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We analyze the properties of electroweak chiral effective Lagrangian with an extended SU(2)R
gauge group. Right-handed SU(2)R gauge bosons affect electroweak observables by mixing with
electroweak gauge bosons WL,μ and Bμ. We discuss all possible mass mixing terms and calculate
the exact physical mass eigenvalues by diagonalization of mixing matrix without any approximate
assumptions. The contributions to oblique radiative corrections parameters STU from SU(2)R
fields are also presented.

1. Introduction

Although the standard model (SM) has been checked very successfully by more and more
high energy physics experiments, the as yet undiscovered Higgs, introduced as a basic scaler
field in SM, remains as the only unknown component of the electroweak symmetry-breaking
mechanism (EWSBM) unknown. That situation has prompted many extensions to SM [1–
3]. A new SU(1)R group, associated with an additional triplet of gauge bosons W ′± and
Z′, is often considered for different reasons as an extension to the gauge symmetry [4–6].
This extension often appears in superstring-inspired models as well as GUT models [7]. The
non-Abelian SU(2)R contains sufficient complexity to incorporate interesting issues related to
spontaneous parity violation (SPV) and precise electroweak observables, although remains
simple enough that phenomenology can be subjected to analysis. SU(2)R gauge bosons can
improve unitarity of not only WW but also WZ scattering processes and delay the breaking
scale of unitarity.

Many left-right symmetry models with symmetry group SU(2)R×SU(2)L×U(1) have
been used in studying EWSBM. The common feature of these models is the existence of
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multi-Higgs bosons that then raises phenomenological issues related tomulti-Higgs structure
dependencies. To obtain an universal physical analysis, we adopt the nonlinear realization
of the chiral Lagrangian to describe extended SU(2)R electroweak gauge models given the
symmetry breaking pattern SU(2)R × SU(2)L × U(1) → U(1)em. This chiral Lagrangian
has already been written down in [8]. The model is a generalization of the conventional
linearly realized models with multi-Higgs. Within the extended non-Abelian chiral effective
Lagrangian, multi-Higgs effects are parameterized by a set of coefficients that describes all
possible interactions among the gauge bosons and provides a model-independent platform
to investigate interesting physics [8].

In the paper, we focus on mass mixing effects in left-right chiral effective Lagrangian.
Mass mixings are main focus in the contribution of the right-handed gauge bosons to
electroweak observables at low-energy scales. The SU(2)R gauge triplet can be regarded as
a copy of the SU(2)L gauge triplet of SM, but with heavier masses. Right-handed charged
gauge bosons W±

R can mix with left-handed W±
L , and physical mass eigenstates of W ′± and

W± are eigenvalues of the charged mass matrix. Similarly, W3
R takes part in W3

R − W3
L − B

three-body mixing to form physical massive neutral bosons Z′, Z, and a massless photon.
The nonlinearly realized chiral effective Lagrangian provides us with all possible mass-
mixing channels that are allowed by left-right symmetry. Calculating these mixings, we
obtain a complete mass mixing contribution to the electroweak observables and a largest
parameter space for new physics. Oblique radiative corrections of SU(2)R bosons can be
obtained from the mass mixing rotation matrix, which indicates shifts to the SM with new
physics.

The paper is organized as follows. Section 2 reviews SU(2)R ×SU(2)L ×U(1) effective
theory with all possible mass mixing terms in the gauge eigenstates basis. Section 3 presents
calculations of the charged and neutral mass eigenvalues to obtain physical boson masses
estimates. We improved our diagonalization calculation program for the neutral bosons
sector in our paper [8] to yield a set of exact solutions for the rotation matrix and the mass
eigenvalues without making any approximating assumptions. Oblique radiative corrections
coming from the nonstandardmass mixing beyond SM are studied in Section 4. Furthermore,
two kinds of special cases are considered corresponding to condition MWR � MWL case and
left-right symmetry. Finally, we give a short summary in Section 5.

