated by considering a bulk meson action together
with the gravity action in [137]. It is shown that the critical temperature decreases with
increasing Nf . As the number density was raised, the critical temperature begins to drop,
but it saturates to a constant value even at very large density. This is mostly due to the
absence of the back-reaction from number density [137]. The back-reaction due to the
number density has included in [138–140]. In [141], deconfinement transition of AdS/QCD
with O(α′3) corrections was investigated. In [142], thermodynamics of the asymptotically-
logarithmically-AdS black-hole solutions of 5D dilaton gravity with a monotonic dilaton
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potential are analyzed in great detail, where it is shown that in a special case, where the
asymptotic geometry in the string frame reduces to flat space with a linear dilaton, the phase
transition could be second order. The renormalized Polyakov loop in the deconfined phase of
a pure SU(3) gauge theory was computed in [143] based on a soft wall metric model. The
result obtained in this work is in good agreement with the one from lattice QCD simulations.

Due to this Hawking-Page transition, we are not to use the black hole in the confined
phase, and so we are not to obtain the temperature dependence of any hadronic observables.
This is consistent with large Nc QCD at leading order. For instance, it was shown in
[144, 145] that the Wilson loops, both time-like and space-like, and the chiral condensate are
independent of the temperature in confining phase to leading order in 1/Nc. This means that
the chiral and deconfinement transitions are first order. The deconfinement and chiral phase
transitions of an SU(N) gauge theory at large Nc were also discussed in [146]. However,
in reality we observe temperature dependence of hadronic quantities, and therefore we
have to include large Nc corrections in holographic QCD in a consistent way. A quick fix-
up for this might be to use the temperature dependent chiral condensate as an input in a
holographic QCD model and study how this temperature dependence conveys into other
hadronic quantities [147].

6.2. Chiral Transition

Now we turn to the chiral transition of QCD based on the chiral condensate. In the hard wall
model, the chiral symmetry is broken, in a sense, by the IR boundary condition. In case we
have a well-defined IR boundary condition at the wall z = zm, we could calculate the value
of chiral condensate by solving the equation of motion for the bulk scalar X. In the case of the
AdS black hole we could have a well defined IR boundary condition at the black hole horizon,
which allows us to calculate the chiral condensate. For instance, in [148], it is shown that with
the AdS black hole background the chiral condensate together with the current quark mass
is zero in both the hard wall and soft wall models. This is easy to see from the solution of X0

in the AdS black hole background [148, 149]:

X0(z) = z

(
mq 2F1

(
1
4
,

1
4
,

1
2
,
z4

z4
h

)
+ σqz2

2F1

(
3
4
,

3
4
,

3
2
,
z4

z4
h

))
. (6.10)

At z = zh, both terms inX0(z) diverge logarithmically, which requires to set both of them zero:
mq = 0, σ = 0. This is different from real QCD, where current quark mass can be nonzero in
the regime T > Tc.

The finite temperature phase structure of the Sakai-Sugimoto model was analyzed in
[150] to explore deconfinement and chiral symmetry restoration. Depending on a value of the
model parameter, it is predicted that deconfinement and chiral symmetry restoration happens
at the same temperature or the presence of a deconfined phase with broken chiral symmetry
[150]. Phase structure of a stringy D3/D7 model has extensively studied in [151–153].

6.3. Equation of State and Susceptibility

Apart from the chiral condensate, various thermodynamic quantities could serve as an
indicator for a transition from hadron to quark-gluon phase. Energy density, entropy,
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pressure, and susceptibilities are such examples. We first consider energy density and
pressure. Schematically, based on the ideal gas picture we discuss how the energy density and
pressure tell hadronic matter to quark-gluon plasma. At low temperature thermodynamics of
hadron gas will be dominated by pions which are almost massless, while in QGP quarks and
gluons are the relevant degrees of freedom. Energy density and pressure of massless pions
are

ε = γ
π2

30
T4, p = γ

π2

90
T4, (6.11)

where the number of degrees of freedom γ is three. In the QGP, they are given by

ε = γ
π2

30
T4 + B, p = γ

π2

90
T4 − B, (6.12)

where γ = 37, and B is the bag constant. Apart from the bag constant, the degeneracy factor γ
changes from 3 to 37, and therefore we can expect that the energy density and pressure will
increase rapidly at the transition point. Since the dual of the boundary energy-momentum
tensor Tμν is the metric, we can obtain the energy density and pressure of a boundary gauge
theory from the near-boundary behavior of the gravity solution. To demonstrate how-to, we
follow [154, 155]. We first rewrite the gravity solution in the Fefferman-Graham coordinate
[156]:

ds2 =
1
z2

(
gμνdx

μdxν − dz2
)
. (6.13)

Next, we expand the metric gμν at the boundary z → 0:

gμν = g
(0)
μν + z2g

(2)
μν + g(4)

μν + · · · . (6.14)

Now we consider flat 4D metric such that g(0)
μν = ημν. Then g

(2)
μν = 0 and the vacuum

expectation value of the energy momentum tensor is given by

〈Tμν〉 = const · g(4)
μν . (6.15)

For example, we consider an AdS black hole in the Fefferman-Graham coordinate:

ds2 =
1
z2

((
1 − z4/z4

h

)
(
1 + z4/z4

h

)dt2 −
(

1 +
z4

z4
h

)
d
x2 − dz2

)
. (6.16)

Here the temperature is defined by T =
√

2/(πzh). Then, we read off

〈Tμν〉 ≈ diag

(
3
z4
h

,
1
z4
h

,
1
z4
h

,
1
z4
h

)
, (6.17)
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which satisfies ε = 3p. There have been many works on the equations of state for
a holographic matter at finite temperature [142, 157–160]. In [161], the energy density,
pressure, and entropy of a deconfined pure Yang-Mills matter were evaluated in the
improved holographic QCD model [162, 163]. The energy density and pressure vanish at low
temperature, and at the critical temperature, Tc ∼ 235 MeV, they jump up to a finite value,
showing the first-order phase transition. It is interesting to note that in [164] some high-
precision lattice QCD simulations were performed with increasing Nc at finite temperature,
and the results were compared with those from holographic QCD studies.

Various susceptibilities are also useful quantities to characterize phases of QCD. For
instance, the quark number susceptibility has been calculated in holographic QCD in a series
of works [148, 165]. The quark number susceptibility was originally proposed as a probe of
the QCD chiral phase transition at zero chemical potential [127, 131]:

χq =
∂nq

∂μq
. (6.18)

In terms of the retarded Green function GR
μν(ω, k), the quark number susceptibility can be

written as [166]

χq
(
T, μ

)
= lim

k→ 0
Re
(
GR
tt(ω = 0, k)

)
. (6.19)

In [165], it is claimed that quark number susceptibility will show a sudden jump at Tc in
high-density regime, and so QCD phase transition in low-temperature and high-density
regime will be always first order. Thermodynamics of a charged dilatonic black hole, which
is asymptotically RN-AdS black hole in the UV and AdS2 × R3 in the IR, including the quark
number susceptibility were extensively studied in [167]. The critical end point of the QCD
phase diagram was studied in [168] by considering the critical exponents of the specific heat,
number density, quark number susceptibility, and the relation between the number density
and chemical potential at finite chemical potential and temperature. It is shown that the
critical end point is located at T = 143 MeV and μ = 783 MeV in the QCD phase diagram
[168].

6.4. Dense Baryonic Matter

Understanding the properties of dense QCD is of key importance for laboratory physics such
as heavy ion collision and for our understanding of the physics of stable/unstable nuclei and
of various astrophysical objects such as neutron stars.

To expose an essential physics of dense nuclear matter, we take the Walecka model
[169, 170], which describes nuclear matter properties rather well, as an example. The simplest
version of the model contains the nucleon ψ, omega meson ω, and an isospin singlet, Lorentz
scalar meson σ whose minimal Lagrangian is

L = ψ
(
i�∂ + gσσ − gω�ω

)
ψ +

1
2

(
∂μσ∂

μσ −m2
σσ

2
)
− 1

4
FμνF

μν +
1
2
m2
ωωμωμ. (6.20)
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Within the mean field approximation, the properties of nuclear matter are mostly determined
by the scalar mean field σ = (gσ/m2

σ)ns and the mean field of the time component of the ω
field ω0 = (gω/m2

ω)n, where n is the baryon number density and ns is the scalar density. For
instance, the pressure of the nuclear matter described by the Walecka is

P =
1

4π2

[
2
3
E∗Fp

3
F −m∗N2E∗FpF +m∗N

4 ln

(
E∗F + pF
m∗N

)]

+
1
2
g2
ω

m2
ω

n2 − 1
2
g2
σ

m2
σ

n2
s,

(6.21)

where

E∗F =
√
p2
F +m∗N

2, m∗N = mN −
g2
σ

m2
σ

ns. (6.22)

Further, many successful predictions based on the Walecka model and its generalized
versions, Quantum Hadrodynamics, require large scalar and vector fields in nuclei. This
implies that to gain a successful description of nuclear matter or nuclei, having both scalar
and vector mean fields in the model seems crucial. The importance of the interplay between
the scalar and vector fields can be also seen in the static nonrelativistic potential between two
nucleons. The nucleon-nucleon potential from single σ-exchange and single ω-exchange is
given by

V (r) =
g2
ω

4π
1
r
e−mωr − g2

σ

4π
1
r
e−mσr . (6.23)

Note that single σ-exchange can be replaced by two pion exchange. If gω > gσ and mω > mσ ,
then the potential in (6.23) captures some essential features of the two nucleon potential to
form stable nuclear matter: repulsive at short distance and attraction at intermediate and
long distance. We remark here that the scalar field in the Walecka model may not be the
scalar associated with a linear realization of usual chiral symmetry breaking in QCD; see, for
instance, [171].

The hard wall model or soft wall model in its original form does not do much in dense
matter. This is primarily due to its simple structure and chiral symmetry. Suppose that we
turn on the time component of a U(1) bulk vector field dual to a boundary number operator,
Vt(z) = μ + ρz2. To incorporate this U(1) bulk field into the hard wall model, we consider
U(2) chiral symmetry. The covariant derivative with U(1) vector and axial-vector is given by
DμX = ∂μX − iALμX + iXARμ and it becomes DμX = ∂μX − iX(ALμ − ARμ). Therefore, the
U(1) bulk field Vμ = ALμ + ARμ does not couple to the scalar X, meaning that the physical
properties of X are not affected by the chemical potential or number density. Note, however,
that the vacuum energy of the hard wall or soft wall model should depend on the chemical
potential and number density by the AdS/CFT. One simple way to study the physics of dense
matter in the hard or soft wall model is to work with higher-dimensional terms in the action.
For instance, the role of dimension six terms in the hard wall model was studied in free
space [172, 173]. If we turn on the number density through the U(1) bulk field, we have a
term like X2

0F
2
V , where FV is the field strength of the bulk U(1) gauge field [174]. Then we
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may see interplay between number density and chiral condensate encoded in X0. In [175],
based on the hard wall model with the Chern-Simons term it is shown that there exists a
Chern-Simons coupling between vector and axial-vector mesons at finite baryon density. This
mixes transverse ρ and a1 mesons and leads to the condensation of the vector and axial-vector
mesons. The role of the scalar density or the scalar field in the hard wall model was explored
in [176]. In [139], a back-reaction due to the density is studied in the hard wall model.

Physics of dense matter in Sakai-Sugimoto model has been developed with/without
the source term for baryon charge [177–181]. For instance, in [180] localized and smeared
source terms are introduced and a Fermi sea has been observed, though there are no explicit
fermionic modes in the model. A deficit with the Sakai-Sugimoto model for nuclear matter
might be the absence of the scalar field which is quite important together with U(1) vector
field. The phase structure of the D3/D7 model at finite density is studied in [182, 183]. The
nucleon-nucleon potential is playing very important role in understanding the properties
of nuclear matter. For example, one of the conventional methods to study nuclear matter is
to work with the independent-pair approximation, Brueckner’s theory, where two-nucleon
potentials are essential inputs. Holographic nuclear forces were studied in [184–187].

7. Closing Remarks

The holographic QCD model has proven to be a successful and promising analytic tool
to study nonperturbative nature of low energy QCD. However, its success should always
come with “qualitative” since it is capturing only large Nc leading physics. To have any
transitions from “qualitative” to “quantitative”, we have to invent a way to calculate
subleading corrections in a consistent manner. A bit biased, but the most serious defect of the
approach based on the gauge/gravity duality might be that it offers inherently macroscopic
descriptions of a physical system. For instance, we may understand the QCD confinemnt/
deconfinement transition through the Hawking-Page transition, qualitatively. Even though
we accept generously the word “qualitatively”, we are not to be satisfied completely since
we do not know how gluons and quarks bound together to form a color singlet hadron or
how hadrons dissolve themselves into quark and gluon degrees of freedom. In this sense, the
holographic QCD cannot be stand-alone. Therefore, the holographic QCD should go together
with conventional QCD-based models or theories to guide them qualitatively and to gain
microscopic pictures revealed by the conventional approaches.

