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Diverse theories of quantum gravity expect modifications of the Heisenberg’s uncertainty principle near the Planck scale to a
so-called Generalized uncertainty principle (GUP). It was shown by some authors that the GUP gives rise to corrections to the
Schrodinger , Klein-Gordon, and Dirac equations. By solving the GUP corrected equations, the authors arrived at quantization not
only of energy but also of box length, area, and volume. In this paper, we extend the above results to the case of curved spacetime
(Schwarzschild metric). We showed that we arrived at the quantization of space by solving Dirac equation with GUP in this metric.

1. Introduction

Diverse approaches to quantum gravity expect a minimum
measurable length and a modification of the Heisenberg
uncertainty principle to a so-called generalized uncertainty
principle or GUP.This implies a modification of the commu-
tation relations between position coordinates and momen-
tum. In [1], the following proposed GUP is consistent with
Doubly special relativity or DSR theories and black hole
physics which ensure that [𝑥

𝑖
, 𝑥
𝑗
] = 0 = [𝑝

𝑖
, 𝑝
𝑗
]:

[𝑥
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𝑖
𝑝
𝑗
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ℎ

2
[1 − 2𝑎 ⟨𝑝⟩ + 4𝑎

2
⟨𝑝
2
⟩]

≥
ℎ

2

[
[

[

1 +(
𝑎

√𝑝2
+ 4𝑎
2
)Δ𝑝

2

+ 4𝑎
2
⟨𝑝⟩
2
− 2𝑎√⟨𝑝2⟩

]
]

]

,

(1)

where 𝑎 = 𝑎
0
/𝑀pl𝑐 = 𝑎0𝐿pl/ℎ, 𝑀pl = Planck mass, 𝐿pl ≃

10
−35m = Planck length, and 𝑀pl𝑐

2 = Planck energy ≈
10
19 GeV. GUP-induced terms become important near

the Planck scale (for earlier version of GUP motivated by
string theory, black hole physics, and DSR, see [2–14], and
for some phenomenological implications, see [1, 15, 16]).

Equation (1) implies the following minimum measurable
length and maximummeasurable momentum [1, 17]:

Δ𝑥 ≥ (Δ𝑥)min ≈ 𝑎0𝐿pl,

Δ𝑝 ≤ (Δ𝑝)max ≈
𝑀pl𝑐

𝑎
0

.
(2)

It is natural to take 𝑎
0
= 1; for more details see [17].

The following definitions are proposed in [1] and used in
[1, 17]:

𝑥
𝑖
= 𝑥
0𝑖
, 𝑝

𝑖
= 𝑝
0𝑖
(1 − 𝑎𝑝

0
+ 2𝑎
2
𝑝
2

0
) (3)

with 𝑥
0𝑖
and 𝑝

0𝑗
satisfying the canonical commutation rela-

tions [𝑥
0𝑖
, 𝑝
0𝑗
] = 𝑖ℎ𝛿

𝑖𝑗
, such that 𝑝

0𝑖
= −𝑖ℎ(𝜕/𝜕𝑥

0𝑖
), 𝑝2
0
=

∑
3

𝑗=1
𝑝
0𝑗
𝑝
0𝑗
.

In [1], it was shown that any nonrelativistic Hamiltonian
of the form𝐻 = 𝑝2/2𝑚+𝑉(⇀𝑟 ) can bewritten as𝐻 = 𝑝2

0
/2𝑚−

(𝑎/𝑚)𝑝
3

0
+𝑉(
⇀
𝑟 )+𝑂(𝑎

2
) using (3).This correctedHamiltonian

implies not only the usual quantization of energy, but also that
the box length is quantized. In [17], the above results were
extended to a relativistic particle in two and three dimen-
sions. In this paper we study Dirac equation in Schwarzschild
metric usingGUP and show that we arrive at the quantization
of space.
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2. GUP Dirac Equations in
Schwarzschild Metric

Dirac equation in Schwarzschild metric without (GUP) can
be written as follows [18]:

(𝑐 (
⇀
𝛼 ⋅
⇀
𝑝) + 𝛽𝑚𝑐

2
) 𝜓 =

𝐸

√𝜁
𝜓, (4)

where𝑚 is the rest mass of the particle, 𝜓 is the Dirac spinor,
⇀
𝛼 and 𝛽 are Dirac matrices, ⇀𝑝 ≡ (𝑝