2. Left-Right Symmetry Effective Lagrangian

LetWa
R,μ,W

a
L,μ, Bμ be electroweak gauge fields (a = 1, 2, 3) corresponding to the gauge group

SU(2)R, SU(2)L, and U(1), respectively, and UL,R be the two by two unitary unimodular
matrices corresponding to left- and right-handed Goldstone boson fields. Under SU(2)R ⊗
SU(2)L ⊗U(1) transformations, the gauge boson fields transform as

τa

2
Wa

i,μ −→ Ri
τa

2
Wa

i,μ(x)R
†
i −

i

gi
Ri∂μR

†
i ,

Bμ −→ Bμ − 1
g
∂μθ

0,

Ui −→ RiUiR
†
0

(2.1)
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with R0 = e(i/2)τ
3θ0(x) and Ri = e(i/2)τ

aθai (x) for i = R, L. The covariant derivative of the
Goldstone fields takes the form

DμUR = ∂μUR + igR
τa

2
Wa

R,μUR − igUL
τ3
2
Bμ,

DμUL = ∂μUL + igL
τa

2
Wa

L,μUL − igUL
τ3
2
Bμ.

(2.2)

For convenience in present discussion, we will discard conventional EWCL SU(2) covariant
building blocks [9–13] and introduceU(1) invariant building blocks (for i = L, R)

X
μ

i = U†
i (D

μUi),

Wi,μν = U†
i giWi,μνUi,

Bμν = ∂μBν − ∂νBμ.

(2.3)

Here,

Wi,μν = Wa
i,μν

τa

2
= ∂μW

a
i,ν

τa

2
− ∂νW

a
i,μ

τa

2
+ igi

[
Wa

i,μ

τa

2
,Wb

i,ν

τb

2

]
. (2.4)

With the help of these building blocks, we can write a leading-order chiral Lagrangian as

LM = −1
4
f2
L

〈
XL,μX

μ

L

〉
− 1
4
f2
R

〈
XR,μX

μ

R

〉
+
1
2
κ̃fLfR

〈
X

μ

LX
μ

R

〉

+
1
4
βL,1f

2
L

〈
τ3XL,μ

〉2
+
1
4
βR,1f

2
L

〈
τ3XR,μ

〉2
+
1
4
β̃1fLfR

〈
τ3XL,μ

〉〈
τ3X

μ

R

〉
.

(2.5)

Here, 〈 〉 stands for the trace in flavor space. fL and fR are the scales for spontaneous symme-
try breaking in the electroweak sector and parity, respectively. The coefficient βL,R,1 generates
extra mass for the left-handed (right-handed) third component in breaking the SU(2)L,R
isospin symmetry. The coefficient κ parameterizes the mixing between the left- and right-
handed gauge bosons whereas the coefficient β̃1 controls the mixing between left-handedW3

L

and right-handedW3
R.

The neutral current interactions are

−LNC = W3
RμJ

μ

R +W3
LμJ

μ

L + BμJ
μ

0 (2.6)

whereas the charged current interactions are

−LCC = W+
RμJ

−,μ
R +W+

LμJ
−,μ
L + h.c. (2.7)



4 Advances in High Energy Physics

Here,

J
±,μ
L,R =

gL,R√
2
ΨL,Rτ

±γμΨL,R. (2.8)

The kinetic part has the simple form

LK = −1
4
Wa

L,μνW
μν,a

L − 1
4
Wa

R,μνW
μν,a

R − 1
4
BμνB

μν + iΨiγμDμΨi. (2.9)

Adding Yukawa terms

LY = ΨLULMU†
RΨR + h.c., (2.10)

the total Lagrangian is the sum of all the above terms

L = LM +LK +LNC +LCC +LY . (2.11)

3. Diagonalization and Mass Eigenstates

In this section, we calculate the mass eigenvalues of the left-right symmetry effective
Lagrangian by rotating the mass mixing matrix from the gauge basis to the mass basis.

3.1. Charged Gauge Bosons

Taking the unitary gaugeUL = UR = 1, the charged gauge boson mass terms can be expressed
as

LCM =
1
4
f2
Lg

2
LW

+
L,μW

−
L,μ +

1
4
f2
Rg

2
RW

+
R,μW

−
R,μ

− 1
4
κ̃fLfRgLgR

(
W+

L,μW
−
R,μ +W+

R,μW
−
L,μ

)
.

(3.1)

Here, we have used charged boson definitions W1
i,μ = (W+

i,μ + W−
i,μ)/

√
2 and W2

i,μ = i(W+
i,μ −

W−
i,μ)/

√
2 for i = L, R.