Finally, we collect some interesting works done in bottom-up models that are not yet
properly discussed in this review. Due to our limited knowledge, we could not list all of the
interesting works and most results from top-down models will not be quoted. To excuse this
defect we refer to recent review articles on holographic QCD [28, 188–197].

Deep inelastic scattering has been studied in gauge/gravity duality [198–209]. Light
and heavy mesons were studied in the soft-wall holographic approach [210].

Unusual bound states of quarks are also interesting subjects to work in holographic
QCD. In [211], the multiquark potential was calculated and tetra-quarks were discussed in
AdS/QCD. Based on holographic quark-antiquark potential in the static limit, the masses of
the states X(3872) or Y(3940) were predicted and also tetra-quark masses with open charm
and strangeness were computed in [212]. A hybrid exotic meson, π1(1400), was discussed in
[213]. The spectrum of baryons with two heavy quarks was predicted in [214].

Low-energy theorems of QCD and spectral density of the Dirac operator were studied
in the soft wall model [215]. A holographic model of hadronization was suggested in [216].
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The equation of state for a cold quark matter was calculated in the soft wall metric
model with a U(1) gauge field. The result is in agreement with phenomenology [217].

Appendices

A. Bulk Mass and the Conformal Dimension of Boundary Operator

In this appendix, we summarize the relation between the conformal dimension of a boundary
operator and the bulk mass of dual bulk field. We work in the Euclidean version of AdSd+1:

ds2 =
1

(x0)2

d∑
μ=0

(dxμ)2. (A.1)

A.1. Massive Scalar Case

We first consider a free massive scalar field whose action is given by

S =
1
2

∫
dd+1x

√
g
(
∂μφ∂

μφ +m2φ2
)
. (A.2)

Let the propagator of φ be K(x0, 
x; 
x′). To solve φ in terms of its boundary function φ0, we
look for a propagator of φ, a solution K(x0, 
x; 
x′) of the Laplace equation on Bd+1 whose
boundary value is a delta function at a point P on the boundary. We take P to be the point at
x0 → ∞. The boundary conditions and metric are invariant under translations of the xi, then
we can consider K as a function of only x0, and thus K(x0, 
x;P) = K(x0). Then, the equation
of motion is

(
−
(
x0
)d+1 d

dx0

(
x0
)−d+1 d

dx0
+m2

)
K
(
x0
)
= 0, (A.3)

where we used

1√
g
∂μ
√
g∂μ =

(
x0
)d+1 d

dx0

(
x0
)−d+1 d

dx0
. (A.4)

We analyze the equation of motion near the boundary, x0 → 0, and take K(x0) ∝ (x0)λ+d.
From the equation of motion, we have

−(λ + d)λ +m2 = 0, (A.5)

where λ is the larger root λ = λ+. The conformal dimension Δ of the boundary operator is
related to the mass m on AdSd+1 space by Δ = d + λ+. Thus, we obtain

(Δ − d)Δ = m2, (A.6)
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or

Δ =
1
2

(
d +

√
d2 + 4m2

)
. (A.7)

A.2. Massive p-Form Field Case

Consider a massive p-form potential [218]:

A =
1
p!
Aμ1···μpdx

μ1 · · ·dxμp . (A.8)

The free action ofA is

S =
1
2

∫
AdSd+1

(
F∧∗F +m2A∧∗A

)
, (A.9)

where F = dA is the field strength p + 1 form. The variation of this action is

δS =
∫

AdSd+1

(
−(−1)pδA ∧ d∗F +m2δA∧∗A

)
, (A.10)

and then the classical equation of motion forA from (A.9) is

(−1)pd∗dA −m2 ∗A = 0. (A.11)

In addition,A satisfies d∗A = 0. By using the metric (A.1), the equation of motion (A.10) can
be written as

[(
x0
)2
∂2
μ −

(
d + 1 − 2p

)
x0∂0 +

(
d + 1 − 2p −m2

)]
A0i2...ip = 0, (A.12)

[(
x0
)2
∂2
μ −

(
d − 1 − 2p

)
x0∂0 −m2

]
Ai1···ip = 2x0

(
∂i1ω0i2···ip + (−1)p−1∂i2ω0i3···ipi1 + · · ·

)
.

(A.13)

Now from the vielbein eμa = x0δ
μ
a , we introduce fields with flat indices:

A0i2···ip =
(
x0
)p−1
A0i2···ip , Ai1···ip =

(
x0
)p
Ai1···ip . (A.14)

Then the equations of motion (A.12) of A0i2···ip become

[(
x0
)2
∂2
μ − (d − 1)x0∂0 −

(
m2 + p2 − pd

)]
A0i2···ip = 0. (A.15)
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We consider

A0i2···ip ∼
(
x0
)−λ

(A.16)

as x0 → 0. Then substituting this in (A.15) gives

0 =
[(
x0
)2
∂2

0 − (d − 1)x0∂0 −
(
m2 + p2 − pd

)](
x0
)−λ

=
[(
x0
)2
∂0

(
−λ
(
x0
)−λ−1

)
− (d − 1)x0

(
−λ
(
x0
)−λ−1

)
−
(
m2 + p2 − pd

)(
x0
)−λ]

=
[
λ(λ + 1) + λ(d − 1) −

(
m2 + p2 − pd

)](
x0
)−λ

=
[
λ(λ + d) −

(
m2 + p2 − pd

)](
x0
)−λ

,

(A.17)

and therefore we obtain the relation

λ(λ + d) = m2 + p2 − pd. (A.18)

With Δ = d + λ, we have

(Δ − d)Δ = m2 + p2 − pd =⇒ (
Δ − p)p + (Δ − p)(Δ − d) = m2, (A.19)

and we finally arrive at

(
Δ − d + p

)(
Δ − p) = m2, (A.20)

or

Δ =
1
2

(
d +

√(
d − 2p

)2 + 4m2
)
. (A.21)

A.3. General Cases

Now for completeness, we list the relations between the conformal dimension Δ and the mass
for the various bulk fields in AdSd+1:

(1) scalars [3]: Δ± = (1/2)(d ±
√
d2 + 4m2),

(2) spinors [219]: Δ = (1/2)(d + 2|m|),
(3) vectors (entries 3. and 4. are for forms with Maxwell type actions.): Δ± = (1/2)(d ±√

(d − 2)2 + 4m2),

(4) p-forms [218]: Δ± = (1/2)(d ±
√
(d − 2p)2 + 4m2),
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(5) first-order (d/2)-forms (d even) (see [220] for d = 4 case.): Δ = (1/2)(d + 2|m|),
(6) spin-3/2 [221, 222]: Δ = (1/2)(d + 2|m|),
(7) massless spin-2 [223]: Δ = d.

B. D3/D7 Model and U(1) Axial Symmetry

In the original AdS/CFT, the duality between type IIB superstring theory on AdS5 × S5 and
N = 4 super-Yang-Mills theory with gauge group SU(Nc) can be embodied by the low-
energy dynamics of a stack of Nc D3 branes in Minkowski space. All matter fields in the
gauge theory produced by the D3 branes are in the adjoint representation of the gauge group.
To introduce the quark degrees of freedom in the fundamental representation, we introduce
some other branes in this supersymmetry theory on top of the D3 branes.

B.1. Adding Flavour

It was shown in [17] that by introducing Nf D7 branes into AdS5 × S5, Nf dynamical quarks
can be added to the gauge theory, breaking the supersymmetry toN = 2. The simplest way
to treat D3/D7 system is to work in the limit where the D7 is a probe brane, which means
that only a small number of D7 branes are added, while the number of D3 branes Nc goes to
infinity. In this limitNf �Nc we may neglect the back-reaction of the D7 branes on AdS5×S5

geometry. In field theory side, this corresponds to ignoring the quark loops, quenching the
gauge theory.

The D7 branes are added in such a way that they extend parallel in Minkowski space
and extend in spacetime as given in Table 3. The massless modes of open strings that both
end on the Nc D3 branes give rise toN = 4 degrees of freedom of supergravity on AdS5 × S5

consisting of the SU(Nc) vector bosons, four fermions, and six scalars. In the limit of large
Nc at fixed but large ‘t Hooft coupling λ = g2

YMNc = gsNc � 1, the D3 branes can be replace
with near horizon geometry that is given by

ds2 =
r2

R2

(
−dt2 + dx2

1 + dx
2
2 + dx

2
3

)
+
R2

r2
d
y2

=
r2

R2

(
−dt2 + dx2

1 + dx
2
2 + dx

2
3

)
+
R2

r2

(
dρ2 + ρ2dΩ2

3 + dy
2
5 + dy

2
6

)
,

(B.1)

where 
y = (y1, . . . , y6) parameterize the 456789 space and r2 ≡ 
y2. R is the radius of curvature
R2 =

√
4πgsNcα

′ and dΩ2
3 is the three-sphere metric. The dynamics of the probe D7 brane is

described by the combined DBI and Chern-Simons actions [5, 224]:

SD7 = −T7

∫
d8x

√
−det

(
P
[
g
]
ab + 2πα′Fab

)
+
(2πα′)2

2
T7

∫
P
[
C(4)

]
∧ F ∧ F, (B.2)

where g is the bulk metric (B.1) and C(4) is the four-form potential. T7 = 1/((2π)7gsα
′4) is the

D7 brane tension and P denotes the pullback. Fab is the world-volume field strength.
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Table 3: The D3/D7-brane intersection in 9 + 1-dimensional flat space.

0 1 2 3 4 5 6 7 8 9

D3 © © © ©
D7 © © © © © © © ©

The addition of D7 branes to this system as in Table 3 breaks the supersymmetry
to N = 2. The lightest modes of the 3-7 and 7-3 open strings correspond to the quark
supermultiplets in the field theory. If the D7 brane and the D3 brane overlap, then SO(6)
symmetry is broken into SO(4)×SO(2) ∼ SO(2)R×SO(2)L×U(1)R in the transverse directions
to D3 and so preserves 1/4 of the supersymmetry. The SO(4) rotates in 4567, while the SO(2)
group acts on 89 in 3. The induced metric on D7 takes the form, in general, as

ds2
D7 =

r2

R2
ημνdx

μdxν +
R2

r2

((
1 + y

′2
5 + y

′2
6

)
dρ2 + ρ2dΩ2

3

)
, (B.3)

where y′5 = dy5/dρ and y′6 = dy6/dρ. When the D7 brane and the D3 brane overlap, the
embedding is

y5 = 0, y6 = 0, (B.4)

and the induced metric on the D7 brane is replaced by

ds2
D7 =

ρ2

R2
ημνdx

μdxν +
R2

ρ2

(
dρ2 + ρ2dΩ2

3

)
. (B.5)

The D7 brane fills AdS5 and is wrapping a three sphere of S5. In this case the quarks are
massless and the R-symmetry of the theory is SU(2)R × U(1)R and we have an extra U(1)R
chiral symmetry.

If the D7 brane is separated from the D3 branes in the 89-plane direction by distance
L, then the minimum length string has nonzero energy and the quark gains a finite mass,
mq = L/2πα′. It is known that the R-symmetry is then only SU(2)R and separation of D7
and D3 breaks the SO(2) ∼ U(1)R that acts on the 89-plane. In this case, we can set for the
embedding as

y5 = 0, y6 = y6
(
ρ
)
. (B.6)

Then, the action for a static D7 embedding (with Fab zero on its world volume) becomes
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SD7 = −T7

∫
d8x

√
−det

(
P
[
g
]
ab

)
= −T7

∫
d8x

√
−det gab

√
1 + gab∂ayi∂byjgij

= −T7

∫
d8xε3ρ

3
√

1 +
(
∂ρy5

)2 +
(
∂ρy6

)2
,

(B.7)

where i, j = 5, 6 and ε3 is the determinant from the three sphere. The ground state config-
uration of the D7 brane is given by the equation of motion with y5 = 0:

d

dρ

⎡
⎢⎣ ρ3∂ρy6√

1 +
(
∂ρy6

)2

⎤
⎥⎦ = 0. (B.8)

The solution of this equation has an asymptotic behavior at UV (ρ → ∞) as

y6 	 m +
c

ρ2
+ · · · . (B.9)

Now we can identify [198] that m corresponds to the quark mass and c is for the quark
condensate 〈ψψ〉 in agreement with the AdS/CFT dictionary.

