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We compute one-loop threshold corrections to R4 terms in N = 5, 6 supergravity vacua of Type II
superstrings. We then discuss nonperturbative corrections generated by asymmetric D-brane
instantons. Finally we derive generating functions for MHV amplitudes at tree level in N = 5, 6
supergravities.

1. Introduction

N = 5, 6 supergravities in D = 4 enjoy many of the remarkable properties of N = 8 super-
gravity. Their massless spectra are unique and consist solely of the supergravity multiplets.
Their R-symmetries are not anomalous [1]. Regular BH solutions can be found whereby the
scalars are stabilized at the horizon by the attractor mechanism (for a recent review see, e.g.,
[2]). It is thus tempting to conjecture that if pure N = 8 supergravity turned out to be UV
finite [3–7] then N = 5, 6 supergravities should be so, too.

As shown in [8–10], Type II superstrings or M-theory accommodate N = 8 super-
gravity in such a way as to include nonperturbative states that correspond to singular BH
solutions in D = 4. The same is true for N = 5, 6 supergravities. While the embedding
of N = 8 supergravity corresponds to simple toroidal compactifications, the embedding of
N = 5, 6 supergravities, pioneered by Ferrara and Kounnas in [11] and recently reviewed in
[12], requires asymmetric orbifolds [13, 14] or free fermion constructions [15–20].
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The inclusion of BPS states, whose possible singular behavior from a strict 4D
viewpoint is resolved from a higher-dimensional perspective, generates higher derivative
corrections to the low-energy effective action. In particular a celebrated R4 term appears that
spoils the continuous noncompact symmetry of “classical” supergravity. Absence of such a
term has been recently shown for pure N = 8 supergravity in [21]. In superstring theory,
the R4 term receives contribution at tree level, one loop, and from nonperturbative effects
associated to D-instantons [22] and other wrapped branes [23]. Proposals for the relevant
modular form of the E7(7)(Z) U-duality group have been recently put forward in [24–26]
that seem to satisfy all the checks.

In this paper we consider one-loop threshold corrections to the same kind of terms
in superstring models with N = 5, 6 supersymmetry in D = 4 and N = 6 in D = 5. After
excluding R2 terms (R3 terms cannot be supersymmetrized on shell when all particles are
in the supergravity multiplet [21]), we will derive formulae for the “perturbative” threshold
corrections. In D = 4 we will also discuss other MHV amplitudes (for a recent review see,
e.g., [27]) that can be obtained by orbifold techniques from the generating function of N = 8
supergravity amplitudes [28].

Aim of the analysis is threefold. First, we would like to show that N = 5, 6
supersymmetric models inD = 4 behave very much as their commonN = 8 supersymmetric
parent. The threshold corrections that we find may be taken as evidence that, as in theN = 8
case, superstring calculations do not reproduce field theory results, where suchR4 corrections
are absent as a result of the unbroken (anomaly free) continuous U-duality symmetry as in
theN = 8 case [1]. This is in line with the nondecoupling in Type II superstrings of BPS states
that are singular from the strict 4-dimensional supergravity perspective [8–10].

Second, (gauged) N = 5, 6 supergravities have played a crucial role in the recent
understanding of M2-brane dynamics [29–32], and nonperturbative tests may be refined by
considering the effects of world-sheet instantons in CP 3 [33–36] along the lines of our present
(ungauged) analysis. Finally, in addition to world-sheet instantons, D-brane instantons
corresponding to Euclidean bound states of “exotic” D-branes should contribute to generalize
“standard” D-brane instanton calculus to Left-Right asymmetric backgrounds.

Plan of the paper is as follows. In Section 1, we briefly review N = 5, 6 supergravities
inD = 4, 5 and their embedding in Type II superstrings. We then pass to consider in Section 2
a 4-graviton amplitude at one loop which allows to derive the “perturbative” threshold
corrections to R4 terms, thus excluding R2 terms. For simplicity, we only give the explicit
result for N = 6 in D = 5 in Section 3 and sketch how to complete the nonperturbative
analysis by including asymmetric D-brane instantons [12] in Section 4. Finally, in Section 5
we consider MHV amplitudes in N = 5, 6 supergravities in D = 4 and show how they
can be obtained at tree level by orbifold techniques from the generating function for MHV
amplitudes in N = 8 supergravity [28]. Section 6 contains a summary of our results and
directions for further investigation.

2. Type II Superstring Models with N = 5, 6 in D = 4, 5

Let us briefly recall how N = 5, 6 supergravities can be embedded in String Theory. The
highest dimension where classical N = 6 supergravity with 24 supercharges can be defined
is D = 6. However the resulting N = (2, 1) theory is anomalous and thus inconsistent at
the quantum level [37]. So we are led to consider D = 5 and then reduce to D = 4. N = 5
supergravity with 20 supercharges can only be defined asD = 4 and lower. Although we will
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only focus on R4 terms in D = 4 the parent D = 5 theory is instrumental to the identification
of the relevant BPS instantons.

