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We discuss a comprehensive description of the geometry of the brane-world cosmologies, and
present bulk and brane structure and matching between brane and bulk metrics. It is clear that
the possibility of the matching condition is not always obvious and therefore it requires a separate
analysis. In this study we have shown, under the assumption of consideration of the anisotropic
metric except Kasner-AdS like, matching procedure is not achieved for Bianchi-types bulk metrics.
Examples of this result are presented by the illustrations of the Bianchi-types II and V bulk metrics.

1. Introduction

Randall and Sundrum (RS)made an intriguing alternative suggestion in which we reside in a
universe, 3+1-dimensional surface (the “brane”), of more than four noncompact dimensions.
They examine a brane in a space of higher dimension, which is called bulk and it is a slice of
anti de Sitter spacetime (AdS) [1]. In these models, five-dimensional Einstein field equations,

5GI,J = κ2
5TI,J , (1.1)

where 5GI,J is the five-dimensional Einstein tensor, κ2
5 is the five-dimensional coupling

constant, and TI,J is the energy-momentum tensor. It can be written as,

TI,J = −ΛgI,J + SI,Jδ
(
y
)
, SI,J = −λgI,J + τI,J , (1.2)

where, gI,J , λ, and τI,J are the metric, tension, and energy-momentum tensors of the brane,
respectively.

The effective four-dimensional gravitational equations on the brane take the form [2,
3]:

4Gi,j = −Λ4gi,j + κ2
4τi,j + κ2

5πi,j − Ei,j , (1.3)
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where,

Λ4 =
1
2
κ2
5

(
Λ +

1
6
κ2
5λ

2
)
, κ2

4 =
κ2
5

6
λ,

πi,j = −1
4
τacτ

c
b +

1
12

ττi,j +
1
8
gi,jτcdτ

cd − 1
24

gi,jτ
2,

(1.4)

where πi,j is the local quadratic energy-momentum correction and Ei,j is nonlocal effect from
the free bulk gravitational field. Thus, it is not possible to fully understand brane solutions
without explicitly knowing the bulk solution.

In the literature, if we take bulk metrics as AdS-like and brane metrics as FRW-like,
we make for an exact solution of (1.1), in the isotropic brane-world cosmology [4–9]. For
instance, in FRW brane world, the bulk is Schwarzchild AdS and Ei,j reduce to simple
Coulomb term that gives a dark radiation term on the brane [10–12].

In anisotropic brane-world scenarios, the suitable bulk and brane metrics matching
each other were first discovered by frolov [13]. It is clear that Kasner-type brane-world model
can be viewed as the generalization of an isotropic model. The five-dimensional Kasner anti
de Sitter metric described by

ds2 = −f(r)dt2 + dr2

f(r)
+ r2dσ2

3 , (1.5)

where σ2
3 is 3-dimentional spatial metric varying with time

dσ2
3 = t2p1(t)dx2 + t2p2(t)dy2 + t2p3(t)dz2. (1.6)

Here the exponents must satisfy the familiar Kasner restrictions,

p1 + p2 + p3 = 1 = p22 + p22 + p23. (1.7)

Thus, the brane also has a tension and matter-density given, respectively, as

σ = ± 6
κ2
5l
, ρ = 0, (1.8)

which is the the Randall-Sundrum like fine tuning between the brane tension and the bulk
cosmological constant. Since the brane does not include matter, that is to say, it becomes
a vacuum, it makes for a poor cosmological model. But the important point here is that it
introduces anisotropy into the brane world models.

Some authors have analyzed anisotropic brane worlds including matter content
[14, 15]. Particularly, dynamical systems techniques are used by Campos and Sopuerta
to look into homogeneous and anisotropic Bianchi-type branes [16]. For a summary of
dynamical systems in the context of cosmology, including Bianchi-type cosmologies, refer
to [17]. However, in the these early studies many assumptions were made about the Weyl
term, Ei,j , due to the absence of an exact anisotropic bulk solution. This was addressed in
[18] for the FLRW and Bianchi I case and shortly after Campos et al. [19] found a family of
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exact, anisotropic solution to the five-dimensional field equation. Therefore they were able to
be explicitly see the relationship between the bulk Weyl curvature and the anisotropy on the
brane. They found that it is not possible to have a perfect fluid or scalar field compatible with
the anisotropic brane since the junction condition requires anisotropic stress on the brane.
Fabbri et al. found more exact bulk solutions and agreed that an anisotropic brane cannot
support a perfect fluid in the case where the bulk is static [20]. Harko and Mak investigated
Bianchi-type brane-world behaviour near the singularity and at late times and found that
they tend to isotropize for certain matter content [21]. Also, they found general solution of
the field equations for Bianchi-type I and V in the brane [22].