B.2. Chiral Symmetry Breaking

One of the significant features of QCD is chiral symmetry breaking by a quark condensate
ψψ. The U(1) symmetry under which ψ and ψ transform as ψ → e−iαψ and ψ → eiαψ in the
gauge theory corresponds to a U(1) isometry in the y5y6 plane transverse to the D7 brane.
This U(1) symmetry can be explicitly broken by a nonvanishing quark mass due to the
separation of the D7 brane from the stack of D3 branes in the y5 + iy6 direction. Assume that
the embedding as y5 = 0 and y6 ∼ c/ρ2 and then by a small rotation e−iε on y5 + iy6 generates
y′5 	 εc/ρ2 and y′6 	 y6 up to the O(ε2) order.

In [18] the embedding of a D7 probe brane is embodied in the Constable-Myers
background and the regular solution y6 ∼ m+c/ρ2 of the embedding y5 = 0, y6 = y6(ρ) shows
the behavior c /= 0 asm → 0 which corresponds to the spontaneous chiral symmetry breaking
by a quark condensate. In [225], the chiral symmetry breaking comes from a cosmological
constant with a constant dilaton configuration which is dual to theN = 4 gauge theory in a
four-dimensional AdS space.

B.3. Meson Mass Spectrum

The open string modes with both ends on the flavour D7 branes are in the adjoint of the
U(Nf) flavour symmetry of the quarks and hence can be interpreted as the mesonic degrees
of freedom. As an example, we discuss the fluctuation modes for the scalar fields (with spin
0) following the argument of [226]. The directions transverse to the D7 branes are chosen to
be y5 and y6 and the embedding is

y5 = 0 + χ, y6 = L + ϕ, (B.10)
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where δy5 = χ and δy6 = ϕ are the scalar fluctuations of the transverse direction. To calculate
the spectra of the world-volume fields it is sufficient to work to quadratic order. For the
scalars, we can write the relevant Lagrangian density as

LD7 = −T7

√
−detP

[
g
]
ab

= −T7

√
−det gab

√
1 + gab

(
∂aχ∂bχg55 + ∂aϕ∂bϕg66

)

= −T7

√
−det gab

√
1 + gab

R2

r2

(
∂aχ∂bχ + ∂aϕ∂bϕ

)

	 −T7

√
−det gab

(
1 +

1
2
R2

r2
gab

(
∂aχ∂bχ + ∂aϕ∂bϕ

))
,

(B.11)

where P[g]ab is the induced metric on the D7 world-volume. In spherical coordinates with
r2 = ρ2 + L2, this can be written as

LD7 	 −T7ρ
3ε3

(
1 +

1
2

R2

ρ2 + L2
gab

(
∂aχ∂bχ + ∂aϕ∂bϕ

))
, (B.12)

where ε3 is the determinant of the metric on the three sphere. Then the equations of motion
become

∂a

(
ρ3ε3

ρ2 + L2
gab∂bΦ

)
= 0, (B.13)

where Φ is used to denote the real fluctuation either χ or ϕ. Evaluating a bit more, we have

R4

(
ρ2 + L2

)2
∂μ∂

μΦ +
1
ρ3
∂ρ
(
ρ3∂ρΦ

)
+

1
ρ2
∇i∇iΦ = 0, (B.14)

where∇i is the covariant derivative on the three-sphere. We apply the separation of variables
to write the modes as

Φ = φ
(
ρ
)
eik·xY�

(
S3
)
, (B.15)

where Y�(S3) are the scalar spherical harmonics on S3, which transform in the (�/2, �/2)
representation of SO(4) and satisfy

∇i∇iY� = −�(� + 2)Y�. (B.16)

The meson mass is defined by

M2 ≡ −k2. (B.17)
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Now we define � = ρ/L and M
2
= −k2R4/L2, and then the equation for φ(ρ) is

∂2
�φ +

3
�
∂�φ +

⎛
⎝ M

2

(
1 + �2

)2
− �(� + 2)

�2

⎞
⎠φ = 0. (B.18)

This equation was solved in [226] in terms of the hypergeometric function. To solve the
equation, we first set

φ
(
�
)
= 1 + ��

(
1 + �2

)−α
P
(
�
)
, (B.19)

where

2α = −1 +
√

1 +M
2 ≥ 0. (B.20)

With a new variable y = −�2, (B.18) becomes

y
(
1 − y)P ′′(y) + [c − (a + b + 1)y

]
P ′
(
y
) − abP(y) = 0, (B.21)

where a = −α, b = −α + � + 1, and c = � + 2. The general solution is taken by α ≥ 0, and by
noting that the scalar fluctuations are real for −∞ < y ≤ 0, one finds, up to a normalization
constant, the solution of φ:

φ
(
ρ
)
=

ρ�(
ρ2 + L2

)α F
(
−α, −α + � + 1; � + 2; −ρ

2

L2

)
. (B.22)

Imposing the normalizability at ρ → ∞, we obtain

−α + � + 1 = −n, n = 0, 1, 2, . . . . (B.23)

The solution is then

φ
(
ρ
)
=

ρ�(
ρ2 + L2

)n+�+1
F

(
−(n + � + 1), −n; � + 2; −ρ

2

L2

)
, (B.24)

and from the condition (B.23) we get

M
2
= 4(n + � + 1)(n + � + 2). (B.25)

Then by the definition of meson mass (B.17), we derive the four-dimensional mass spectrum
of the scalar meson:

Ms(n, �) =
2L
R2

√
(n + � + 1)(n + � + 2). (B.26)



Advances in High Energy Physics 37

B.4. Mesons at Finite Temperature

In previous sections, we have focused on gauge theories and their gravity dual at zero
temperature. To understand the thermal properties of gauge theories using the holography,
we work with the AdS-Schwarzschild black hole which is dual toN = 4 gauge theory at finite
temperature [3, 12]. The Euclidean AdS-Schwarzschild solution is given by

ds2 =
K(r)
R2

dτ2 + R2 dr2

K(r)
+
r2

R2
d
x2 + R2dΩ2

5, (B.27)

where

K(r) = r2

(
1 − r

4
H

r4

)
. (B.28)

For r � rH , this approaches AdS5×S5 and the AdS radius R is related to the ‘t Hooft coupling
byR2 =

√
4πλα′. Note that the S1 parameterized by τ collapses at r = rH , which is responsible

for the existence of an area law of the Wilson loop and a mass gap in the dual field theory.
This geometry is smooth and complete if the imaginary time τ is periodic with the period
β = R2π/rH . The temperature of the field theory corresponds to the Hawking temperature
is given by T = 1/β = rH/(R2π). At finite temperature, the fermions have antiperiodic
boundary conditions in τ direction [12] and the supersymmetry is broken. In addition, the
adjoint scalars also become massive at one loop. Thus, fermions and scalars decouple.

We now introduce D7 branes in this background. It is convenient to change the variable
in the metric (B.27) such that it possesses an explicit flat 6-plane. To this end, we change the
variable from r to w as

dr2

K(r)
=

r2dr2

r4 − r4
H

≡ dw
2

w2
, (B.29)

and we take R ≡ 1. One of the solutions is

2w2 = r2 +
√
r4 − r4

H or r2 =
w4 +w4

H

w2
, (B.30)

and wH = rH/
√

2. Then the metric (B.27) becomes

ds2 =

(
w4 −w4

H

)2

w2
(
w4 +w4

H

)dt2 +
(
w2 +

w4
H

w2

)
d
x2 +

1
w2

(
dw2 +w2dΩ2

5

)

=

(
w4 −w4

H

)2

w2
(
w4 +w4

H

)dt2 +
(
w2 +

w4
H

w2

)
d
x2 +

1
w2

(
dρ2 + ρ2dΩ2

3 + dw
2
5 + dw

2
6

)
,

(B.31)
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where dΩ2
3 is the three-sphere metric. The D7 brane is embedded in the static gauge, which

worldvolume coordinates are now identified with x0,1,2,3 and w1,2,3,4 and the transverse
fluctuations will be parameterized by w5 and w6. The radial coordinate is given by

w2 =
6∑
i=1

w2
i = ρ

2 +w2
5 +w

2
6. (B.32)

At largew, this geometry asymptotically approaches AdS5×S5 and the D7 embedding should
approach the constant solutions w5 = 0, w6 = const which is the same as the exact solution in
Appendix B.1. To consider the deformation, we take the following ansatz for the embedding:

w5 = 0, w6 = w6
(
ρ
)
. (B.33)

Then, the action of D7 becomes

SD7 = −T7

∫
d8x

√
−detP

[
g
]
ab = −T7

∫
d8x

√
−det gab

√
1 + gab

(
∂aw5∂bw5g55 + ∂aw6∂bw6g66

)

= −T7

∫
d8xε3G

(
ρ,w5, w6

)√
1 +

(
∂ρw5

)2 +
(
∂ρw6

)2
,

(B.34)

where ε3 is the determinant of the three-sphere metric and the function G(ρ,w5, w6) is given
by

G(ρ,w5, w6
)
=

√(
w4 −w4

H

)2(
w4 +w4

H

)2
ρ6

w16
= ρ3

⎛
⎝1 − w8

H(
ρ2 +w2

5 +w
2
6

)4

⎞
⎠. (B.35)

With the assumption w5 = 0, the equation of motion takes the form

d

dρ

⎡
⎢⎣ρ3

⎛
⎝1 − w8

H(
ρ2 +w2

6

)4

⎞
⎠ ∂ρw6√

1 +
(
∂ρw6

)2

⎤
⎥⎦ − 8w8

Hρ
3w6(

ρ2 +w2
6

)5

√
1 +

(
∂ρw6

)2 = 0. (B.36)

With the solution of this equation, the induced metric on the D7 brane is given by

ds2
D7 =

(
w̃4 −w4

H

)2

w̃2
(
w̃4 +w4

H

)dt2 +
(
w̃2 +

w4
H

w̃2

)
d
x2 +

1 +
(
∂ρw6

)2

w̃2
dρ2 +

ρ2

w̃2
dΩ2

3, (B.37)

with w̃2 = ρ2 +w2
6(ρ) and the D7-brane metric becomes AdS5 × S3 for ρ � wH,w6.

The asymptotic solution at large ρ is of the form

w6
(
ρ
) ∼ m +

c

ρ2
. (B.38)
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Minkowski
embeddings

m =mc

Black hole
embeddings

w6(ρ)

ρ

(m > mc)

(m < mc)

Figure 5: Two classes of regular solutions in the AdS black hole background.

Table 4: The D4/D8/D8 brane intersection in 9 + 1-dimensional flat space.

0 1 2 3 (4) 5 6 7 8 9
D4 © © © © ©
D8-D8 © © © © © © © © ©

As discussed in Appendix B.1, the parameters m and c are interpreted as a quark mass
and bilinear quark condensate 〈ψψ〉, respectively. With suitable boundary conditions for
the second-order equation (B.36), one can solve it numerically by the shooting method. The
results are shown in Figure 5.

We see that there can be two different classifications for the D7 brane embeddings.
First, for large quark masses the D7 brane ends outside the horizon. It can be interpreted
that the D7 brane tension is stronger than the attractive force of the black hole. Such a D7
brane solution is called a Minkowski embedding. They behave similarly to the supersymmetric
solutions in AdS5 × S5. Second, for small masses the D7 brane ends at the horizon w = wH at
which the S1 of the black hole geometry collapses. This is called a black hole embedding. These
two classes of embeddings also differ by their topology. The D7 brane topology is R3 ×B4 ×S1

for Minkowski embedding and R3 × S3 × B2 for black hole embedding. The change in the
topology is related to a phase transition in the dual field theory.

C. D4/D8/D8 Model and Non-Abelian Chiral Symmetry

The D3/D7 system is a supersymmetric configuration which gives gauge theories in the ultra-
violet and only has a U(1)A symmetry. To realize more realistic non-Abelian chiral symmetry,
Sakai and Sugimoto proposed D4/D8/D8 brane configuration [21, 22] which is intrinsically
non-supersymmetric. They placed probe D8 and D8 branes into the Nc D4 background of
the fundamental representation of the SU(Nc) gauge group. The D4/D8/D8 intersection in
9+1-dimensional flat space is given in Table 4.