We make an orthogonal rotation V forW±
L and W±

R

(
W±

R

W±
L

)
=

(
cos ξ sin ξ

− sin ξ cos ξ

)(
W ′±

W±

)
≡ V

(
W ′±

W±

)
(3.2)

to eliminate the cross-terms involving WL and WR in (3.1) to keep the kinetic term diagonal.
The mixing angle ξ is expressed as

tan 2ξ =
2κ̃fLfRgLgR
f2
Lg

2
L − f2

Rg
2
R

. (3.3)
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After this rotation, the charged boson mass-squared matrix for the charged bosons
becomes

V TMCV = diag
(
M2

W ′ ,M
2
W

)
, (3.4)

and the heavy and light charged boson masses are

M2
W ′ =

1
8

[
f2
Lg

2
L + f2

Rg
2
R +

√(
f2
Lg

2
L − f2

Rg
2
R

)2 + 4κ̃2f2
Lf

2
Rg

2
Lg

2
R

]


 1
4
f2
Rg

2
R

{
1 + κ̃2 f2

Lg
2
L

f2
Rg

2
R − f2

Lg
2
L

}
,

M2
W =

1
8

[
f2
Lg

2
L + f2

Rg
2
R −

√(
f2
Lg

2
L − f2

Rg
2
R

)2 + 4κ̃2f2
Lf

2
Rg

2
Lg

2
R

]


 1
4
f2
Lg

2
L

{
1 − κ̃2 f2

Rg
2
R

f2
Rg

2
R − f2

Lg
2
L

}
.

(3.5)

We notice that the charged boson mixing angle ξ is controlled by the coefficient κ̃. W − W ′

mixing causes W couplings to the right-handed fermion with gW
R = gL sin ξ/

√
2. gW

R can
yield the contributions to b → sγ (see paper [14]) and must be restrained so that gW

R /gW
L <

4 × 10−3, which requires ξ < 4 × 10−3.

3.2. Neutral Gauge Bosons

Now, let us discuss the neutral boson sector. The neutral mass terms in our chiral Lagrangian
(2.5) can be readily separated out

LMn =
1
8
(
1 − 2βL,1

)
f2
L

(
gLW

3
L,μ − gBμ

)2
+
1
8
(
1 − 2βR,1

)
f2
R

(
gRW

3
R,μ − gBμ

)2

− 1
4

(
κ̃ + β̃1

)
fLfR

(
gLW

3
L,μ − gBμ

)(
gRW

3,μ
R − gBμ

)
.

(3.6)

It can be written in matrix form

LMn =
1
2
GT
μMnGμ (3.7)

with neutral gauge bosons Gμ ≡ (WR,μ,WL,μ, Bμ) and mass-squared matrix

Mn ≡

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

f2
Rg

2
R

4
−κfRfLgRgL

4
fRgRg0

(
κfL − fR

)
4

−κfRfLgRgL
4

f2
Lg

2
L

4
fLgLg0

(
κfR − fL

)
4

fRgRg0
(
κfL − fR

)
4

fLgLg0
(
κfR − fL

)
4

(
f2
R + f2

L − 2κfRfL
)
g2
0

4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (3.8)
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Note that the βL,R,1 do not appear in the above mass-squared matrix because these can be
absorbed by a redefinition of VEV fL,R

fL,R −→ fL,R√
1 − 2βL,R,1

. (3.9)

For the sake of convenience, we will retain using the same notation for the redefined VEV
fL,R but keep in mind that this redefinition has been made. The new parameter κ in the above
formula is a combination of κ̃ and β̃1, namely, κ = κ̃ + β̃1. Taking into account the VEVs
re-definition, we have

κ =
κ̃ + β̃1√

1 − 2βL,1
√
1 − 2βR,1

. (3.10)

The physical masses of the neutral bosons are the eigenvalues of the matrix Mn. To obtain
the diagonalized eigenvalues, we define the mass eigenstates as Gμ = (Z′, Zμ,Aμ)T which are
related to Gμ by a special rotation U−1

Gμ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

G4gR

G1G4 −G2G3
− G2gL

G1G4 −G2G3

(G2 −G4)g0
G1G4 −G2G3

− G3gR

G1G4 −G2G3

G1gL

G1G4 −G2G3

(G3 −G1)g0
G1G4 −G2G3

gR

G5

λ1gL

G5

λ2g0

G5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Gμ (3.11)