2.1. N = 6 = 2L + 4R Supergravity in D = 5

The simplest way to embedN = 6 in Type II superstrings is to quotient a toroidal compactifi-
cation T5 = T4 ×S1 by a chiral Z2 twist of the L-movers (T-duality) on four internal directions

Xi
L −→ −Xi

L, Ψi
L −→ −Ψi

L, i = 6, 7, 8, 9 (2.1)

accompanied by an order-two shift that makes twisted states massive. As a result half of the
supersymmetries in the L-moving sector are broken. The perturbative spectrum is coded in
the one-loop torus partition function.

In the untwisted sector, one finds

Tu =
1
2

{
(Qo +Qv)QΛ5,5

[
0

0

]
+ (Qo −Qv)(Xo −Xv)QΛ1,5

[
0

1

]}
, (2.2)

where Xo − Xv = 4η2/θ22 (with η denoting Dedekind’s function and θ1,...4 denoting Jacobi’s
elliptic functions) describes the effect of the Z2 projection on four internal L-moving bosons,
while

Λl,r

[
a

b

]
=

∑
pL,pR

eiπ[aLpL−aRpR]q(1/2)(pL+(1/2)bL)
2
q(1/2)(pR+(1/2)bR)

2

(2.3)

are (shifted) Lorentzian lattice sums of signature (l, r) and Q = V8 − S8, Qo = V4O4 − S4S4,
Qv = O4V4 − C4C4, with On, Vn, Sn, Cn the characters of SO(n) at level κ = 1 (for n odd Sn
coincides with Cn and will be denoted by Σn).

At the massless level, in D = 5 notation with SO(3) little group, one finds

(V3 +O3 − 2Σ3) ×
(
V 3 + 5O3 − 4Σ3

)
−→

(
g + b2 + φ

)
NS-NS + 6ANS-NS + 5φNS-NS + 8AR-R + 8φR-R − Fermi

(2.4)

that form the N = 6 supergravity multiplet in D = 5

SGD=5
N=6 =

{
gμν, 6ψμ, 15Aμ, 20χ, 14ϕ

}
. (2.5)

The R-symmetry is Sp(6)while the “hidden” noncompact symmetry is SU∗(6), of dimension
35 and rank 3 generated by 6 × 6 matrices of the formZ = (Z1, Z2;−Z2, Z1)with Tr(Z1+Z1) =
0.
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For later purposes, let us observe that the 128 massless states of N = 6 supergravity
in D = 5 are given by the tensor product of the 8 massless states of N = 2 SYM (for the
Left-movers) and the 16 massless states ofN = 4 SYM (for the Right-movers), namely,

SGD=5
N=6 = SYMD=5

N=2 ⊗ SYMD=5
N=4 =

{
Aμ, 2λ, φ

}
L
⊗
{
Ãν, 4λ̃, 5φ̃

}
R
. (2.6)

After dualizing all massless 2 forms into vectors, the 15 = 7NS-NS + 8R-R vectors trans-
form according to the antisymmetric tensor of SU∗(6). The 14 = 1NS-NS + 5NS-NS + 8R-R scalars
parameterize the moduli space

MD=5
N=6 =

SU∗(6)
Sp(6)

. (2.7)

By world-sheet modular transformations (first S and then T) one finds the contribu-
tion of the twisted sector

Tt =
1
2

{
(Qs +Qc)(Xs +Xc)QΛ1,5

[
1

0

]
+ (Qs −Qc)(Xs −Xc)QΛ1,5

[
1

1

]}
, (2.8)

where Xs + Xc = 4η2/θ24, Xs − Xc = 4η2/θ23, Qs = O4S4 − C4O4 (massless), Qc = V4C4 −
S4V4 (massive). Due to the (L-R symmetric) Z2 shift, the massless spectrum receives no
contribution from the twisted sector. Nonperturbative states associated to L-R asymmetric
bound states of D-branes were studied in [12]. There are several other ways to embed N = 6
supergravity in Type II superstrings, reviewed in [12].

2.2. N = 6 Supergravities in D = 4

Reducing on another circle with or without further shifts yields N = 6 supergravity in D = 4
[11].

The massless spectrum is given by

(V2 + 2O2 − 2S2 − 2C2) ×
(
V 2 + 6O2 − 4S2 − 4C2

)
−→

(
g + b + φ

)
NS-NS + 8ANS-NS + 12φNS-NS + 8AR-R + 16φR-R − Fermi

(2.9)

and gives rise to the N = 6 supergravity multiplet in D = 4

SGD=4
N=6 =

{
gμν, 6ψμ, 16Aμ, 26χ, 30ϕ

}
. (2.10)

For later purposes, let us observe that the 128 massless states of N = 6 supergravity
in D = 4 are given by the tensor product of the 8 massless states of N = 2 SYM (for the
Left-movers) and the 16 massless states ofN = 4 SYM (for the Right-movers), namely,

SGD=4
N=6 = SYMD=4

N=2 ⊗ SYMD=4
N=4 =

{
Aμ, 2λ, 2φ

}
L
⊗
{
Ãν, 4λ̃, 6φ̃

}
R
. (2.11)
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The hidden noncompact symmetry is SO∗(12), of dimension 66 and rank 3 generated
by 12 × 12 matrices of the form Z = (Z1, Z2;−Z2, Z1) with Z1 = −Zt

1 and Z2 hermitean. They
satisfy L†JL = J with J = −Jt = −J† the symplectic metric in 12D. After dualizing all
masseless 2 forms into axions, the 30 = 2NS-NS+12NS-NS+16R-R scalar parameterize the moduli
space

MD=4
N=6 =

SO∗(12)
U(6)

. (2.12)

The 16 = 8NS-NS + 8R-R vectors together with their magnetic duals transform according to the
32-dimensional chiral spinor representation of SO∗(12).