In this configuration, Nc D4-branes are compactified on a direction (x4) wrapped
on S1. We impose antiperiodic boundary conditions on this S1 in order to break the
supersymmetry.Nf D8 and D8 pairs are put in the transverse to the S1. Then, from the D4-D8
and D4-D8 open strings we obtain Nf flavors of massless chiral and antichiral quark fields of
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τ
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UKK

D8
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D4

D8
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Figure 6: Sketch of the D4/D8/D8 configuration.

the U(Nc) gauge group. If we take the strong coupling limit to take the large Nc dual, the D8
and D8 will overlap into a single curved D8 brane, which is interpreted as non-Abelian chiral
symmetry breaking. The U(Nf)D8 × U(Nf)D8 gauge symmetry of the D8 and D8 branes is
interpreted as the U(Nf)L × U(Nf)R chiral symmetry. These configurations are sketched in
Figure 6.

C.1. Background D4 and Probe D8 Branes

In order to obtain a holographic dual of the large Nc gauge theory with non-Abelian
chiral symmetry, we consider the SUGRA description of the D4/D8/D8 system as discussed
previously. Assuming Nf � Nc, we treat D8-D8 pairs as probe D8 branes embedded in the
D4 background. By taking the near horizon limit of the geometry of Nc stack of D4 branes
wrapped on a circle, we obtain the D4 brane solution geometry:

ds2 =
(
U

R

)3/2(
ημνdx

μdxν + f(U)dτ2
)
+
(
R

U

)3/2
(
dU2

f(U)
+U2dΩ2

4

)
(C.1)

with f(U) ≡ 1 −U3
KK/U

3. Here xμ (μ = 0, 1, 2, 3) and τ are the directions along which the D4-
brane is extended and R is the radius of curvature related to the string coupling gs and string
length ls as R3 = πgsNcl

3
s . There is a nonzero four-form flux F4 = dC3 = 2πNcε4/V4 with the

volume form ε4 and a dilaton e−φ = gs(U/R)
−3/4. U is the holographic direction and bounded

from below by the condition U ≥ UKK. As U → UKK, the radius of S1 parameterized by τ

shrinks into zero and then the D8 and D8 branes are connected at some point U = U0. In
this case the gauge symmetry is U(Nf). The configuration is then interpreted as a theory
with massless quarks with chiral symmetry breaking, which is sketched on the right-hand
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side of Figure 6. In order to avoid a singularity at U = UKK, τ must be periodic with period
δτ ≡= 4πR3/2/3U1/2

KK , which defines the Kaluza-Klein mass, MKK = 2π/δτ = 3U1/2
KK/2R3/2.

Next, we consider the induced metric on the D8 probe brane in the D4 background
with an ansatz U = U(τ). Then, dU2 = (dU/dτ)2τ2 = U′(τ)2dτ2 and the induced metric is
given by

ds2
D8 =

(
U

R

)3/2

ημνdx
μdxν +

((
U

R

)3/2

f(U) +
(
R

U

)3/2 U′2

f(U)

)
dτ2 +

(
R

U

)3/2

U2dΩ2
4.

(C.2)

The D8 brane DBI action now becomes

SD8 ∼
∫
d4xdτε4e

−φ
√
−det

(
gD8

) ∼
∫
d4xdτU4

√
f(U) +

(
R

U

)3 U
′2

f(U)
. (C.3)

Since the integrand of (C.3) does not explicitly depend on τ , we obtain the energy conserva-
tion:

d

dτ

(
∂L
∂U′

∂U′ − L
)

=
d

dτ

(
U4f(U)

f(U) + R3U′2/U3f(U)

)
= 0. (C.4)

Let U(0) = U0 and assume U′(0) = 0 at τ = 0; then the solution of (C.4) will be

τ(U) = U4
0f(U0)1/2

∫U
U0

dU

(U/R)3/2f(U)
√
U8f(U) −U8

0f(U0)
. (C.5)

It can be shown that τ(U → ∞) is a monotonically decreasing function ofU0, roughly τ(∞) ∼
U−9/2

0 , that is varying from τ(∞)|U=UKK = δ/4 to τ(∞)|U→∞ = 0. In the limit U0 = UKK, the
D8 and D8 branes are at antipodal points on the S1 parameterized by τ . And when U0 → ∞,
the D8 and D8 separate far away from each other. Here we concentrate on the case U0 = UKK.
For the sake of convenience, we perform the change of variables

U3 = U3
KK +UKKr

2, θ =
2π
δτ

τ =
3U1/2

KK

2R3/2
τ. (C.6)

Now, the induced metric (C.2) on a D8 brane becomes

ds2
D8 =

(
U

R

)3/2

ημνdx
μdxν +

4
9

(
U

R

)3/2(UKK

U
dr2 + r2dθ

)
+
(
R

U

)3/2

U2dΩ2
4. (C.7)

We change the variables once more as

y = r cos θ, z = r sin θ. (C.8)
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Accordingly, the dr and dθ parts of (C.7) read

UKK

U
dr2 + r2dθ =

(
1 − h(r)z2

)
dz2 +

(
1 − h(r)y2

)
dy2 − 2h(r)zy dzdy (C.9)

with h(r) = 1/r2(1 − UKK/U). Near U = UKK, (C.7) approaches a flat two-dimensional
plane and h(r) is a regular function in the neighborhood of r = 0. Then, y(xμ, z) = 0 can be
a solution of the equation of motion of the probe D8 brane’s world-volume theory and the
stability of the solution can be shown by examination of small fluctuations around it [21].
Thus, from (C.6) we have

U3 = U3
KK +UKKz

2 (C.10)

and the induced metric on the D8 brane:

ds2
D8 =

(
U

R

)3/2

ημνdx
μdxν +

4
9

(
U

R

)3/2UKK

U
dz2 +

(
R

U

)3/2

U2dΩ2
4. (C.11)

C.2. Gauge Field and Meson Spectrum

Now, we consider the gauge field on the probe D8 brane configuration. The gauge field on
the D8 brane AM (M = 0, 1, 2, 3, 5, 6, 7, 8, z) has nine components, and among them we are
interested in the SO(5) singlet states; so we can set Aα = 0 for α = 5, 6, 7, 8. We assume that
Aμ and Az are independent of the coordinates on the S4. Then the DBI action for D8 branes
becomes

SD8 = −T8

∫
d9x

√
−det

(
gab + 2πα′Fab

)
+ SCS

= −T̃(2πα′
)2
∫
d4x dz

[
R3

4U
ημνηρσFμνFρσ +

9
8
U3

UKK
ημνFμzFνz

]
+O

(
F3
)
,

(C.12)

where T̃ = (2/3)R3/2U1/2
KKT8V4g

−1
s . We expand the gauge fields Aμ and Az in terms of

the complete sets of the Kaluza-Klein (KK) modes profile functions {ψn(z)} and {φn(z)},
respectively:

Aμ(x, z) =
∑
n≥0

v
(n)
ν (x)ψn(z),

Az(x, z) =
∑
n≥0

ϕ(n)(x)φn(z),
(C.13)
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and consequently, the field strengths read

Fμν(x, z) =
∑
n≥0

(
∂μv

(n)
ν (x)ψn(z)

)
≡
∑
n≥0

F
(n)
μν (x)ψn(z),

Fμz(x, z) =
∑
n≥0

(
∂μϕ

(n)(x)φn(z) − v(n)
μ (x)∂zψn(z)

)
.

(C.14)

Then, the action (C.12) becomes

SD8 = − T̃(2πα′
)2
∫
d4x dz

×
∑
n,m≥0

[
R3

4U
F
(n)
μν F

μν(n)ψnψm

+
9
8
U3

UKK

(
v
(n)
μ vμ(n)∂zψn∂zψm + ∂μϕ(n)∂μϕ(m)φnφm − 2∂μϕ(n)vμ(m)φn∂zψm

)]
.

(C.15)

For convenience, we introduce a new variable Z and the function K(Z) as

Z ≡ z

UKK
, K(Z) ≡ 1 + Z2. (C.16)

With these, (C.15) changes into

SD8 = − T̃(2πα′
)2
R3

∫
d4x dZ

×
∑
n,m≥0

[
1
4
K−1/3(Z)F(n)

μν F
μν(n)ψnψm +

1
2
M2

KKK(Z)v(n)
μ vμ(n)∂Zψn∂Zψm

]

− T̃(2πα′
)2
R3

∫
d4x dZ

1
2
M2

KKK(Z)

×
∑
n,m≥0

(
U3

KK∂μϕ
(n)∂μϕ(m)φnφm − 2U2

KK∂μϕ
(n)vμ(m)φn∂Zψm

)
.

(C.17)

Now we choose ψn(z) (n ≥ 1) as the eigenfunctions:

−K1/3∂Z
(
K∂Zψn

)
= λnψn (C.18)

with the normalization condition

T̃
(
2πα′

)2
R3

∫
dZK−1/3ψmψn = δmn, (C.19)
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to arrive at

T̃
(
2πα′

)2
R3

∫
dZK∂Zψm∂Zψn = λnδmn. (C.20)

Then, the action (C.17) becomes

SD8 =
∫
d4x

∑
n≥0

[
−1

4
F
(n)
μν F

μν(n) − 1
2
M2

KKλnv
(n)
μ vμ(n)

]
+
(
ϕ(n) parts

)
. (C.21)

Similarly, we can normalize the profile functions {φn} of ϕ(n). By observation (C.20), we can
choose

φn =
1

λ1/2
n MKK

∂Zψn (n ≥ 1), φ0 =
C

K(Z) (C.22)

for some constant C. Then from (C.20) the orthonormal condition for {φn} becomes

T̃
(
2πα′

)2
M2

KKR
3
∫
dZKφmφn = δmn. (C.23)

The definitions in (C.22) imply that φ0 is orthogonal to φn for n ≥ 1 since
∫
dZK(Z)φ0φn ∼∫

dZ∂Zψn = 0 from (C.23). Taking n = m = 0 in (C.23), we determine C as C−2 =
T̃(2πα′)2M2

KKR
3π since

∫
dZ K(Z)−1 =

∫
dZ (1 + Z2)−1 = π . Note that ψ0 can be determined

as

ψ0(z) =
∫z

0
dẑ

Ĉ

1 + ẑ2
= Ĉ tan−1z (C.24)

which is not normalizable. However, the field strength is normalizable and ψ0 can be
considered as the zero mode of the eigenfunction equation (C.18). Now from (C.22), Fμz
becomes

Fμz(x, z) =
∑
n≥0

(
∂μϕ

(n)φn − v(n)
μ ∂zψn

)

= ∂μϕ(0)φ0 +
∑
n≥1

(
λ−1/2
n M−1

KK∂μϕ
(n) − v(n)

μ

)
∂zψn.

(C.25)

We can absorb λ−1/2
n M−1

KK∂μϕ
(n) into v(n)

μ , and then we obtain

Fμz(x, z) = ∂μϕ(0)φ0 −
∑
n≥1

v
(n)
μ ∂zψn. (C.26)
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Then again with the change of variable (C.16), the action (C.12) can be written as

SD8 = − T̃(2πα′
)2
R3

∫
d4x dZ

×
∑
n,m≥0

[
1
4
K−1/3(Z)F(n)

μν F
μν(n)ψnψm +

1
2
M2

KKK(Z)v(n)
μ vμ(n)∂Zψn∂Zψm

]

− T̃(2πα′
)2
R3

∫
d4x dZ

1
2
M2

KKK(Z)U2
KK∂μϕ

(0)∂μϕ(0)φ2
0.

(C.27)

With the normalization conditions (C.19) and (C.20), and C → C/UKK, the action (C.27)
becomes

SD8 =
∫
d4x

[
−1

2
∂μϕ

(0)∂μϕ(0) +
∑
n≥1

(
−1

4
F
(n)
μν F

μν(n) − 1
2
m2
nv

(n)
μ vμ(n)

)]
, (C.28)

where

m2
n ≡M2

KKλn. (C.29)

The KK modes of Aμ are v(n)
μ (n ≥ 1) and they are regarded as the massive vector meson field.

Also, we interpret ϕ(0), which is the KK mode ofAz, as the pion field or the Nambu-Goldstone
boson of the chiral symmetry breaking.

By solving (C.18) numerically, we find the eigenvalues corresponding to the masses of
vector mesons:

λn = 0.67, 1.6, 2.9, 4.5, . . . , (C.30)

and we compare the meson mass ratio obtained in this model with the experimental data:

λ2

λ1
= 2.4←→ m2

a1

m2
ρ

= 2.51,

λ3

λ1
= 4.3←→

m2
ρ(1450)

m2
ρ

= 3.56.