𝑟
, 𝑝
𝜃
, 𝑝
𝜑
) are momentum

operators, 𝜁 = 1 − 𝑟
𝑠
/𝑟, 𝑟
𝑠
is the Schwarzschild radius of

massive body, related to its mass 𝑀 by 𝑟
𝑠
= 2𝐺𝑀/𝐶

2, 𝐺 is
the gravitational constant, and 𝑐 is the speed of light in free
space. Using 𝜓 = ( 𝜒1𝜒

2
), (4) can be written as

𝑐 (
⇀
𝛼 ⋅
⇀
𝑝)𝜒
2
+ 𝑚𝑐
2
𝜒
1
=
𝐸
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𝜒
1
,
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⇀
𝑝)𝜒
1
− 𝑚𝑐
2
𝜒
2
=
𝐸

√𝜁
𝜒
2
.

(5)

Now, using GUP correction (3) and (5) take the form

𝑐 (
⇀
𝛼 ⋅
⇀
𝑝
0
) 𝜒
2
+ 𝑚𝑐
2
𝜒
1
− 𝑐𝑎𝑝

2

0
𝜒
1
=
𝐸

√𝜁
𝜒
1
,

𝑐 (
⇀
𝛼 ⋅
⇀
𝑝
0
) 𝜒
1
− 𝑚𝑐
2
𝜒
2
− 𝑐𝑎𝑝

2

0
𝜒
2
=
𝐸

√𝜁
𝜒
2
,

(6)

where

𝑝
2

0
= −ℎ
2
[
√𝜁

𝑟2
𝜕

𝜕𝑟
(𝑟
2√𝜁

𝜕

𝜕𝑟
) +

1

𝑟2 sin 𝜃

×
𝜕

𝜕𝜃
(sin 𝜃 𝜕

𝜕𝜃
) +

1

𝑟2sin2𝜃
𝜕
2

𝜕𝜑2
] .

(7)

We studyDirac equations in (6) in Schwarzschildmetric with
spherical cavity with radius 𝑅 defined by the potential

𝑈 (𝑟) = 0, 𝑟 ≤ 𝑅,

𝑈 (𝑟) = 𝑈0 → ∞, 𝑟 > 𝑅,
(8)

so, we can write the corrected GUP Dirac equations with
spherical cavity defined by (8) in Schwarzschild metric as

𝑐 (
⇀
𝛼 ⋅
⇀
𝑝
0
) 𝜒
2
+ (𝑚𝑐

2
+ 𝑈)𝜒

1
− 𝑐𝑎𝑝

2
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1
=
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𝜒
1
,
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𝛼 ⋅
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𝑝
0
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1
− (𝑚𝑐

2
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2
− 𝑐𝑎𝑝

2

0
𝜒
2
=
𝐸

√𝜁
𝜒
2
.

(9)

Notice that, when 𝑎 = 0, 𝜁 = 1, equations in (9) are usual
Dirac equations in flat spacetime. When 𝑎 ̸= 0, 𝜁 = 1, (9) are
Dirac equations with GUP in flat spacetime proposed in [17].
When 𝑎 = 0, 𝜁 ̸= 1, equations in (9) are Dirac equations in
Schwarzschildmetric withoutGUPdefined in [18].We follow
the analysis of [17, 19] and related references [20, 21].

We assume the form of Dirac spinor as

𝜓 = (
𝜒
1

𝜒
2

) = (
𝑔
𝑘 (𝑟) 𝛾

𝑗
3

𝑗𝑙
(𝑟)

𝑖𝑓
𝑘 (𝑟) 𝛾

𝑗
3

𝑗𝑙
− (𝑟)
) , (10)

𝛾
𝑗
3

𝑗𝑙
(𝑟) = (𝑙

1

2
𝑗
3
−
1

2

1

2
| 𝑗 𝑗
3
)

× 𝑌
𝑗
3
−(1/2)

𝑙
(𝑟) (
1

0
)

+ (𝑙
1

2
𝑗
3
+
1

2

−1

2
| 𝑗 𝑗
3
)

× 𝑌
𝑗
3
+(1/2)