Due to the (L-R symmetric) Z2 shift, the massless spectrum receives no contribution
from the twisted sector. Nonperturbative states associated to L-R asymmetric bound states of
D-branes were studied in [12].

2.3. N = 5 = 1L + 4R Supergravity in D = 4

The highest dimension where N = 5 supergravity exists is D = 4. In D = 5 because one
cannot impose a symplectic Majorana condition on an odd number of spinors. A simple way
to realize N = 5 = 1L + 4R supergravity in D = 4 is to combine ZL

2 × ZL
2 twists, acting by

T-duality along T4
6789 and T

4
4589, with order two shifts, that eliminate massless twisted states.

In [11], “minimal” N = 5 superstring solutions of this kind have been classified into four
classes which correspond to different choices of the basis sets of free fermions or inequivalent
choices of shifts in the orbifold language.

Due to the uniqueness of N = 5 supergravity in D = 4, all models display the same
massless spectrum

SGD=4
N=5 =

{
gμν, 5ψμ, 10Aμ, 11χ, 10φ

}
. (2.13)

For later purposes, let us observe that the 64 massless states of N = 5 supergravity
in D = 4 are given by the tensor product of the 4 massless states of N = 1 SYM (for the
Left-movers) and the 16 massless states ofN = 4 SYM (for the Right-movers), namely,

SGD=4
N=5 = SYMD=4

N=1 ⊗ SYMD=4
N=4 =

{
Aμ, λ

}
L
⊗
{
Ãν, 4λ̃, 6φ̃

}
R
. (2.14)

The massless scalars parameterize the moduli space

MD=4
N=5 =

SU(5, 1)
U(5)

. (2.15)

The graviphotons together with their magnetic duals transform according to the 20 complex
(3-index totally antisymmetric tensor) representation of SU(5, 1).
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3. Four-Graviton One-Loop Amplitude

Since N = 5, 6 supergravities can be obtained as asymmetric orbifolds of tori, tree-level
scattering amplitudes of untwisted states such as gravitons are identical to the corresponding
amplitudes in the parent N = 8 theory. In particular, denoting by fN=5,6

R4 (ϕ) the moduli
dependent coefficient function of the R4 term, one has

fN=5,6
R4 =

2
n
ζ(3)

V
(
Td

)
g2
s 


2
s

+
IN=8
d,d

n
2s
+ · · · , (3.1)

where n is the order of the orbifold group, that reduces the volume of Td with d = 5, 6 to
the volume of the orbifold, 
2s = α′ and · · · stands for nonperturbative terms. The one-loop
threshold integral is given by

IN=8
d,d = (2π)d

∫
F

d2τ

τ22

[
τd/22 Γd,d(G,B; τ) − τd/22

]
= 2π2−d/2Γ

(
d

2
− 1

)
ESO(d,d|Z)
v=2d,s=d/2−1, (3.2)

where

ESO(d,d|Z)
v=2d,s=d/2−1 =

∑
�m,�n: �m·�n=0

[
( �m + B�n)tG−1( �m + B�n) + �ntG�n

]−d+2
(3.3)

is a constrained Epstein series that encodes the contribution of perturbative 1/2 BPS, states
that is, those satisfying �m · �n = 0. The subtraction eliminates IR divergences, that is the terms
with �m = �n = 0. For N = 5, 6 the contribution of the (r, s) = (0, 0) “untwisted” sector is up to
a factor 1/n the same as in toroidal Type II compactifications with restricted metric Gij and
antisymmetric tensor Bij .

In the following we will focus on the contribution of the “twisted” sectors (we write
“twisted” in quotes, since the terminology includes projections of the untwisted sector, i.e.,
amplitudes with r = 0 and s = 1, . . . , n − 1) with (r, s)/= (0, 0).

Recall that the partition function reads

Z = Q 1
n

0,n−1∑
r,s

∑
α

θα(0)
η3

3∏
I=1

θα
(
uIrs

)
θ1

(
uIrs

)Γ
[
r

s

]
, (3.4)

where uIrs encode the effect of the Left-moving twist on the three complex internal directions,
while Γ[rs] denote the twisted and shifted lattice sums.