(C.31)

D. Surface Gravity of a Schwarzschild Black Hole

The surface gravity is the gravitational acceleration experienced by a test body (with
negligible mass) close to the surface of an object. For a black hole, the surface gravity is
defined as the acceleration of gravity at the horizon. The acceleration of a test body at a
black hole event horizon is infinite in relativity; therefore one defines the surface gravity
in a different way, corresponding to the Newtonian surface gravity in the nonrelativistic
limit. Thus for a black hole, the surface gravity is defined in terms of the Killing vector
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which is orthogonal to the horizon and here its event horizon is a Killing horizon. For the
Schwarzschild case this value is well defined. Alternatively, one can derive the same value
as a period of the imaginary time in the Euclidean signature. We will discuss both points of
view.

D.1. Orthogonal Killing Vector

The horizon of a black hole is a null surface. It means that any vector normal to the surface is
a null vector. Let us consider the Killing vector that generates time translations, ξ = ξμeμ. In
the Schwarzschild spacetime this vector is simply ξ = et. This Killing vector is normal to the
horizon, so that ξμξμ = 0 and this is why the event horizon is called a Killing horizon. More
specifically, ξμξμ is constant on the horizon; thus the gradient ∇α(ξμξμ) is also normal to the
horizon. Hence, there exists a function κ such that

∇α(ξμξμ) = −2κξα. (D.1)

Since the field ξ is a Killing vector that satisfies ∇μξν + ∇νξμ = 0, then the previous equation
can be rewritten as

ξν∇μξν = −κξμ. (D.2)

By using the hypersurface orthogonal vector property ξ[μ∇νξρ] = 0, one can find the relation

κ2 = −1
2
(∇μξν)(∇μξν) (D.3)

evaluated at the horizon. The Schwarzschild metric is diagonal, so we have ξμ = δ
μ
t and

ξμ = δμtgtt, and for evaluating the covariant derivative, the only nonzero ξν,μ is ξt,r = gtt,r since
the metric components are dependent only on r. Thus we get [227]

κ =

√
−1

4
grrgtt

(
gtt,r

)2 =
1
2

∣∣∂rgtt∣∣√−gttgrr .
(D.4)

D.2. Conical Singularity

The expression (D.4) can be obtained from another method. Notice that the horizon property
implies that near r = rH , the metric takes the following form:

ds2 ∼ −A(r − rH)dt2 +
dr2

B(r − rH) + r
2dΩ2

n−1. (D.5)
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This metric has a coordinate singularity at the horizon, but only if the Euclidean time τ = it
is periodic with a particular period τ ∼ τ + β, which then defines the inverse temperature
β = 1/T . The metric read in Euclidean signature

ds2 ∼ A(r − rH)dτ2 +
dr2

B(r − rH)
+ r2dΩ2

n−1. (D.6)

With

dρ2 =
dr2

B(r − rH)
, ρ =

2√
B

√
r − rH, (D.7)

the metric (D.6) becomes

ds2 ∼ ρ2κ2dτ2 + dρ2 + r2dΩ2
n−1, (D.8)

where κ =
√
AB/2. This geometry is regular if the Euclidean time τ is periodic with a period

β =
2π
κ
. (D.9)

Here we have defined κ and by the first law of the (stationary) black hole thermodynamics,
this κ corresponds to the surface gravity and the black hole temperature is given by

T =
1
β
=

κ

2π
. (D.10)

This will give the same result as the one obtained by direct calculation of the surface gravity
(D.4), but this Euclidean signature formulation has the advantage of showing subtleties for
the noncanonical horizon cases, and verifying the relation between Hawking temperature
and surface gravity.

E. Black Hole Temperature and Entropy

E.1. AdS Black Holes

The AdS5 black hole is

ds2 =
L2

z2

(
−fdt2 + d
x2 +

dz2

f

)
, (E.1)

where f(z) = 1 − z4/z4
m. We expand the denominator of gzz near z 	 zm as

z2f(z) 	 z2
mf(zm) +

(
2zmf(zm) + z2

mf
′(zm)

)
(z − zm)

= z2
mf
′(zm)(z − zm),

(E.2)
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and for gtt part, we have

f

z2
	 f(zm)

z2
m

+
f ′(zm)z2

m − 2f(zm)zm
z4
m

(z − zm)

=
f ′(zm)

z2
m

(z − zm).
(E.3)

Thus the near horizon (Euclidean) metric is

ds2 ∼ L2 f
′(zm)

z2
m

(z − zm)dτ2 +
L2

z2
m

d
x2 +
L2

z2
mf ′(zm)(z − zm)

dz2. (E.4)

If we take

dρ =
L

zm
√
f ′(zm)

dz√
z − zm

=
2L

zm
√
f ′(zm)

d
(√

z − zm
)
, (E.5)

then, the near horizon metric becomes

ds2 ∼ κ2ρ2dτ2 + dρ2 +
L2

z2
m

d
x2, (E.6)

where

κ =

∣∣f ′(zm)∣∣
2

=
4
zm

. (E.7)

This also can be calculated by the relation (D.4) directly from (E.1) as

κ = lim
z→ zm

1
2

∣∣∂zgtt∣∣√−gttgzz = lim
z→ zm

∣∣2zf − z2f ′
∣∣

2z2
=

∣∣f ′(zm)∣∣
2

. (E.8)

Now, the temperature is given by

T =
κ

2π
=

1
πzm

. (E.9)

The area of the horizon is

A =
∫
z=zm, t fixed

d3
x
√
g⊥ =

L3

z3
m

V3, (E.10)
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where g⊥ is the determinant of the transverse part of the metric and V3 is the volume. Then
by the first law of the black hole thermodynamics, the entropy is

S =
A

4G5
=

L3V3

4G5z
3
m

. (E.11)

E.2. Another Ansatz

Now, we consider the following metric ansatz [159]:

ds2 = e2A
(
−hdt2 + d
x2

)
+ e2B dr

2

h
, (E.12)

where A, B, and h are some functions of r. We assume that the geometry is asymptotically
AdS. A regular horizon r = rH arises when h has a simple zero. It is also assumed that A(r)
and B(r) are finite and regular functions at r = rH . We consider the metric near the horizon.
For 1/grr ,

h(r)
e2B(r)

	 h(rH)
e2B(rH)

+
(
h′(rH)
e2B(rH )

− 2h(rH)B′(rH)
e2B(rH)

)
(r − rH). (E.13)

Since B is finite and h(rH) = 0, we obtain

h(r)
e2B(r)

	 h
′(rH)
e2B(rH)

(r − rH). (E.14)

Similarly, for gtt part we get

h(r)e2A(r) 	 h′(rH)e2A(rH)(r − rH). (E.15)

Then, the near horizon geometry with Euclidean time τ = it becomes

ds2 	 h′(rH)e2A(rH)(r − rH)dτ2 + e2A(rH)d
x2 +
e2B(rH)

h′(rH)(r − rH)
dr2. (E.16)

With

dρ =
eB(rH)dr√

h′(rH)
√
r − rH

=
2eB(rH)√
h′(rH)

d
(√

r − rH
)
, (E.17)

we arrive at

ds2 	 ρ2 |h′(rH)|2e2A(rH)

4e2B(rH )
dτ2 + dρ2 + e2A(rH)d
x2. (E.18)
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Thus, we obtain the surface gravity

κ =
|h′(rH)|

2
eA(rH)−B(rH). (E.19)

Again, using (D.4), this process also can be done directly from (E.12) as

κ = lim
r→ rH

1
2

∣∣∂rgtt∣∣√−gttgrr = lim
r→ rH

1
2

∣∣∣∣ ddr he2A
∣∣∣∣ 1√

e2Ae2B
=
|h′(rH)|

2
eA(rH)−B(rH). (E.20)

Now we define the temperature

T =
eA(rH)−B(rH )|h′(rH)|

4π
. (E.21)

Now, the area is A = e3A(rH) for unit volume and GN = κ2
5/8π . Thus the entropy density takes

the form

S =
A

4GN
=

2π
κ2

5

e3A(rH). (E.22)

F. Hawking-Page Transition and Deconfinement

The partition function for canonical ensemble is given by

Z 	 e−I(φcl), (F.1)

where φcl is a classical solution of the equation of motion with suitable boundary conditions.
When there are multiple classical configurations, we should sum over the all contributions or
may take the absolute minimum which globally minimizes ISUGRA and dominates the path
integral for the leading contribution. If there are two or more solutions to minimize ISUGRA,
there may be a phase transition between them. This is the Hawking-Page transition [132], a
thermal phase transition to a black hole geometry in asymptotically AdS space. Through the
AdS/CFT correspondence, it was generalized in [3, 12] that the corresponding dual of this
transition is confinement-deconfinement transition in boundary gauge theories.

F.1. Hawking-Page Phase Transition

The gravity action we study here is

I = − 1
16πG5

∫
d5x

√
g

(
R +

12
R2

)
, (F.2)
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where G5 is the five-dimensional Newton’s constant and R is the radius of AdS5. For a
solution of the equation of motion,

Rμν − 1
2
Rgμν − 6

R2
gμν = 0, (F.3)

the action (F.2) becomes

I =
1

2πG5R2

∫
d5x

√
g =

1
2πG5R2

V (ε), (F.4)

where V (ε) is the volume of the space time.
There is a solution into AdS space which minimizes (F.4). In this case, the AdS5 metric

is given by

ds2 =

(
1 +

r2

R2

)
dτ2 +

(
1 +

r2

R2

)−1

dr2 + r2dΩ2
3, (F.5)

where dΩ2
3 is a metric on the three sphere S3. We call this solution as X1. The Euclidean time

direction is chosen that the asymptotic boundary at r → ∞ becomes R3 × S1. Thus the dual
gauge theory lives on the spatial manifold S3.

There is another solution, X2, on a space with a certain temperature. The geometry is
now the AdS-Schwarzschild black hole and the metric is given by

ds2 =

(
1 +

r2

R2
− μ

r2

)
dτ2 +

(
1 +

r2

R2
− μ

r2

)−1

dr2 + r2dΩ2
3, (F.6)

where μ = 16πG5M/3V (S3). The radial direction is restricted to r ≥ r+, where r+ is the largest
root of the equation

1 +
r2

R2
− μ

r2
= 0. (F.7)

The metric is smooth and complete if τ is periodic with the period

β0 =
2πR2r+

2r2
+ + R2

. (F.8)

The topology is X2R
2 × S3 and the boundary is R3 × S1.

The geometry S3 × S1 at large r from both X1 and X2 configurations is explained. Let
the S1 radius be β = (r/R)β0 and at the S3 radius be β̃ = r/R. If we wish to make the topology
S3 × S1, we should take β/β̃ = β0 → 0 and this is the limit of large temperatures. From (F.8)
it seems that this can be done with either r+ → 0 or r+ → ∞, but the r+ → 0 branch is
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thermodynamically excluded [132] and we have the large r+ branch, corresponding to large
M. Therefore for either X1 or X2, the topology becomes S3 × S1 at large r.

Actually, both I(X1) and I(X2) are infinite; so we compute I(X2) − I(X1) to get a finite
result. We put a cutoff R0 in the radial direction r. Then, the regularized volume of the AdS
spacetime for X1 is given by

V1(R0) =
∫β′

0
dτ

∫R0

0
dr

∫
S3

dΩr3. (F.9)

And for X2 case of the AdS-Schwarzschild black hole, it is

V2(R0) =
∫β0

0
dτ

∫R0

r+

dr

∫
S3

dΩr3. (F.10)

In order to compare the I(X1) and I(X2), we match period of τ so that the proper circumfer-
ence of the Euclidean time direction at r = R0 is the same of each other. This can be done by
setting

β′

√
r2

R2
+ 1 = β0

√
r2

R2
+ 1 − μ

r2
(F.11)

at r = R0 and we determine β′. Then the difference I(X2) − I(X1) becomes

I =
1

2πG5R2
lim

R0→∞
(V2 − V1) =

V
(
S3)r3

+
(
R2 − r2

+
)

4G5
(
4r2

+ + 2R2
) . (F.12)

Then (F.12) changes its sign at r+ = R and the phase transition to the AdS-Schwarzschild
black hole geometry takes place.

F.2. Confinement and Deconfinement

Deconfinement at high temperature can be understood by the spontaneous breaking of the
center of the gauge group. The corresponding order parameter is the Polyakov loop that is
defined by a Wilson loop wrapping around τ direction as

P =
1
Nc

trPei
∫β

0 dτA0 , (F.13)

where P denotes the path ordered configuration. In our case the gauge group is SU(Nc) and
its center is ZNc .