≡ U−1Gμ (3.12)

with undetermined couplings Gi (i = 1, . . . , 5) and parameters λi (i = 1, 2). This complicated
rotation is motivated by the following simple relations: the rotationU relates

gRWR,μ − g0Bμ = G1Z′
μ +G2Zμ,

gLWL,μ − g0Bμ = G3Z′
μ +G4Zμ,

gRWR,μ + λ1gLWL,μ + λ2g0Bμ = G5Aμ

(3.13)

which diagonalizes the B − WL and B − WR mixings automatically while simultaneously
keeping the photon massless. To maintain a diagonal kinetic energy matrix, U must satisfy
six independent orthogonality conditions

UUT = 1. (3.14)
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Adding one mass diagonalization condition for the WR − WL mass mixing, there are seven
independent equations that determine five Gi (i = 1, . . . , 5) and two λi (i = 1, 2). Solving these
equations, we obtain

λ1 =
g2
R

g2
L

,

λ2 =
g2
R

g2
0

,

G1 =

(
κfRC − fL

)
fL(

fRC − κfL
)
fR

G3,

G2 = CG4,

G3 =

(
fRC − κfL

)
fR

√
g2
0(1 − C)2 + g2

R + C2g2
L

f2
RC

2 + f2
L − 2CκfRfL

,

G4 =
1

f2
RC

2 + f2
L − 2CκfRfL

(
f2
Rf

2
L

[
g2
R + C2g2

L + g2
0(1 + C)2

]
κ2

−2fRfL
[
f2
RC

(
g2
R + g2

0

)
+ f2

LC
(
g2
L + g2

0

)
+ g2

0

(
f2
RC

2 + f2
L

)]
κ

+g2
Rf

4
RC

2 + g2
Lf

4
L + g2

0

(
f2
RC + f2

L

)2)1/2
,

G5 = g2
R

√
1
g2
R

+
1
g2
L

+
1
g2
0

(3.15)

with a real C that satisfies the quadratic equation

(
κfRfL

(
g2
L + g2

0

)
− f2

Rg
2
0

)
C2 +

[
f2
R

(
g2
R + g2

0

)
− f2

L

(
g2
L + g2

0

)]
C + f2

Lg
2
0 − κfRfL

(
g2
R + g2

0

)
= 0.

(3.16)

The mass eigenvalues of the physical Z′ and Z then become

M2
Z′ =

(
UTMU

)
1,1
,

M2
Z =

(
UTMU

)
2,2
.

(3.17)

Up to now, we have obtained the exact rotation matrix elements without any approximate
assumption. The total rotation U in (3.12) can be expressed in terms of (3.11), (3.15), and
(3.16).
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4. Oblique Radiative Corrections

To clearly see the new physics correction, we can separate a standard electroweak rotation
from the total rotation in (3.12)

U ≡ U′Uem (4.1)

with the standard electroweak rotation

Uem =

⎛
⎜⎜⎝

1 0 0

0 cθ sθ

0 −sθ cθ

⎞
⎟⎟⎠. (4.2)

From (3.12) and (4.1), we can calculate the oblique radiative corrections coming from the
right-handed gauge bosons in light of Holdom’s work [15]

S =
4sθcθ
α

{(
s2θ − c2θ

)
U′

32 − 2cθsθ
(
U′

33 − 1
)
+ 2cθsθ

(
U′

22 − 1
)}

,

T =
2
α

{(
U′

22 − 1
) −ΔMZ

}
,

U = −8s
2
θ

α

{
cθsθU

′
32 + s2θ

(
U′

33 − 1
)
+ c2θ

(
U′

22 − 1
)}

,

(4.3)

where sθ and cθ are the respective sine and cosine of the standard Weinberg angle from SM,
and ΔMZ is the new physical shift in the Z mass ΔMZ = MZ − MZ |SM. Furthermore, we
calculate to leading order the results for two special conditions.