Up to now, no complete solution for the brane and bulk metrics have been found for
cosmological Bianchi brane worlds. The key difficulty is to find anisotropic generalization
of AdS that can incorporate anisotropy on a cosmological brane, and that is necessarily
nonconformally flat.

In this study we have shown, under the assumption of consideration of the anisotropic
metric except Kasner-AdS-like, matching procedure is not achieved for Bianchi-types metrics
[23]. Examples of this result are shown by the illustrations of the Bianchi-types II and
V metrics. Throughout this paper we will use the following notation: latin letters denote
coordinate indices in the bulk spacetime (I, J,K, . . . = 0, 1, 2, 3, 4) and in the brane (i, j, k,=
0, 1, 2, 3), and also tilde (∼) and upper “5” mean 5-dimensional quantities.

2. Bianchi-Type II and V Space Time

2.1. Bianchi-Type II

We consider the 5-dimensional metric:

ds2 = −eν(t̃,w̃)dt̃2 + γijw
iwj + eμ(t̃,w̃)dw̃2, (2.1)

where the 3-dimensional spatial part of the metric can be expressed in diagonal form as

γij = diag
(
eα, eβ, eγ

)
. (2.2)

We assume that the metric coefficients α, β, γ, ν, and μ depend on both t̃ and w̃.
The one-form wi have the relationship

dwi =
1
2
Ci

jkw
jwk, (2.3)

where, the Ci
jk
are the structure constants corresponding to the particular Bianchi-type. In the

case of type-II, the nonzero structure constants are

C1
23 = −C1

32 = 1. (2.4)

The exact solution of the 5-dimentional Einstein Equation for vacuum case was obtained by
Halpern [24]. Following his paper, the metric coefficients can be expressed in the following
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manner:

α = 2a1 t̃ + 2a2w̃,

β = 2b1t̃ + 2b2w̃,

γ = 2c1t̃ + 2c2w̃,

μ = ν = 2d1 t̃ + 2d2w̃,

(2.5)

where

a1 =
−2a2

2 + 2a2c2 + 1 + a2
√
6
√
2a2

2 + 2c22 − 1

2

√

4a2
2 − 1 − 2a2c2 + 4c22 +

√
6
√(

2a2
2 + 2c22 − 1

)
(a2 − c2)2

,

b1 =
−6a2

2 + 4a2c2 − 10c22 + 2 + (a2 − 3c2)
√
6
√
2a2

2 + 2c22 − 1

2

√

4a2
2 − 1 − 2a2c2 + 4c22 +

√
6
√(

2a2
2 + 2c22 − 1

)
(a2 − c2)2

,

c1 =
−2a2c2 − 1 + 2c22 + 2 + c2

√
6
√
2a2

2 + 2c22 − 1

2

√

4a2
2 − 1 − 2a2c2 + 4c22 +

√
6
√(

2a2
2 + 2c22 − 1

)
(a2 − c2)2

,

d1 = −
2a2

2 + 4c22 + c2
√
6
√
2a2

2 + 2c22 − 1
√

4a2
2 − 1 − 2a2c2 + 4c22 +

√
6
√(

2a2
2 + 2c22 − 1

)
(a2 − c2)2

,

b2 = −2c2 −
√
6
2

√
2a2

2 + 2c22 − 1,

d2 = −a2 − c2 −
√
6
2

√
2a2

2 + 2c22 − 1.

(2.6)

This set of solutions is purely exponential in character, with monotonic behavior
similar to the Kasner (type I) solution. Note, however, that the relationship amongst these
exponents is more complex than in the Kasner case.