𝑙
(𝑟) (
0

1
) ,

(11)

where 𝑌𝑗3−(1/2)
𝑙

(𝑟) and 𝑌𝑗3+(1/2)
𝑙

(𝑟) are spherical harmonics
and (𝑗1 𝑗2 𝑚1 𝑚2 | 𝑗 𝑗3) are Clebsh-Gordon coefficients,
𝜒
1
, 𝜒
2
are eigenstates of 𝐿2 (⇀𝐿 is the angularmomentum oper-

ator) with eigenvalues ℎ2𝑙(𝑙 + 1) and ℎ2𝑙−(𝑙− +1), respectively,
such that the following hold:

if

𝑘 = 𝑗 +
1

2
> 0, (12)

then

𝑙 = 𝑘 = 𝑗 +
1

2
, 𝑙

−
= 𝑘 − 1 = 𝑗 −

1

2
, (13)

and if

𝑘 = −(𝑗 +
1

2
) < 0, (14)

then

𝑙 = − (𝑘 + 1) = 𝑗 −
1

2
, 𝑙

−
= −𝑘 = 𝑗 +

1

2
. (15)

We use (⇀𝛼 ⋅ ⇀𝐴)(⇀𝛼 ⋅ ⇀𝐵) = ⇀𝐴 ⋅ ⇀𝐵 + 𝑖⇀𝛼 ⋅ (⇀𝐴 ×⇀𝐵) and the related
identity (⇀𝛼 ⋅ ⇀𝑟 )(⇀𝛼 ⋅ ⇀𝑟 ) = 𝑟2; so we have

(
⇀
𝛼 ⋅
⇀
𝑝
0
) =
(
⇀
𝛼 ⋅
⇀
𝑟 ) (
⇀
𝛼 ⋅
⇀
𝑟 ) (
⇀
𝛼 ⋅
⇀
𝑝
0
)

𝑟2

=

⇀
𝛼 ⋅
⇀
𝑟

𝑟2
(
⇀
𝑟 ⋅
⇀
𝑝
0
+ 𝑖
⇀
𝛼 ⋅ (
⇀
𝑟 ×
⇀
𝑝
0
))

=

⇀
𝛼 ⋅
⇀
𝑟

𝑟2
(
⇀
𝑟 ⋅
⇀
𝑝
0
+ 𝑖
⇀
𝛼 ⋅
⇀
𝐿) .

(16)

But from the definition of the momentum operators in
Schwarzschild metric [18], we can write (16) as

(
⇀
𝛼 ⋅
⇀
𝑝
0
) = (

⇀
𝛼 ⋅ 𝑟) (−𝑖ℎ√𝜁

𝜕

𝜕𝑟
+
𝑖

𝑟

⇀
𝛼 ⋅
⇀
𝐿) . (17)
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Also, we have

(
⇀
𝛼 ⋅
⇀
𝐿 + 1) 𝜒

1,2
= ∓𝜒
1,2
,

(
⇀
𝛼 ⋅ 𝑟) 𝛾

𝑗
3

𝑗𝑙
(𝑟) = −𝛾

𝑗
3

𝑗𝑙
− (𝑟) , (

⇀
𝛼 ⋅ 𝑟) 𝛾

𝑗
3

𝑗𝑙
− (𝑟) = −𝛾

𝑗
3

𝑗𝑙
(𝑟) .

(18)

Next, from the definition of 𝑝2
0
in Schwarzschild metric [18]

we can write

𝑝
2

0
𝐹 (𝑟) 𝑌

𝑚

𝑙
= ℎ
2
[−
√𝜁

𝑟2
𝑑

𝑑𝑟
(𝑟
2√𝜁

𝜕

𝜕𝑟
) +
𝑙 (𝑙 + 1)

𝑟2
]𝐹 (𝑟) 𝑌

𝑚

𝑙
.

(19)

So, using (17), (18), and (19), we can obtain from (9) the fol-
lowing equations:

− 𝑐ℎ√𝜁
𝑑𝑓
𝑘

𝑑𝑟
+
𝑐 (𝑘 − 1)

𝑟
𝑓
𝑘
+ (𝑚𝑐

2
+ 𝑈)𝑔

𝑘

+ 𝑐𝑎ℎ
2
[
√𝜁

𝑟2
𝑑

𝑑𝑟
(√𝜁𝑟

2 𝑑𝑔𝑘

𝑑𝑟
) −
𝑙 (𝑙 + 1)

𝑟2
𝑔
𝑘
] =

𝐸

√𝜁
𝑔
𝑘
,

𝑐ℎ√𝜁
𝑑𝑔
𝑘

𝑑𝑟
+
𝑐 (𝑘 + 1)

𝑟
𝑔
𝑘
− (𝑚𝑐

2
+ 𝑈)𝑓

𝑘

+ 𝑐𝑎ℎ
2
[
√𝜁

𝑟2
𝑑

𝑑𝑟
(√𝜁𝑟

2 𝑑𝑓𝑘

𝑑𝑟
) −
𝑙
−
(𝑙
−
+ 1)

𝑟2
𝑓
𝑘
] =

𝐸

√𝜁
𝑓
𝑘
.