Following the analysis in [38] for one-loop scattering of vector bosons in unoriented
D-brane worlds and exploiting the “factorization” of world-sheet correlation functions one
has

A4h =
1
n

0,n−1∑
r,s

∫
d2τ

τ22
Γ

[
r

s

]
CL4vC

R
4v. (3.5)
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Since in both N = 5, 6 cases the orbifold projection only acts by a shift of the lattice on
the Left-movers, that is, preserves all four space-time supersymmetries, their contribution is
simply

CL4v = const (3.6)

after summing over spin structures. In the terminology of [38] only terms with 4 fermion
pairs contribute. Recall that the graviton vertex in the q = 0 superghost picture reads

Vh = hμν
(
∂Xμ + ikψψμ

)(
∂X̃ν + ikψ̃ψ̃ν

)
eikX, (3.7)

and, for fixed graviton helicity (henceforth we use D = 4 notation but the analysis is valid in
D = 5 too), one can exploit “factorization” of the physical polarization tensor

h
(2σ)
μν = a(σ)μ a

(σ)
ν (3.8)

in terms of photon polarization vectors.
In the R-moving sector however, the orbifold projection breaks 1/2 (N = 6) or 3/4

(N = 5) of the original four space-time supersymmetries. Correlation functions of two and
three fermion bilinears will be nonvanishing, too.

For two fermion bilinears one has [38]

〈
∂Xμ1∂Xμ2k3ψψ

μ3k4ψψ
μ4
〉⎡⎣ημ1μ2∂1∂2G12 −

∑
i /= 1

k
μ1
i ∂1G1i

∑
j /= 2

k
μ2
j ∂2G1j

⎤
⎦ =

[
k3k4η

μ3μ4 − kμ43 k
μ3
4

]
,

(3.9)

where Gij denotes the scalar propagator on the torus (with α′ = 2)

Gz,w = − log
|θ1(z −w)|∣∣θ′1(0)∣∣ − π Im (z −w)2

Im τ
. (3.10)

Similarly, for three fermion bilinears, one finds [38]

〈
∂Xμ1k2ψψ

μ2k3ψψ
μ3k4ψψ

μ4
〉
=

∑
i /= 1

k
μ1
i ∂1G1i

[
k2k3k

μ2
4 η

μ3μ4 − · · ·
]
ω234 (3.11)

with ω234 = ∂ log θ1(z23) + ∂ log θ1(z34) + ∂ log θ1(z42).
For four fermion bilinears, disconnected contractions yield [38]

〈
k1ψψ

μ1k2ψψ
μ2k3ψψ

μ3k4ψψ
μ4
〉
disc =

{[
k1k2η

μ1μ2 − kμ21 k
μ1
2

][
k3k4η

μ3μ4 − kμ43 k
μ3
4

]

×
(
℘12 + ℘34 −Δrs

)
+ · · ·

}
,

(3.12)
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where ℘ is Weierstrass function

℘(z) =
1
z2

+
∑
m,n

′ 1

(z + n +mτ)2
− 1

(n +mτ)2

= −∂2z log θ1(z) − 2η1 = −2∂2zG(z, z) −
π2

3
Ê2

(3.13)

with η1 = −θ′′′1 /6θ
′
1 and Ê2 the nonholomorphic modular form of weight 2 (Eisenstein series).

Weierstrass function satisfies ℘(1/2) = e1, ℘(τ/2) = e2, ℘(1/2 + τ/2) = e3 with e1 + e2 + e3 =
0.

Finally, connected contractions of four fermion bilinears yield [38]

〈
k1ψψ

μ1k2ψψ
μ2k3ψψ

μ3k4ψψ
μ4
〉
conn =

[
k
μ4
1 k

μ1
2 k

μ2
3 k

μ3
4 ± · · ·

](
℘13 −ω123ω143 + Δrs

)
, (3.14)

where, for N = 6,

Δrs = ℘(urs) (3.15)

while, forN = 5,

Δrs = 3η1 +
1
6
H′′′(urs)
H′(urs)

(3.16)

with H′/H =
∑

I ∂ log θ1(u
I
rs), which is clearly moduli independent, since no NS-NS moduli

survive except for the axio-dilaton. Dependence on R-R moduli and the axio-dilaton is
expected to be generated by L-R asymmetric bound states of Euclidean D-branes and NS5-
branes.

3.1. World-Sheet Integrations

Worldsheet integrations can be performed with the help of
∫
d2z∂zGzw = 0 =

∫
d2z∂2zGzw as

well as of

∫
d2zd2w(∂zGzw)

2 = −τ2Ê2
π2

3
,

∫
d2zd2w

⎡
⎣ημ1μ2∂1∂2G12k1k2G12 −

∑
i /= 1

k
μ1
i ∂1G1i

∑
j /= 2

k
μ2
j ∂2G1j

⎤
⎦ = −τ2Ê2

π2

3

[
ημ1μ2k1k2 − k

μ2
1 k

μ1
2

]
.

(3.17)
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ForN = 6 = 4L + 2R, setting f
L/R
μν = kμa

L/R
ν − kνaL/Rμ , one has

Ltwist
eff =

1
n

∑
r,s

′
∫
d2τΓ

[
r

s

]〈
f1f2f3f4

〉MHV
L

×
{
4
[(
f1f2

)(
f3f4

)
+ · · ·

]
R

π2

3
Ê2

+
[(
f1f2

)(
f3f4

)
+ · · ·

]
R

(
−2π

2

3
Ê2 + ℘(urs)

)

+
[
(f1f2f3f4) + · · ·

]
R

(
−2π

2

3
Ê2 − ℘(urs)

)}
,

(3.18)

where, including all permutations,

〈
f1f2f3f4

〉MHV =
(
f1f2f3f4

)
+
(
f1f3f4f2

)
+
(
f1f4f2f3

)
− 2

(
f1f2

)(
f3f4

)
− 2

(
f1f3

)(
f4f2

)
− 2

(
f1f4

)(
f2f3

) (3.19)

is the structure that appears in 4-pt vector boson amplitudes, that are necessarily MHV
(Maximally Helicity Violating) in D = 4 (in D = 5 there is more than one “helicity,” but
the tensor structure has the same form [39, 40]).