4.1. Case 1: fR � fL and gR � gL/0

This case corresponds to a SU(2)R breaking scale that is much higher than the electroweak
breaking scale and MWR � MWL . It is easy to calculate the U′ rotation from (4.1), (4.2), and
(3.15). We only list leading-order terms

U′
11 
 1,

U′
12 


cθsθr3

2
,

U′
13 
 r,
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U′
21 
 −κfR

fL

sθcθ
r

(
1 +

(
3 − c2

θ

)
r2

2

)
,

U′
22 
 1,

U′
23 
 −cθsθr

2

2
,

U′
31 
 r +

κfR

rfL

(
1 +

(
1 − 2c2

θ

)
r2

2

)
,

U′
32 


cθsθr2

2
,

U′
33 
 1

(4.4)

with coupling ratio r ≡ g0/gR. Obviously, in the limit of heavy MWR , gR � gL,0, this new
physics rotation matrix U′ becomes a unitary matrix. Indeed, it is a requirement of the SM
structure and a good self-checking condition of our calculation.

From (3.17), we can calculate the gauge boson mass eigenvalues

M2
Z′ =

(
UTMU

)
1,1


 f2
Rg

2
R

4

(
1 + r2

)(
1 − κ2

)
, (4.5)

M2
Z =

(
UTMU

)
2,2


 f2
L

(
g2
L + g2

0

)
4

{
1 +

(
2
κfL
fR

− s2θ

)
r2
}
. (4.6)

From (4.5), the mass shift can be calculated

ΔMZ 
 −s
2
θ

2
r2. (4.7)

Using (4.3), the leading-order terms to the oblique radiative correction parameters are

αS 
 s2θc
2
θ

(
1 + 2s2θ

)
r2,

αT 
 s2θr
2,

αU 
 4s6θr
2.

(4.8)

Adopting the new physics constraints S < 0.11, T < 0.14, U < 0.16 [16] and taking s2θ =
0.2311, α = 1/137, we can estimate the coupling ratio r < 0.05.
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4.2. Case 2: fR = fL and gR � gL/0

The conditions correspond to left-right symmetry. MWR � MWL requires gR � gL/0. Hence,
the leading-order terms to the matrix elements of U′ are

U′
11 
 1,

U′
12 
 −r

3cθ
(
c2θ + c2θs

2
θ + 1

)
sθ

+
rcθ

(
2 + s4θ

)
sθ

,

U′
13 
 r − κr

(
2 + s4θ

)
2

,

U′
21 
 −r3sθcθ

(
3
2
− c2θ

)
+ sθcθr

3κ,

U′
22 
 1

U′
23 
 −sθcθr2 +

{
s3
θ
cθ

2
− r2s3

θ
cθ
(
1 + 3c2

θ

)
4

}
κ,

U′
31 
 r + c2θs

3
θr

3κ,

U′
32 


sθcθr
2

2
+

{
s3
θ
cθ

2
− r2cθ

4sθ

[
4 + 3s4θ

(
1 + c2θ

)]}
κ,

U′
33 
 1.

(4.9)

When taking r → 0 and κ → 0, matrix U′ becomes unitary. The leading order terms for the
gauge boson masses are

M2
Z′ =

(
UTMU

)
1,1


 f2g2
R

4

(
1 + r2

)
,

M2
Z =

(
UTMU

)
2,2


 f2(g2
L + g2

0

)
4

(
1 − s2

θ
r2

2

)
.

(4.10)

The shift in mass of Z is

ΔMZ 
 −s
2
θ

4
r2. (4.11)
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In this case, the leading-order terms of the oblique radiative correction parameters are

αS 
 2r2s2θ
(
1 − 2s2θ

)
c2θ +

{
6
(
1 − 2c2θ

)
s4θ + r2

(
4c2θ − 3

)(
3s2θ + 4

)}
c2θκ,

αT 
 s2
θ
r2

2
,

αU 
 4s6θr
2 + 2

{
2s2θ

(
1 − 3c2θs

2
θ

)
+ r2

(
2c2θ − 1

)(
3s4θ + 4

)}
s2θκ.

(4.12)

From T < 0.10, we can estimate coupling ratio r < 0.09 implying a lower limit for the Z′ mass
of about 0.8TeV.

5. A Short Summary

To summarize, we have reviewed nonlinearly realized electroweak chiral Lagrangian for the
gauge group SU(2)R × SU(2)L ×U(1) and diagonalized gauge eigenstates using all possible
mass mixing terms to obtain exact mass eigenstates and the rotation matrix. The oblique
radiative corrections from right-handed gauge bosons have been estimated to leading order.
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