The gravity dual calculation for the expectation value 〈P〉 was performed in [93, 228]
from the regularized area of the minimal surface ending on the loop

〈P〉 ∼ e−μA, (F.14)
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r

τ
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r

r = r+

τ

(b)

Figure 7: The topology of the thermal AdS geometry and the AdS-Schwarzschild geometry. (a) thermal
AdS. (b) AdS-Schwarzschild.

where μ is the fundamental string tension, and A is the area of the minimal surface ending
on the loop. The boundary of the spaces X1 and X2 is S3 × S1 and τ direction wraps around
the loop C. To compute 〈P(C)〉, we should evaluate the partition function of strings with its
worldsheet D which is bounded by the loop C.

For the low-temperature phase, the space is X1 and the geometry is the thermal AdS
with topology S1 × B4. Then the loop C is never contracted to zero in X1 and C is not a
boundary of any string worldsheet D; see Figure 7(a). This immediately implies that

〈P〉 = 0 (F.15)

in the large Nc limit. Thus at the low temperature, the thermal AdS geometry is stable and
the configuration X1 corresponds to the confined phase.

On the other hand, for the high-temperature phase, the relevant space is X2 and the
geometry is the AdS-Schwarzschild black hole with topology R2 × S3. In this case, the loop C
can be a boundary of a string worldsheet D = B2; see Figure 7(b). Then the (regularized) area
of the surface gives the nonzero Polyakov loop expectation value:

〈P〉/= 0. (F.16)

Therefore, at the high temperature, the the AdS-Schwarzschild black hole geometry is more
stable and the configuration X2 corresponds to the deconfined phase.
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[50] C. Csáki, H. Ooguri, Y. Oz, and J. Terning, “Glueball mass spectrum from supergravity,” Journal of
High Energy Physics, vol. 3, no. 1, article 017, 1999.

[51] R. C. Brower, S. D. Mathur, and C. I. Tan, “Glueball spectrum for QCD from AdS supergravity
duality,” Nuclear Physics B, vol. 587, no. 1–3, pp. 249–276, 2000.

[52] H. Boschi-Filho and N. R. F. Braga, “QCD/String holographic mapping and glueball mass
spectrum,” European Physical Journal C, vol. 32, no. 4, pp. 529–533, 2004.

[53] H. Boschi-Filho and N. R. F. Braga, “Gauge/string duality and scalar glueball mass ratios,” Journal
of High Energy Physics, vol. 7, no. 5, pp. 129–134, 2003.

[54] P. Colangelo, F. De Fazio, F. Jugeau, and S. Nicotri, “On the light glueball spectrum in a holographic
description of QCD,” Physics Letters, Section B, vol. 652, no. 2-3, pp. 73–78, 2007.

[55] H. Forkel, “Holographic glueball structure,” Physical Review D, vol. 78, no. 2, Article ID 025001, 2008.
[56] P. Colangelo, F. Giannuzzi, and S. Nicotri, “Holographic approach to finite temperature QCD: the

case of scalar glueballs and scalar mesons,” Physical Review D, vol. 80, no. 9, Article ID 094019, 2009.
[57] A. S. Miranda, C. A. Ballon Bayona, H. Boschi-Filho, and N. R. F. Braga, “Black-hole quasinormal

modes and scalar glueballs in a finite-temperature AdS/QCD model,” Journal of High Energy Physics,
vol. 11, article 119, 2009.



56 Advances in High Energy Physics

[58] D. T. Son and A. O. Starinets, “Minkowski-space correlators in AdS/CFT correspondence: recipe
and applications,” Journal of High Energy Physics, vol. 6, no. 9, pp. 857–880, 2002.

[59] C. P. Herzog, “Holographic prediction for the deconfinement temperature,” Physical Review Letters,
vol. 98, no. 9, Article ID 091601, 2007.

[60] J. P. Shock, F. Wu, Y.-L. Wu, and Z.-F. Xie, “AdS/QCD phenomenological models from a back-reacted
geometry,” Journal of High Energy Physics, vol. 2007, no. 3, article 064, 2007.

[61] W. De Paula, T. Frederico, H. Forkel, and M. Beyer, “Dynamical holographic QCD with area-law
confinement and linear Regge trajectories,” Physical Review D, vol. 79, no. 7, Article ID 075019, 2009.

[62] C. Amsler, M. Doser, M. Antonelli et al., “Review of particle physics,” Physics Letters, Section B, vol.
667, no. 1-5, pp. 1–1340, 2008.

[63] J. Erlich and C. Westenberger, “Tests of universality in AdS/QCD models,” Physical Review D, vol.
79, no. 6, Article ID 066014, 2009.

[64] D. K. Hong, T. Inami, and H. U. Yee, “Baryons in AdS/QCD,” Physics Letters, Section B, vol. 646, no.
4, pp. 165–171, 2007.

[65] N. Maru and M. Tachibana, “Meson-nucleon coupling from AdS/QCD,” European Physical Journal
C, vol. 63, no. 1, pp. 123–132, 2009.

[66] H.-C. Kim, Y. Kim, and U. Yakhshiev, “Mesons and nucleons from holographic QCD in a unified
approach,” Journal of High Energy Physics, vol. 2009, no. 11, article 034, 2009.

[67] P. Zhang, “Improving the excited nucleon spectrum in hard-wall AdS/QCD,” Physical Review D, vol.
81, no. 11, Article ID 114029, 2010.

[68] B. Batell and T. Gherghetta, “Dynamical soft-wall AdS/QCD,” Physical Review D, vol. 78, no. 2,
Article ID 026002, 2008.

[69] T. Gherghetta, J. I. Kapusta, and T. M. Kelley, “Chiral symmetry breaking in the soft-wall AdS/QCD
model,” Physical Review D, vol. 79, no. 7, Article ID 076003, 2009.

[70] P. Colangelo, F. De Fazio, F. Giannuzzi, F. Jugeau, and S. Nicotri, “Light scalar mesons in the soft-wall
model of AdS/QCD,” Physical Review D, vol. 78, no. 5, Article ID 055009, 2008.

[71] Y.-Q. Sui, Y.-L. Wu, Z.-F. Xie, and Y.-B. Yang, “Prediction for the mass spectra of resonance mesons in
the soft-wall AdS/QCD model with a modified 5D metric,” Physical Review D, vol. 81, no. 1, Article
ID 014024, 2010.

[72] M. Shifman and A. Vainshtein, “Highly excited mesons, linear Regge trajectories, and the pattern of
the chiral symmetry realization,” Physical Review D, vol. 77, no. 3, Article ID 034002, 2008.

[73] N. Evans and A. Tedder, “Perfecting the ultra-violet of holographic descriptions of QCD,” Physics
Letters, Section B, vol. 642, no. 5-6, pp. 546–550, 2006.

[74] S. S. Afonin, “Low-energy holographic models for QCD,” Physical Review C, vol. 83, Article ID
048202, 2011.

[75] H. Forkel, “Light scalar tetraquarks from a holographic perspective,” Physics Letters, Section B, vol.
694, no. 3, pp. 252–257, 2010.

[76] A. Bertin et al., “ Study of anti-p p → 2pi+ 2pi- annihilation from S states,” Physics Letters B, vol. 414,
p. 220, 1997.

[77] M. Harada, S. Matsuzaki, and K. Yamawaki, “Implications of holographic QCD in chiral
perturbation theory with hidden local symmetry,” Physical Review D, vol. 74, no. 7, Article ID 076004,
2006.

[78] K. Nawa, H. Suganuma, and T. Kojo, “Baryons in holographic QCD,” Physical Review D, vol. 75, no.
8, Article ID 086003, 2007.

[79] D. K. Hong, M. Rho, H. U. Yee, and P. Yi, “Chiral dynamics of Baryons from string theory,” Physical
Review D, vol. 76, Article ID 061901, 2007.

[80] H. Hata, T. Sakai, S. Sugimoto, and S. Yamato, “Baryons from instantons in holographic QCD,”
Progress of Theoretical Physics, vol. 117, no. 6, pp. 1157–1180, 2007.

[81] D. K. Hong, M. Rho, H.-U. Yee, and P. Yi, “Nucleon form factors and hidden symmetry in
holographic QCD,” Physical Review D, vol. 77, no. 1, Article ID 014030, 2008.

[82] K. Hashimoto, T. Sakai, and S. Sugimoto, “Holographic Baryons: static properties and form factors
from gauge/string duality,” Progress of Theoretical Physics, vol. 120, no. 6, pp. 1093–1137, 2008.

[83] M. Harada, S. Matsuzaki, and K. Yamawaki, “Holographic QCD integrated back to hidden local
symmetry,” Physical Review D, vol. 82, no. 7, Article ID 076010, 2010.

[84] M. Harada and M. Rho, “Integrating holographic vector dominance to hidden local symmetry for
the nucleon form factor,” Physical Review D, vol. 83, no. 11, Article ID 114040, 2011.

[85] A. Pomarol and A. Wulzer, “Baryon physics in holographic QCD,” Nuclear Physics B, vol. 809, no.
1-2, pp. 347–361, 2009.



Advances in High Energy Physics 57

[86] N. Brambilla et al., “Heavy quarkonium: progress, puzzles, and opportunities,” European Physical
Journal C, vol. 71, p. 1534, 2011.

[87] Y. Kim, J. P. Lee, and S. H. Lee, “Heavy quarkonium in a holographic QCD model,” Physical Review
D, vol. 75, no. 11, Article ID 114008, 2007.

[88] M. Fujita, K. Fukushima, T. Misumi, and M. Murata, “Finite-temperature spectral function of the
vector mesons in a holographic QCD model,” Physical Review D, vol. 80, no. 3, Article ID 035001,
2009.

[89] R. C. Myers, A. O. Starinets, and R. M. Thomson, “Holographic spectral functions and diffusion
constants for fundamental matter,” Journal of High Energy Physics, vol. 2007, no. 11, article 091, 2007.

[90] H. Liu, K. Rajagopal, and U. A. Wiedemann, “Anti-de sitter/conformal-field-theory calculation of
screening in a hot wind,” Physical Review Letters, vol. 98, no. 18, Article ID 182301, 2007.

[91] R. C. Myers and A. Sinha, “The fast life of holographic mesons,” Journal of High Energy Physics, vol.
2008, no. 6, article 052, 2008.

[92] H. R. Grigoryan, P. M. Hohler, and M. A. Stephanov, “Towards the gravity dual of quarkonium in
the strongly coupled QCD plasma,” Physical Review D, vol. 82, no. 2, Article ID 026005, 2010.

[93] J. Maldacena, “Wilson loops in large N field theories,” Physical Review Letters, vol. 80, no. 22, pp.
4859–4862, 1998.

[94] S. J. Rey, S. Theisen, and J. T. Yee, “Wilson-Polyakov loop at finite temperature in large-N gauge
theory and anti-de Sitter supergravity,” Nuclear Physics B, vol. 527, no. 1-2, pp. 171–186, 1998.

[95] O. Andreev and V. I. Zakharov, “Heavy-quark potentials and AdS/QCD,” Physical Review D, vol. 74,
no. 2, Article ID 025023, 2006.

[96] H. Boschi-Filho, N. R. F. Braga, and C. N. Ferreira, “Heavy quark potential at finite temperature from
gauge-string duality,” Physical Review D, vol. 74, no. 8, Article ID 086001, 2006.

[97] O. Andreev and V. I. Zakharov, “On heavy-quark free energies, entropies, Polyakov loop, and
AdS/QCD,” Journal of High Energy Physics, vol. 2007, no. 4, article 100, 2007.

[98] C. D. White, “The Cornell potential from general geometries in AdS/QCD,” Physics Letters, Section
B, vol. 652, no. 2-3, pp. 79–85, 2007.

[99] D. Hou and H. C. Ren, “Heavy quarkonium states with the holographic potential,” Journal of High
Energy Physics, vol. 2008, no. 1, article 029, 2008.

[100] Y. Kim, B. H. Lee, C. Park, and S. J. Sin, “Effect of the gluon condensate on the holographic heavy
quark potential,” Physical Review D, vol. 80, no. 10, Article ID 105016, 2009.

[101] M. Mia, K. Dasgupta, C. Gale, and S. Jeon, “Toward large N thermal QCD from dual gravity: the
heavy quarkonium potential,” Physical Review D, vol. 82, no. 2, Article ID 026004, 2010.

[102] S. He, M. Huang, and Q.-S. Yan, “Logarithmic correction in the deformed AdS5 model to produce the
heavy quark potential and QCD beta function,” Physical Review D, vol. 83, no. 4, Article ID 045034,
2011.

[103] H. R. Grigoryan and Y. V. Kovchegov, “Gravity dual corrections to the heavy quark potential at
finite-temperature,” Nuclear Physics B, vol. 852, no. 1, pp. 1–38, 2011.