2.2. Bianchi-Type V

We now consider 5-dimentional Bianchi-type V spatial geometry. We write the metric in the
same manner as (2.1) with the nonzero structure constant of the Lie algebra of one-forms
equal to

C1
13 = −C1

31 = 1, C2
23 = −C2

32 = 1. (2.7)
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Exact solution of the 5-dimentional Einstein equation was obtained by Halpern [24].
Following his paper, the metric coefficients can be expressed in the following manner:

α = 2a1t +
√
2a2w,

β = 2 ln
(
1
2

√
−4a2

1 + 2a2
2

)
− 2a1t −

√
2a2w,

γ = 2a2t − 2 ln
(
1
2

√
−4a2

1 + 2a2
2

)
+ 2a1

√
2w,

μ = ν = 2a2t + 2a1
√
2w,

(2.8)

where a1 and a2 are independent parameters with a2
2 > a2

1 to ensure that all scale factors are
real.

3. Brane in Anisotropic Bulk

In this section, we consider what will happen if the 3-brane is embedded in the Bianchi types
II and V derived above. Following [13, 25], we describe some useful identities for suitable
embedding,

t̃ = T(τ) −→ dt̃ =
dT

dτ
dτ = Ṫdτ,

x̃i = xi −→ dx̃i = dxi,

w̃ = W̃(τ) −→ dw̃ =
dW̃

dτ
dτ = Ẇdτ,

(3.1)

where, ˙ represents derivative with respect to τ .
For generalization of (2.1), we can take its components

eν = M
(
t̃, w̃

)
, eμ = N

(
t̃, w̃

)
. (3.2)

Then, 5-dimentional metric takes the form

ds2 = −M
(
t̃, w̃

)
dt̃2 + γijw

iwj +N
(
t̃, w̃

)
dw̃2, (3.3)

Induced metric on the brane is

ds2 = −
(
MṪ2 −NẆ2

)
dτ2 + eα(T(τ),W̃(τ))dx2 + eβ(T(τ),W̃(τ))dy2 + eγ(T(τ),W̃(τ))dz2. (3.4)

If we chose

MṪ2 −NẆ2 = 1 −→ Ṫ = +

√
1 +NṪ2

M
(3.5)
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and get proper time, we can write the local frame

eli =
∂x̃l

∂xi
−→ et̃τ =

∂t̃

∂τ
= Ṫ , ex̃τ = e

ỹ
τ = ez̃τ = 0, ew̃τ =

∂W̃

∂τ
= Ẇ, (3.6)

or

elτ =
(
Ṫ , 0, 0, 0, Ẇ

)
, eτl =

(−MṪ, 0, 0, 0,NẆ
)
,

elx = (0, 1, 0, 0, 0), ely = (0, 0, 1, 0, 0), elz = (0, 0, 0, 1, 0).
(3.7)

It is not difficult to show these equations implying that the timelike vector is given by

u2 = elτeτl = −MṪ2 +NẆ2 = −1. (3.8)

Also, using nleτl = 0 and nlnl = 1, where, n is normal vector, then we obtain some useful
relations,

nlexl = nleyl = nlezl = 0 −→ n1 = n2 = n3 = 0,

nleτl = 0 −→ −MṪn0 +NṪn4 = 0,

nlel = 1 −→ −M
(
n0
)2

+N
(
n4
)2

= 1.

(3.9)

Finally, we find that unit normal vector to the brane is

n0 = ε

√
N

M
Ẇ, n4 = ε

√
M

N
Ṫ, (3.10)

or

nl =

⎛

⎝ε

√
N

M
Ẇ, 0, 0, 0, ε

√
M

N
Ṫ

⎞

⎠, nl =
(
−ε

√
MNẆ, 0, 0, 0, ε

√
MNṪ

)
, (3.11)

where, ε = ±1.
Now,

Kij = el(ie
J
j)

5∇̃lnj ,

5∇̃lnj = ∂̃lnj−5Γ̃KIJnK.

(3.12)

After defining (3.12), we obtain useful form of extrinsic curvature tensor for the brane
embedded in the spacetime defined as

Kij =
[
elie

J
j n

L∂L
5g̃IJ+5g̃IJ

(
eli∂jn

J + elj∂in
J
)]

(3.13)
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has the following nonvanishing components

Kττ = −ε2N
∗ẆṪ +

(
M′Ṫ2) +

(
N ′Ẇ2) +

(
2NẄ

)

2
√
MNṪ

,

Kxx = ε
NẆα∗ +MṪα′

2
√
MN

eα,

Kyy = ε
NẆβ∗ +MṪβ′

2
√
MN

eβ,

Kzz = ε
NẆγ∗ +MṪγ ′

2
√
MN

eγ,

(3.14)

where we use overdots to represent partial derivatives with respect to τ , asterisks to represent
partial derivatives with respect to t̃, and overcommas to represent partial derivatives with
respect to w̃.