Combining the R-moving contributions one eventually finds

Ltwist
eff = 〈R1R2R3R4〉MHV 1

n

∑
r,s

′
∫
d2τΓ

[
r

s

](
+2
π2

3
Ê2 − ℘(urs)

)
, (3.20)

where Ri denote the linearized Riemann tensors of the four gravitons and

〈R1R2R3R4〉MHV =
〈
f1f2f3f4

〉MHV
L

〈
f1f2f3f4

〉MHV
R (3.21)

reproduces the expected R4 structure, which is MHV in D = 4, and no lower derivative R2

and/or R3 terms [21].
For N = 5 = 4L + 1R in D = 4 one gets similar results with EN=2R = Γ[rs] replaced by

EN=1R = IabH′/H(α′τ2)
−2 which is moduli independent.

Henceforth we will focus on the N = 6 = 4L + 2R case and explore NS-NS moduli
dependence of the one-loop threshold in D = 5.

4. One-Loop Threshold Integrals

One-loop threshold integrals for toroidal compactifications have been briefly reviewed above
and shown to represent the contribution of the (r, s)/= (0, 0) untwisted sector. For (r, s)/= (0, 0)
the threshold integrals involve shifted lattice sums as in heterotic strings with Wilson lines
[41–45].
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For simplicity let us discuss here the case of N = 6 in D = 5. For definiteness we
consider n = 2 (Z2 shift orbifold) and start at the special point in the moduli space where
T5 = T4

SO(8) × S1. Later on we will include off-diagonal moduli that effectively behave as
Wilson lines.

In the “twisted” [01] sector, the relevant threshold integral is of the form

IN=6
1,5

[
0

1

]
= (2π)5

∫
F

d2τ

τ2
τ5/22 Γ1,1

[
0

1

]
(R)O8

[
2π2

3
Ê2 + ℘

(
1
2

)]

= (2π)5
∫
F

d2τ

τ2
τ22

R√
α′

∑
m,n

e−|2m+(2n+1)τ |2πR2/4α′τ2O8

[
2π2

3
Ê2 + ℘

(
1
2

)]
.

(4.1)

Setting (2m, 2n+ 1) = (2
 + 1)(2m′, 2n′ + 1) and using invariance ofO8 under τ → τ + 2 allow
to unfold the integral to the double strip

(2π)5
R√
α′

∫+1

−1
dτ1

∫∞

0
dτ2

∑



e−(2
+1)
2πR2/4α′τ2

∑
N,N

dNq
NcNq

N, (4.2)

where O8 =
∑

N=|r|2/2 dNq
N and (2π2/3)Ê2 + ℘(1/2) =

∑
N cNq

N . Performing the trivial inte-
gral over τ1 (level matchingN =N) and the less trivial integral over τ2 by means of

∫∞

0
dyyν−1e−cy−b/y =

(
b

c

)ν/2

Kν

(√
bc

)
, (4.3)

where Kν(z) is a Bessel function of second kind, finally yields

IN=6
1,5

[
0

1

]
(R,Ai = 0) = (2π)5

(
R√
α′

)3/2 ∞∑

=0

∞∑
N=1

(2
 + 1)
√
NdNσ1(N)K1

(
4π(2
 + 1)

√
NR√
α′

)
,

(4.4)

where

σ1(N) =
∑
d|N

= ψ(N) − ψ(1) = cN
N

(4.5)

from the expansion of Ê2 in powers of q.
The result can be easily generalized to the other sectors of the Z2 orbifold under

consideration as well as to different (orbifold) constructions that give rise to different shifted
lattice sums. Manifest SO(1, 5 | Z) symmetry can be achieved turning on off-diagonal
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components of B and G (subject to restrictions). Denoting by 2Ai = Gi5 + Bi5 and observing
that Gi5 − Bi5 = 0 by construction, one finds

IN=6
1,5

[
r

s

]
(R,Ai) = (2π)5

R

2
√
α′

∞∑

=0

∑
�w∈Γ[rs]

c �w2

2

∫∞

0
dy(2
 + 1)e−(2
+1)

2πR2/4α′y−2π �w· �w+2πi �w· �A

= (2π)5
(

R√
α′

)3/2 ∞∑

=0

∑
�w∈Γ[rs]

σ1

(
�w2

2

)
(2
 + 1)

×

√
�w2

2
e2πi�r·

�AK1

⎛
⎝4π(2
 + 1)

√
�w2R

2
√
α′

⎞
⎠.

(4.6)

Summing up the contributions of the various sectors, that is, various shifted lattice
sums, yields the complete one-loop threshold correction to theR4 terms forN = 6 superstring
vacua in D = 5. Clearly only NS-NS moduli (except the dilaton) appear that expose SO(1, 5)
T-duality symmetry.