[104] S. Eidelman, “Review of particle physics. Particle Data Group,” Physics Letters B, vol. 592, p. 1, 2004.
[105] L. J. Reinders, H. Rubinstein, and S. Yazaki, “Hadron properties from QCD sum rules,” Physics

Reports, vol. 127, no. 1, pp. 1–97, 1985.
[106] T. Ericson and W. Weise, Pions and Nuclei, Oxford University Press, Oxford, UK, 1988.
[107] G. Sterman and P. Stoler, “Hadronic form factors and perturbative QCD,” Annual Review of Nuclear

and Particle Science, vol. 47, no. 1, pp. 193–233, 1997.
[108] H. R. Grigoryan and A. V. Radyushkin, “Form factors and wave functions of vector mesons in

holographic QCD,” Physics Letters, Section B, vol. 650, no. 5-6, pp. 421–427, 2007.
[109] H. R. Grigoryan and A. V. Radyushkin, “Structure of vector mesons in holographic model with linear

confinement,” Physical Review D, vol. 76, Article ID 095007, 2007.
[110] F. T. Hawes and M. A. Pichowsky, “Electromagnetic form factors of light vector mesons,” Physical

Review C, vol. 59, no. 3, pp. 1743–1750, 1999.
[111] M. S. Bhagwat and P. Maris, “Vector meson form factors and their quark-mass dependence,” Physical

Review C, vol. 77, no. 2, Article ID 025203, 2008.
[112] J. N. Hedditch, W. Kamleh, B. G. Lasscock, D. B. Leinweber, A. G. Williams, and J. M. Zanotti,

“Pseudoscalar and vector meson form factors from lattice QCD,” Physical Review D, vol. 75, no. 9,
Article ID 094504, 2007.

[113] H. R. Grigoryan and A. V. Radyushkin, “Pion form factor in the chiral limit of a hard-wall AdS/QCD
model,” Physical Review D, vol. 76, no. 11, Article ID 115007, 2007.



58 Advances in High Energy Physics

[114] H. J. Kwee and R. F. Lebed, “Pion form factor in improved holographic QCD backgrounds,” Physical
Review D, vol. 77, no. 11, Article ID 115007, 2008.

[115] Z. Abidin and C. E. Carlson, “Gravitational form factors of vector mesons in an AdS/QCD model,”
Physical Review D, vol. 77, no. 9, 2008.

[116] Z. Abidin and C. E. Carlson, “Gravitational form factors in the axial sector from an AdS/QCD
model,” Physical Review D, vol. 77, no. 11, 2008.

[117] H. R. Grigoryan and A. V. Radyushkin, “Anomalous form factor of the neutral pion in an extended
AdS/QCD model with Chern-Simons term,” Physical Review D, vol. 77, Article ID 019901, 2008.

[118] Z. Abidin and C. E. Carlson, “Nucleon electromagnetic and gravitational form factors from
holography,” Physical Review D, vol. 79, no. 11, Article ID 115003, 2009.

[119] S. J. Brodsky, F. G. Cao, and G. F. de Teramond, “Meson transition form factors in light-front
holographic QCD,” http://arxiv.org/abs/1105.3999.

[120] F. Zuo and T. Huang, “Photon-to-pion transition form factor and pion distribution amplitude from
holographic QCD,” http://arxiv.org/abs/1105.6008.

[121] C. A. B. Bayona, H. Boschi-Filho, N. R. F. Braga, and M. A. C. Torres, “Form factors of vector and
axial-vector mesons in holographic D4-D8 model,” Journal of High Energy Physics, vol. 2010, no. 1,
article 052, 2010.

[122] F. Karsch, “Lattice QCD at high temperature and the QGP,” AIP Conference Proceedings, vol. 842, pp.
20–28, 2006.

[123] M. A. Stephanov, “QCD phase diagram: an overview,” PoS LAT, vol. 024, 2006.
[124] Z. Fodor and S. D. Katz, “The Phase diagram of quantum chromodynamics,” http://arxiv.org/abs/

0908.3341.
[125] R. Stock, “The QCD phase diagram: expectations and challenges,” http://arxiv.org/abs/0909.0601.
[126] K. Fukushima and T. Hatsuda, “The phase diagram of dense QCD,” Reports on Progress in Physics,

vol. 74, no. 1, Article ID 014001, 2011.
[127] L. D. McLerran, “A chiral symmetry order parameter, the lattice and nucleosynthesis,” Physical

Review D, vol. 36, p. 3291, 1987.
[128] S. Jeon and V. Koch, “Charged particle ratio Fluctuation as a signal for quark-gluon plasma,” Physical

Review Letters, vol. 85, no. 10, pp. 2076–2079, 2000.
[129] M. Asakawa, U. Heinz, and B. Müller, “Fluctuation probes of quark deconfinement,” Physical Review

Letters, vol. 85, no. 10, pp. 2072–2075, 2000.
[130] M. Prakash and I. Zahed, “Quark susceptibility in hot QCD,” Physical Review Letters, vol. 69, no. 23,

pp. 3282–3285, 1992.
[131] S. Gottlieb, W. Liu, D. Toussaint, R. L. Renken, and R. L. Sugar, “Quark-number susceptibility of

high-temperature QCD,” Physical Review Letters, vol. 59, no. 20, pp. 2247–2250, 1987.
[132] S. W. Hawking and D. N. Page, “Thermodynamics of black holes in anti-de Sitter space,” Communi-

cations in Mathematical Physics, vol. 87, no. 4, pp. 577–588, 1983.
[133] C. A. B. Bayona, H. Boschi-Filho, N. R. F. Braga, and L. A. P. Zayas, “On a holographic model for

confinement/deconfinement,” Physical Review D, vol. 77, no. 4, Article ID 046002, 2008.
[134] R.-G. Cai and J. P. Shock, “Holographic confinement/deconfinement phase transitions of AdS/QCD

in curved spaces,” Journal of High Energy Physics, vol. 2007, no. 8, article 095, 2007.
[135] A. Chamblin, R. Emparan, C. V. Johnson, and R. C. Myers, “Charged AdS black holes and

catastrophic holography,” Physical Review D, vol. 60, no. 6, pp. 1–17, 1999.
[136] N. Evans and E. Threlfall, “The Thermal phase transition in a QCD-like holographic model,” Physical

Review D, vol. 78, Article ID 105020, 2008.
[137] Y. Kim, B.-H. Lee, S. Nam, C. Park, and S.-J. Sin, “Deconfinement phase transition in holographic

QCD with matter,” Physical Review D, vol. 76, no. 8, Article ID 086003, 2007.
[138] S. J. Sin, “Gravity back-reaction to the baryon density for bulk filling branes,” Journal of High Energy

Physics, vol. 10, article 078, 2007.
[139] B. H. Lee, C. Park, and S. J. Sin, “A dual geometry of the hadron in dense matter,” Journal of High

Energy Physics, vol. 2009, no. 7, 2009.
[140] C. Park, D. Y. Gwak, B. H. Lee, Y. Ko, and S. Shin, “The soft wall model in the hadronic medium,”

http://arxiv.org/abs/1104.4182.
[141] R.-G. Cai and N. Ohta, “Deconfinement transition of AdS/QCD at O(α′3),” Physical Review D, vol.

76, no. 10, 2007.
[142] U. Gürsoy, E. Kiritsis, L. Mazzanti, and F. Nitti, “Holography and thermodynamics of 5D dilaton-

gravity,” Journal of High Energy Physics, vol. 2009, no. 5, article 033, 2009.



Advances in High Energy Physics 59

[143] O. Andreev, “Renormalized polyakov loop in the deconfined phase of SU(N) gauge theory and
gauge-string duality,” Physical Review Letters, vol. 102, no. 21, Article ID 212001, 2009.

[144] A. Gocksch and F. Neri, “On large N QCD at finite temperature,” Physical Review Letters, vol. 50, p.
1099, 1983.

[145] F. Neri and A. Gocksch, “Chiral-symmetry restoration in large-N quantum chromodynamics at finite
temperature,” Physical Review D, vol. 28, no. 12, pp. 3147–3148, 1983.

[146] R. D. Pisarski, “Finite-temperature QCD at large N,” Physical Review D, vol. 29, no. 6, pp. 1222–1227,
1984.

[147] Y. Kim and H. K. Lee, “Consequences of the partial restoration of chiral symmetry in an AdS/QCD
model,” Physical Review D, vol. 77, no. 9, 2008.

[148] K. Jo, Y. Kim, H. K. Lee, and S. J. Sin, “Quark number susceptibility and phase transition in hQCD
models,” Journal of High Energy Physics, vol. 11, article 040, 2008.

[149] K. Ghoroku and M. Yahiro, “Holographic model for mesons at finite temperature,” Physical Review
D, vol. 73, no. 12, Article ID 125010, 2006.

[150] O. Aharony, J. Sonnenschein, and S. Yankielowicz, “A holographic model of deconfinement and
chiral symmetry restoration,” Annals of Physics, vol. 322, no. 6, pp. 1420–1443, 2007.

[151] N. Evans, A. Gebauer, K.-Y. Kim, and M. Magou, “Holographic description of the phase diagram of
a chiral symmetry breaking gauge theory,” Journal of High Energy Physics, vol. 2010, no. 3, article 132,
2010.

[152] N. Evans, A. Gebauer, and K. Y. Kim, “E, B, T phase structure of the D3/D7 holographic dual,”
Journal of High Energy Physics, vol. 5, article 067, 2011.

[153] N. Evans, T. Kalaydzhyan, K. -Y. Kim, and I. Kirsch, “Non-equilibrium physics at a holographic
chiral phase transition,” Journal of High Energy Physics, vol. 2011, no. 1, article 050, pp. 1–27, 2011.

[154] S. de Haro, K. Skenderis, and S. N. Solodukhin, “Holographic reconstruction of spacetime and
renormalization in the AdS/CFT correspondence,” Communications in Mathematical Physics, vol. 217,
no. 3, pp. 595–622, 2001.

[155] R. A. Janik and R. B. Peschanski, “Asymptotic perfect uid dynamics as a consequence of Ads/CFT,”
Physical Review D, vol. 73, Article ID 045013, 2006.

[156] C. Fefferman and C. R. Graham, “Conformal Invariants,” elie Cartan et les mathematiques
d’ujourd’hui,” Asterisque, No. Hors Ser., vol. 1985, pp. 95–116, 1985.

[157] K. Kajantie, T. Tahkokallio, and J. T. Yee, “Thermodynamics of AdS/QCD,” Journal of High Energy
Physics, vol. 2007, no. 1, article 019, 2007.

[158] O. Andreev, “Some thermodynamic aspects of pure glue, fuzzy bags, and gauge/string duality,”
Physical Review D, vol. 76, no. 8, Article ID 087702, 2007.

[159] S. S. Gubser and A. Nellore, “Mimicking the QCD equation of state with a dual black hole,” Physical
Review D, vol. 78, no. 8, 2008.

[160] D. Li, S. He, M. Huang, and Q.-S. Yan, “Thermodynamics of deformed AdS5 model with a posi-
tive/negative quadratic correction in graviton-dilaton system,” http://arxiv.org/abs/1103.5389.

[161] U. Gürsoy, E. Kiritsis, L. Mazzanti, and F. Nitti, “Deconfinement and gluon plasma dynamics in
improved holographic QCD,” Physical Review Letters, vol. 101, no. 18, Article ID 181601, 2008.

[162] U. Gürsoy and E. Kiritsis, “Exploring improved holographic theories for QCD—part I,” Journal of
High Energy Physics, vol. 2008, no. 2, article 032, 2008.

[163] U. Gürsoy, E. Kiritsis, and F. Nitti, “Exploring improved holographic theories for QCD—part II,”
Journal of High Energy Physics, vol. 2008, no. 2, article 019, 2008.

[164] M. Panero, “Thermodynamics of the QCD plasma and the large-N limit,” Physical Review Letters, vol.
103, no. 23, Article ID 232001, 2009.

[165] Y. Kim, Y. Matsuo, W. Sim, S. Takeuchi, and T. Tsukioka, “Quark number susceptibility with finite
chemical potential in holographic QCD,” Journal of High Energy Physics, vol. 2010, no. 5, article 038,
2010.

[166] T. Kunihiro, “Quark number susceptibility and fluctuations in the vector channel at high
temperatures,” Physics Letters B, vol. 271, p. 395, 1991.

[167] A. Stoffers and I. Zahed, “Improved AdS/QCD model with matter,” Physical Review D, vol. 83, no.
5, 2011.