The Israel’s junction condition is given by

KIJ = − k̃
2
5

2

(
SIJ − 1

3
ShIJ

)
, (3.15)

where SIJ is energy-momentum tensor of the brane and hIJ is induced metric on the brane.
SIJ , and its trace S are defined as

SIJ = μuIuJ +
(
p − σ

)
hIJ ,

S = −μ + 4p − 4σ,
(3.16)

where μ is brane matter-energi density, p is matter pressure, σ is brane tension, and uI is four
vector. The metric inhered by the brane and other hypersurfaces of the foliation is the first
fundamental form,

hIJ =5 g̃IJ − nInJ , (3.17)

and its components are

hττ = −M2Ṫ2, hxx = eα, hyy = eβ, hzz = eγ . (3.18)

Using (3.16) and (3.18), we obtain energy-momentum tensor components

Sττ = M2Ṫ
(
μ − p + σ

)
,

Sxx = eα
(
p − σ

)
,

Syy = eβ
(
p − σ

)
,

Szz = eγ
(
p − σ

)
.

(3.19)
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Finally, if substituting the last equations into (3.15), one gets the brane equation of motions
in the bulk

ε
2N∗ẆṪ +M′Ṫ2 +N ′Ẇ2 + 2NẄ

2
√
MNṪ

=
k̃2
5

2
M2Ṫ

(
μ − p + σ

)
, (3.20)

ε
NẆα∗ +MṪα′

2
√
MN

= − k̃
2
5

2
(
p − σ

)
, (3.21)

ε
NẆβ∗ +MṪβ′

2
√
MN

= − k̃
2
5

2
(
p − σ

)
, (3.22)

ε
NẆγ∗ +MṪγ ′

2
√
MN

= − k̃
2
5

2
(
p − σ

)
. (3.23)

Because the anisotropic bulk coefficients α, β, γ, N, and M depend on both t̃ and
w̃ differently, the only way to satisfy (3.20) to (3.23) simultaneously without introducing
anisotropic matter content on the brane, is to have the anisotropic term vanish in these
equations. This is succeeded when Ẇ = 0 → W = constant, that is, when brane is not moving.
Then we obtain Ṫ = 1/M. Finally these equations are reduced, respectively, in the following:

M′

2M2
√
N

=
k̃2
5

6
(
2μ + p − σ

)
, (3.24)

α′

2
√
N

= − k̃
2
5

2
(
p − σ

)
, (3.25)

β′

2
√
N

= − k̃
2
5

2
(
p − σ

)
, (3.26)

γ ′

2
√
N

= − k̃
2
5

2
(
p − σ

)
. (3.27)

From last tree equations, we infer that

α′ = β′ = γ ′. (3.28)

Case I (for the Bianchi-type II). If we compare (3.28) with (2.5), we infer that a2 = b2 = c2 =
±i/2, that is, complex values for the metric coefficients.

Case II (for the Bianchi-type V). If we compare (3.28)with (2.8), we infer that −a2 = a1 which
is contrary to a2

2 > a2
1 ensuring all scale factors are real.

4. Discussion

Up till now, studies related to the isotropic brane-world models, because of the existence of
suitable selections of bulk and brane metrics, there exists many models in the literature such
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as propose solutions to the current cosmological problems. Brane cosmology with anisotropy
has not been clearly understood yet. Apart from Frolov’s Kasner-AdS model, there are no
additional anisotropic brane-world models which contain bulk-brane matching. The simplest
generalizations of FRW brane worlds are Bianchi brane worlds. In this study, by using
Frolov’s method, after having obtained the equations of motion of brane, we investigated
the bulk-brane matching of the Bianchi-type II and Bianchi-type V models whose exact bulk
solutions are known. In the result, we have found that the coefficients of bulk and brane
metrics are not matching each other since they are imaginary.

Just to finish we would like to mention some current and future work in the line
of the present one. First, since Bianchi-types cosmology has large anisotropy, it would be
interesting to suppose the matter on the brane possess some anisotropy, then take into
account other Bianchi-type bulk solutions. In this sense, a good starting point would be to
consider scenarios like those introduced in [20].
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