The analysis is rather more involved in D = 4 where one-loop threshold integrals
receive contribution from trivial, degenerate, and nondegenerate orbits [46, 47]. Alternative
methods for unfolding the integrals over the fundamental domain have been proposed [48,
49].

Explicit computation is beyond the scope of the present investigation. It proceeds
along the lines above and presents close analogy with threshold computations in N = 2
heterotic strings sectors in the present of Wilson lines [41, 42, 44] or, equivalently, N = 4
heterotic strings in D = 8 [50]. Rather than focussing on this interesting but rather technical
aspect of the problem, let us turn our attention onto the nonperturbative dependence on the
other R-R moduli as well as dilaton. This is brought about by the inclusion of asymmetric
D-brane instantons.

5. Low-Energy Action and U-Duality

In [12] the conserved charges coupling to the surviving R-R and NS-NS graviphotons
were identified as combinations of those appearing in toroidal compactifications. In the
case of maximal N = 8 supergravity, the 12 NS-NS graviphotons couple to windings and
KK momenta. Their magnetic duals couple to wrapped NS5-branes (H-monoples) and KK
monopoles. The 32 R-R graviphotons (including magnetic duals) couple to 6 D1-, 6 D5-, and
20 D3-branes in Type IIB and to 1 D0-, 15 D2-, 15 D4-, and 1 D6-branes in Type IIA.

An analogous statement applies to Euclidean branes inducing instanton effects. In
toroidal compactifications with N = 8 supersymmetry, one has 15 kinds of worldsheet
instantons (EF1), 1 D(−1), 15 ED1, 15 ED3 and one each of EN5, ED5, EKK5 for Type IIB.
For Type IIA superstrings one finds 6 ED0, 20 ED2, 6 ED4 and one each of EN5 and EKK5.

In a series of paper [24, 25], a natural proposal has been made for the nonperturbative
completion of the modular form of Ed+1(Z) that represent the scalar dependence of the R4
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and higher derivative terms in N = 8 superstring vacua. The explicit formulae are rather
simple and elegant. In particular

fN=8
R4 (Φ) = EE(d+1|Z)[10d],3/2(Φ), (5.1)

where EE(d+1|Z)[10d],3/2(Φ) is an Einstein series of the relevant U-duality group. The above proposal
satisfies a number of consistency checks including perturbative string limit that is small string
coupling inwhichE(d+1 | Z) → SO(d, d | Z) and [10 · · · 0] → 2d, large radius limit inwhich
E(d + 1 | Z) → E(d | Z) and [10 · · · 0] → [10 · · · 0], and M-theory limit in which E(d + 1 |
Z) → SL(d+ 1 | Z) and [10 · · · 0] → [10 · · · 0]′. Moreover fR4 only receives contribution from
1/2 BPS states as expected for a supersymmetric invariant that can be written as an integral
over half of (on-shell) superspace.

An independent but not necessarily inequivalent proposal has been made in [26].
We expect similar results forR4 terms inN = 5, 6 superstring vacua with the following

caveats. First, in N = 5, 6 superspace R4 terms are 1/5 and 1/3 BPS, respectively, since they
require integrations over 16 Grassman variables. Indeedwe have explicitly seen that one-loop
threshold correction involves the left-moving sector, in which supersymmetry is partially
broken, in an essential way. Second, the U-duality group is not of maximal rank, and the
same applies to the T-duality subgroup, present in the N = 6 case. Third, N = 5, 6 only exist
in D ≤ 5 or D ≤ 4. Some decompactification limits should produce N = 8 vacua in D = 10.

Let us try and identify the relevant 1/3 or 1/5 BPS Euclidean D-brane bound states.

5.1. N = 6 ED-Branes

In the Type IIB description, the chiral Z2 projection (T-duality) from N = 8 to N = 6 yields
the Euclidean D-brane bound states of the form

D(−1) + ED3T̂4 , ED1T2 + ED5T2×T̂4 , ED1S1×Ŝ1 + ED3S1×T̂3
⊥
,

ED1T̂2 + ED1T̂2
⊥
, ED3T2×T̂2 + ED3T2×T̂2

⊥
.

(5.2)

The above bound states of Euclidean D-branes are 1/3 BPS since they preserve 8
supercharges out of the 24 supercharges present in the background.

A similar analysis applies to world-sheet and ENS5 instantons.
There are several other superstring realizations ofN = 6 supergravity in D = 4. Given

the uniqueness of the low-energy theory, they all share the same massless spectrum but the
massive spectrum and the relevant (Euclidean) D-brane bound-states depend on the choice
of model.