[168] O. Dewolfe, S. S. Gubser, and C. Rosen, “A holographic critical point,” Physical Review D, vol. 83, no.
8, Article ID 086005, 2011.

[169] J. D. Walecka, “A theory of highly condensed matter,” Annals of Physics, vol. 83, no. 2, pp. 491–529,
1974.



60 Advances in High Energy Physics

[170] B. D. Serot and J. D. Walecka, “The relativistic nuclear many body problem,” Advances in Nuclear
Physics, vol. 16, p. 1, 1986.

[171] R. J. Furnstahl and B. D. Serot, “Quantum hadrodynamics: evolution and revolution,” Comments on
Nuclear and Particle Physics, vol. 2, p. 23, 2000.

[172] H. R. Grigoryan, “Dimension six corrections to the vector sector of AdS/QCD model,” Physics
Letters, Section B, vol. 662, no. 2, pp. 158–164, 2008.

[173] Y. Kim, P. Ko, and X.-H. Wu, “Holographic QCD beyond the leading order,” Journal of High Energy
Physics, vol. 2008, no. 6, article 094, 2008.

[174] K. K. Kim, Y. Kim, and Y. Ko, “Self-bound dense objects in holographic QCD,” Journal of High Energy
Physics, vol. 2010, no. 10, article 039, 2010.

[175] S. K. Domokos and J. A. Harvey, “Baryon-number-induced Chern-Simons couplings of vector and
axial-vector mesons in holographic QCD,” Physical Review Letters, vol. 99, no. 14, Article ID 141602,
2007.

[176] Y. Kim, C. H. Lee, and H. U. Yee, “Holographic nuclear matter in AdS/QCD,” Physical Review D, vol.
77, Article ID 085030, 2008.

[177] K. Y. Kim, S. J. Sin, and I. Zahed, “Dense hadronic matter in holographic QCD,” http://arxiv.org/
abs/hep-th/0608046.

[178] N. Horigome and Y. Tanii, “Holographic chiral phase transition with chemical potential,” Journal of
High Energy Physics, vol. 2007, no. 1, article 072, 2007.

[179] K.-Y. Kim, S.-J. Sin, and I. Zahed, “The chiral model of Sakai-Sugimoto at finite baryon density,”
Journal of High Energy Physics, vol. 2008, no. 1, article 002, 2008.

[180] M. Rozali, H.-H. Shieh, M. Van Raamsdonk, and J. Wu, “Cold nuclear matter in holographic QCD,”
Journal of High Energy Physics, vol. 2008, no. 1, article 053, 2008.

[181] O. Bergman, M. Lippert, and G. Lifschytz, “Holographic nuclear physics,” Journal of High Energy
Physics, vol. 2007, no. 11, article 056, 2007.

[182] S. Nakamura, Y. Seo, S. J. Sin, and K. P. Yogendran, “A new phase at a finite quark density from
AdS/CFT,” Journal of the Korean Physical Society, vol. 52, no. 6, pp. 1734–1739, 2008.

[183] S. Kobayashi, D. Mateos, S. Matsuura, R. C. Myers, and R. M. Thomson, “Holographic phase
transitions at finite baryon density,” Journal of High Energy Physics, vol. 2007, no. 2, article 016, 2007.

[184] K.-Y. Kim and I. Zahed, “Nucleon-nucleon potential from holography,” Journal of High Energy
Physics, vol. 2009, no. 3, article 131, 2009.

[185] K. Hashimoto, T. Sakai, and S. Sugimoto, “Nuclear force from string theory,” Progress of Theoretical
Physics, vol. 122, no. 2, pp. 427–476, 2009.

[186] Y. Kim, S. Lee, and P. Yi, “Holographic deuteron and nucleon-nucleon potential,” Journal of High
Energy Physics, vol. 2009, no. 4, article 086, 2009.

[187] Y. Kim, S. Lee, and P. Yi, “Nucleon-nucleon potential in holographic QCD,” Nuclear Physics A, vol.
844, no. 1–4, p. 224c, 2010.

[188] J. Erdmenger, N. Evans, I. Kirsch, and E. J. Threlfall, “Mesons in gauge/gravity duals,” The European
Physical Journal A, vol. 35, p. 81, 2008.

[189] R. Peschanski, “Introductionto String Theory and Gauge/Gravity duality for students in QCD and
QGP phenomenology,” Acta Physica Polonica A, vol. 39, p. 2479, 2008.

[190] F. Jugeau, “Hadron potentials within the gauge/string correspondence,” Annals of Physics, vol. 325,
no. 8, pp. 1739–1789, 2010.

[191] S. S. Gubser and A. Karch, “From Gauge-string duality to strong interactions: a pedestrian’s guide,”
Annual Review of Nuclear and Particle Science, vol. 59, pp. 145–168, 2009.

[192] J. Erlich, “How well does AdS/QCD describe QCD?” International Journal of Modern Physics A, vol.
25, no. 2-3, pp. 411–421, 2010.

[193] J. McGreevy, “Holographic duality with a view toward many-body physics,” Advances in High
Energy Physics, vol. 2010, Article ID 723105, 54 pages, 2010.

[194] C. Nunez, A. Paredes, and A. V. Ramallo, “Unquenched Flavor in the gauge/gravity correspon-
dence,” Advances in High Energy Physics, vol. 2010, Article ID 196714, 93 pages, 2010.

[195] U. Gursoy, E. Kiritsis, L. Mazzanti, G. Michalogiorgakis, and F. Nitti, “Improved holographic QCD,”
Lecture Notes in Physics, vol. 828, pp. 79–146, 2011.

[196] J. Casalderrey-Solana, H. Liu, D. Mateos, K. Rajagopal, and U. A. Wiedemann, “Gauge/string dual-
ity, hot QCD and heavy ion collisions,” http://arxiv.org/abs/1101.0618.

[197] P. Yi, “Precision holographic baryons,” http://arxiv.org/abs/1103.1684.



Advances in High Energy Physics 61

[198] J. Polchinski and M. J. Strassler, “Deep inelastic scattering and gauge/string duality,” Journal of High
Energy Physics, vol. 7, no. 5, pp. 197–232, 2003.

[199] O. Andreev, “Scaling laws in hadronic processes and string theory,” Physical Review D, vol. 67, no. 4,
2003.

[200] Y. Hatta, E. Iancu, and A. H. Mueller, “Deep inelastic scattering at strong coupling from gauge/string
duality: the saturation line,” Journal of High Energy Physics, vol. 2008, no. 1, article 026, 2008.

[201] L. Cornalba and M. S. Costa, “Saturation in deep inelastic scattering from AdS/CFT,” Physical Review
D, vol. 78, Article ID 096010, 2008.

[202] J. L. Albacete, Y. V. Kovchegov, and A. Taliotis, “DIS on a large nucleus in AdS/CFT,” Journal of High
Energy Physics, vol. 2008, no. 7, article 074, 2008.

[203] J.-H. Gao and B.-W. Xiao, “Polarized deep inelastic and elastic scattering from gauge/string duality,”
Physical Review D, vol. 80, no. 1, Article ID 015025, 2009.

[204] E. Avsar, E. Iancu, L. McLerran, and D. N. Triantafyllopoulos, “Shockwaves and deep inelastic
scattering within the gauge/gravity duality,” Journal of High Energy Physics, vol. 11, article 105, 2009.

[205] C. A. Ballon Bayona, H. Boschi-Filho, and N. R.F. Braga, “Deep inelastic scattering in holographic
AdS/QCD models,” Nuclear Physics B, vol. 199, no. 1, pp. 97–102, 2010.

[206] L. Cornalba, M. S. Costa, and J. Penedones, “Deep inelastic scattering in conformal QCD,” Journal of
High Energy Physics, vol. 2010, no. 3, article 133, 2010.

[207] J.-H. Gao and Z.-G. Mou, “Polarized deep inelastic scattering off the neutron from gauge/string
duality,” Physical Review D, vol. 81, no. 9, Article ID 096006, 2010.

[208] L. Cornalba, M. S. Costa, and J. Penedones, “AdS black disk model for small-x DIS,” AIP Conference
Proceedings, vol. 1343, pp. 542–544, 2011.

[209] R. C. Brower, M. Djuric, I. Sarcevic, and C. I. Tan, “The AdS graviton/pomeron description of deep
inelastic scattering at small x,” http://arxiv.org/abs/1106.5681.

[210] T. Branz, T. Gutsche, V. E. Lyubovitskij, I. Schmidt, and A. Vega, “Light and heavy mesons in a
soft-wall holographic approach,” Physical Review D, vol. 82, no. 7, Article ID 074022, 2010.

[211] O. Andreev, “Some multi-quark potentials, pseudo-potentials and AdS/QCD,” Physical Review D,
vol. 78, Article ID 065007, 2008.

[212] M. V. Carlucci, F. Giannuzzi, G. Nardulli, M. Pellicoro, and S. Stramaglia, “AdS-QCD quark-
antiquark potential, meson spectrum and tetraquarks,” European Physical Journal C, vol. 57, no. 3,
pp. 569–578, 2008.

[213] H. C. Kim and Y. Kim, “Hybrid exotic meson with J∗∗PC = 1-+ in AdS/QCD,” Journal of High Energy
Physics, vol. 1, article 034, 2009.

[214] F. Giannuzzi, “Doubly heavy baryons in a Salpeter model with AdS/QCD inspired potential,”
Physical Review D, vol. 79, no. 9, Article ID 094002, 2009.

[215] P. N. Kopnin, “Low-energy theorems and spectral density of the Dirac operator in AdS/QCD
models,” Physical Review D, vol. 80, no. 12, Article ID 126005, 2009.

[216] N. Evans and A. Tedder, “A holographic model of hadronization,” Physical Review Letters, vol. 100,
Article ID 162003, 2008.

[217] O. Andreev, “Cold quark matter, quadratic corrections, and gauge/string duality,” Physical ReviewD,
vol. 81, no. 8, Article ID 087901, 2010.

[218] W. S. l’Yi, “Correlators of currents corresponding to the massive p-form fields in AdS/CFT
correspondence,” Physics Letters, Section B, vol. 448, no. 3-4, pp. 218–226, 1999.

[219] M. Henningson and K. Sfetsos, “Spinors and the AdS/CFT correspondence,” Physics Letters, Section
B, vol. 431, no. 1-2, pp. 63–68, 1998.

[220] G. E. Arutyunov and S. A. Frolov, “Antisymmetric tensor field on AdS5,” Physics Letters, Section B,
vol. 441, no. 1–4, pp. 173–177, 1998.

[221] A. Volovich, “Rarita-Schwinger field in the AdS/CFT correspondence,” Journal of High Energy
Physics, vol. 2, no. 9, 9 pages, 1998.

[222] A. S. Koshelev and O. A. Rytchkov, “Note on the massive Rarita-Schwinger field in the AdS/CFT
correspondence,” Physics Letters, Section B, vol. 450, no. 4, pp. 368–376, 1999.

[223] A. Polishchuk, “Massive symmetric tensor field on AdS,” Journal of High Energy Physics, vol. 3, no. 7,
11 pages, 1999.

[224] J. Polchinski, String Theory. Vol. 1: An Introduction to the Bosonic String, Cambridge University Press,
Cambridge, UK, 1998.



62 Advances in High Energy Physics

[225] K. Ghoroku, M. Ishihara, and A. Nakamura, “Flavor quarks in AdS4 and gauge/gravity correspon-
dence,” Physical Review D, vol. 75, no. 4, Article ID 046005, 2007.

[226] M. Kruczenski, D. Mateos, R. C. Myers, and D. J. Winters, “Meson spectroscopy in AdS/CFT with
Flavour,” Journal of High Energy Physics, vol. 7, no. 7, pp. 1159–1196, 2003.

[227] R. M. Wald, General Relativity, The University of Chicago Press, Chicago, Ill, USA, 1984.
[228] S. J. Rey and J. T. Yee, “Macroscopic strings as heavy quarks: large-N gauge theory and anti-de sitter

supergravity,” European Physical Journal C, vol. 22, no. 2, pp. 379–394, 2001.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

High Energy Physics
Advances in

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Fluids
Journal of

 Atomic and  
Molecular Physics

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in  
Condensed Matter Physics

Optics
International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Astronomy
Advances in

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Superconductivity

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Statistical Mechanics
International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Gravity
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Astrophysics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Physics 
Research International

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Solid State Physics
Journal of

 Computational 
 Methods in Physics

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Soft Matter
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Aerodynamics
Journal of

Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Photonics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Biophysics

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Thermodynamics
Journal of