5.2. Nonperturbative Threshold Corrections

By analogy with N = 8 one would expect fR4 = ΘG, that is, an automorphic form of the U-
duality group G, that is, G = SO∗(12) (SU∗(6)) for N = 6 in D = 4 (D = 5) and G = SU(5, 1)
for N = 5 in D = 4. The relevant “instantons” should be associated to BPS particles in one
higher dimension (when possible).
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For N = 6, in the decompactification limit the relevant decomposition under
SO∗(12) → SU(5, 1) × R+ is

66 −→ 350 + 10 + 15+2 + 15′−2 (5.3)

so that the 15 particle charges in D = 6 satisfy 15 1/3 BPS “purity” conditions in D = 5

∂I3

∂Q[ij]
= 0, (5.4)

where IN=6,D=5
3 = εijklmnQ[ij]Q[kl]Q[mn]. The moduli space decomposes according to

SO∗(12)
U(6)

⊃ SU(5, 1)
Sp(6)

× R15 × R+. (5.5)

More precisely the 15 charges decompose under SO(1, 5) into a 15-dim irrep. The “purity”
conditions include detQ = 0, viewed as a 6 × 6 antisymmetric matrix.

For N = 6, in the string theory limit the relevant decomposition under SO∗(12) →
SO(2, 6) × SL(2)S is

32 −→ (8v, 2)NS-NS + (8s, 1)R-R + (8c, 1)R-R (5.6)

that yields

66 −→ (28, 1) + (1, 3) + (8s, 2) + (8c, 2) + 3(1, 1). (5.7)

The moduli space decomposes according to

SO∗(12)
U(6)

⊃ SO(6, 2)
SO(6) × SO(2)

× SL(2)
U(1)

× R16. (5.8)

Further decomposition under SL(2)T × SL(2)U × SL(2)S should allow to get the “non-
Abelian” part of the automorphic from from the “Abelian” one by means of SL(2)U=τ ≡
SL(2)B. In particular the action for a (T-duality invariant) bound state of ED5 and three ED1’s
into the action of EN5 and EF1’s, while the action of (T-duality invariant) bound state of
ED(−1) and three ED3’s is invariant (singlet). Clearly further detailed analysis is necessary.
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5.3. N = 5 ED-Branes

In the Type IIB description, the two chiral Z2 projections (“T-duality” on T4
1234 and T

4
3456) from

N = 8 toN = 5 yield Euclidean D-brane bound states of the form

D(−1) + ED3T̂4
1234

+ ED3T̂4
3456

+ ED3T̂4
1256
,

ED(−1)12 + ED5123456 + ED134 + ED156,

ED1i1i2 + ED3i1j2k3l3 + ED3j1i2k3l3 + ED1j1j2 ,

ED1i1i3 + ED3i1j2k2l3 + ED3j1j2k2k3 + ED1j1k3 ,

ED1i2i3 + ED1j2j3 + ED3i1j1j2i3 + ED3i1j1i2j3 .

(5.9)

Bound states of Euclidean D-branes carrying the above charges are 1/5 BPS since they
preserve 4 supercharges out of the 20 supercharges present in the background.

As in the N = 6 case, a different analysis applies to BPS states carrying KK momenta
or windings or their magnetic duals. However, at variant with the N = 6, the three massive
gravitini cannot form a single complex 2/5 BPS multiplet. One of them, together with its
superpartners, should combine with string states which are degenerate in mass at the special
rational point in the moduli space where the chiral Z2 × Z2 projection is allowed.

6. Generating MHV Amplitudes in N = 5, 6 SG’s

Very much like, tree-level amplitudes in N = 8 supergravity in D = 4 can be identified
with “squares” of tree-level amplitudes in N = 4 SYM theory [3, 4], tree-level amplitudes in
N = 5, 6 supergravity in D = 4 can be identified with “products” of tree-level amplitudes in
N = 4 and N = 1, 2 SYM theory.

As previously observed, a first step in this direction is to show that the spectra of
N = 5, 6 supergravity are simply the tensor products of the spectra of N = 4 and N = 1, 2
SYM theory.

The second step is to work in the helicity basis and focus on MHV amplitudes (for
a recent review see, e.g., [27]). In N = 4 SYM the generating function for (colour-ordered)
n-point MHV amplitudes is given by [51]

FN=4 SYM
MHV

(
ηai , u

α
i

)
=

δ8
(∑

i η
a
i u

α
i

)
〈u1u2〉〈u2u3〉 · · · 〈unu1〉

, (6.1)

where ηai with i = 1, . . . n and a = 1, . . . 4 are auxiliary Grassmann variables and ui are com-
muting left-handed spinors, such that pi = uiui.

Individual amplitudes are obtained by taking derivatives with respect to the Grassman
variables η’s according to the rules

A+ −→ 1, λ+a −→ ∂

∂ηa
, . . . , A− −→ 1

4!
εabcd

∂4

∂ηa · · · ∂ηd
. (6.2)
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The intermediate derivatives representing scalars (ϕ ∼ ∂2/∂η2) and right-handed gaugini
(λ− ∼ ∂3/∂η3).

One can reconstruct all tree-level amplitudes, be they MHV or not, from MHV ampli-
tudes using factorization, recursion relation or otherwise, see for example [27].

One can easily derive (super)gravity MHV amplitudes by simply taking the product
of the generating functions for SYM amplitudes

GN=8 SG
MHV

(
ηAi , u

α
i

)
=

C(ui)δ16
(∑

i η
A
i u

α
i

)
〈u1u2〉2〈u2u3〉2 · · · 〈unu1〉2

= C(ui)FN=4 SYM
MHV,L

(
ηaLi , u

α
i

)
FN=4 SYM

MHV,R

(
ηaRi , u

α
i

)
,

(6.3)

where ηA = (ηaLi , η
aR
i )with A = 1, . . . 8 and the correction factor C(ui) is only a function of the

spinors ui, actually of the massless momenta pi = uiui [28].
The relevant dictionary would read

h+ −→ 1, ψ+
A −→ ∂

∂ηA
, . . . , h− −→ 1

N!
∂8

∂η8
. (6.4)

In principle one can reconstruct all tree-level amplitudes, be they MHV or not, from
MHV amplitudes using factorization, recursion relations, or otherwise, see for example [27].
Unitary methods allow to extend the analysis beyond tree level. If all N = 8 supergravity
amplitudes were expressible in terms of squares of N = 4 SYM amplitudes, UV finiteness of
the latter would imply UV finiteness of the former. Although support to this conjecture at the
level of 4-graviton amplitudes, which are necessarily MHV, seems to exclude the presence of
R4 corrections, which are 1/2 BPS saturated, it would be crucial to explicitly test the absence
of D8R4 corrections, the first that are not BPS saturated.

Going back to the problem of expressing MHV amplitudes in N = 5, 6 supergravities
in terms of SYM amplitudes, one has to resort to “orbifold” techniques.

In the N = 6 case, half of the 4 η’s (say η3L and η4L) of the “left” N = 4 SYM factor are
to be projected out, that is, “odd” under a Z2 involution. As a result the generating function
is the same as inN = 8 supergravity but the dictionary gets reduced to

h+ −→ 1, ψ+
A′ −→

∂

∂ηA′ , A+
0 =

∂2

∂η3L∂η
4
L

, A+
A′B′ =

∂2

∂ηA′∂ηB′ , . . . ,

h− =
1
6!
εA

′
1···A

′
6

∂2+6

∂η3L∂η
4
L∂η

A′
1 · · · ∂ηA′

6
,

(6.5)

where A′ = 1, . . . 6.
Further reduction is necessary for N = 5 case; 3 of the 4 η’s of the “left” N = 4 SYM

factor are to be projected out. For instance, they may acquire a phase ω = exp(i2π/3) under
a Z3 projection.

The same projections should be implemented on the intermediate states flowing
around the loops. Although tree-level amplitudes inN = 5, 6 supergravity are simply a subset
of the ones in N = 8 supergravity, naive extension of the argument at loop order does not
immediately work [52–54]. Several cancellations are not expected to take place despite the
residual supersymmetry of the left SYM factor. However, in view of the recent observations
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on the factorization ofN = 4 SYM into a kinematical part and a group theory part, where the
latter satisfies identities similar to the former [55–57] and can thus be consistently replaced
with the former giving rise to consistent and UV finite N = 8 SG amplitudes, it may well be
the case that a similar decomposition can be used to produce, possibly UV finite,N = 5, 6 SG
amplitudes. Our results on R4 lend some support to this viewpoint.

7. Conclusions

Let us summarize our results. We have shown that the first higher derivative corrections to
the low-energy effective action around superstring vacua with N = 5, 6 supersymmetry are
R4 terms as in N = 8. Contrary to N ≤ 4, no R2 terms appear. In this respect N = 5, 6
supersymmetric models in D = 4, having no massless matter multiplets to add, behave
similarly to their common N = 8 supersymmetric parent. It is worth stressing again that
such nonvanishing threshold corrections confirm that, as in the N = 8 case, superstring
calculations do not reproduce field theory results. As in N = 8 supergravity, it is known
that R4 corrections are absent in N = 5, 6 supergravity due to the anomaly free continuous
duality symmetry [1].

Relying on previous results on vector boson scattering at one loop in unoriented D-
brane worlds [38], we have studied four graviton scattering amplitudes and derived explicit
formulae for the one-loop threshold corrections in asymmetric orbifolds that realize the above
vacua. In addition to a term 1/n × fN=8 × cR4, coming from the (0, 0) sector, contributions
from nontrivial sectors of the orbifold to fN=5,6 × cR4 display a close similarity with heterotic
threshold corrections in the presence of Wilson lines [41, 42, 44]. For illustrative purposes,
we have computed the relevant integrals for N = 6 in D = 5 exposing the expected
SO(1, 5) T-duality symmetry. The analysis in D = 4 is technically more involved and will
be performed elsewhere. We have also identified the relevant 1/3 or 1/5 BPS bound states
of Euclidean D-branes that contribute to the nonperturbative dependence of the thresholds
on R-R scalars and on the axio-dilaton. By analogy with N = 8 it is natural to conjecture the
possible structure of the automorphic form of the relevant U-duality group. A more detailed
analysis of this issue is however necessary. Finally, in view of the potential UV finiteness of
N = 5, 6 supergravities, we have discussed how to compute tree-levelMHV amplitudes using
generating function and orbifolds techniques [28]. All other tree-level amplitudes should
follow from factorization and in fact should coincide with N = 8 amplitudes involving only
N = 5 or N = 6 supergravity states in the external legs. Loop amplitudes require a separate
investigation. In particular no generalization of the KLT relations is known beyond tree level
[58].
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