(20)

It can be shown that MIT bag boundary condition (at 𝑟 = 𝑅)
is equivalent to [19, 20]

�̃�𝜓 = 0. (21)

As in [17], we can expect new nonperturbative solutions of
the forms 𝑓

𝑘
= 𝐹
𝐾
(𝑟)𝑒
𝑖𝜖𝑟/𝑎ℎ and 𝑔

𝑘
= 𝐺
𝐾
(𝑟)𝑒
𝑖𝜖𝑟/𝑎ℎ (where 𝜖 =

𝑂(1)) for which (20) simplifies to

𝑎ℎ
𝑑
2
𝑔
𝑘

𝑑𝑟2
= √𝜁

𝑑𝑓
𝑘

𝑑𝑟
,

𝑎ℎ
𝑑
2
𝑓
𝑘

𝑑𝑟2
= −√𝜁

𝑑𝑔
𝑘

𝑑𝑟
,

(22)

where we have dropped terms which are ignorable for small
𝑎.

When 𝜁 = 1, equations in (22) are identical to the (60)-
(61) in reference [17], and in this case we have the following
solutions: 𝑓𝑁

𝑘
= 𝑖𝑁𝑒

𝑖𝑟/𝑎ℎ, 𝑔𝑁
𝑘
= 𝑁𝑒
𝑖𝑟/𝑎ℎ, 𝑁 is constant; so we

can assume the solutions of (22) as

𝑓
𝑁

𝑘
= 𝑖𝑁𝑒

𝑖𝑟/𝑎ℎ
,

𝑔
𝑁

𝑘
= 𝑁𝐵 (𝑟) 𝑒

𝑖𝑟/𝑎ℎ
.

(23)

By applying (23) on (22), we find that

𝑎
2
ℎ
2 𝑑
2
𝐵 (𝑟)

𝑑𝑟2
+ 𝐵 (𝑟) + √𝜁 −

2

√𝜁
= 0. (24)

Consider that 𝑟
𝑠
is very small, so we can approximate (24) to

𝑎
2
ℎ
2 𝑑
2
𝐵 (𝑟)

𝑑𝑟2
+ 𝐵 (𝑟) − 1 −

3𝑟
𝑠

2𝑟
= 0. (25)

The solution of (25) takes the form

𝐵 (𝑟) = 𝑐1 sin(
𝑟

𝑎ℎ
) + 𝑐
2
cos( 𝑟

𝑎ℎ
)

+
1.5𝑟
𝑠

𝑎ℎ
[𝐶
𝑖
(
𝑟

𝑎ℎ
) sin( 𝑟

𝑎ℎ
)

− 𝑆
𝑖
(
𝑟

𝑎ℎ
) cos ( 𝑟

𝑎ℎ
)] + 1,

(26)

where 𝑐
1
and 𝑐
2
are constants, 𝑆

𝑖
(𝑟/𝑎ℎ) and 𝐶

𝑖
(𝑟/𝑎ℎ) are the

sine integral function and cosine integral function defined as
𝑆
𝑖
(𝑦) = ∫

𝑦

0
(sin 𝑡/𝑡)𝑑𝑡 and 𝐶

𝑖
(𝑦) = − ∫

∞

𝑦
(cos 𝑡/𝑡)𝑑𝑡. For more

details about this functions see [22, 23].
Therefore, the solutions of (22) take the form

𝑓
𝑁

𝑘
= 𝑖𝑁𝑒

𝑖𝑟/𝑎ℎ
,

𝑔
𝑁

𝑘
= 𝑁 [1 + 𝜎 (𝑟)] 𝑒

𝑖𝑟/𝑎ℎ
,

(27)

where

𝜎 (𝑟) = 𝑐1 sin(
𝑟

𝑎ℎ
) + 𝑐
2
cos( 𝑟

𝑎ℎ
)

+
1.5𝑟
𝑠

𝑎ℎ
[𝐶
𝑖
(
𝑟

𝑎ℎ
) sin( 𝑟

𝑎ℎ
)

− 𝑆
𝑖
(
𝑟

𝑎ℎ
) cos( 𝑟

𝑎ℎ
)] .

(28)

Here, one must have lim
𝑟
𝑠
→𝑜
𝑐
1
= lim

𝑟
𝑠
→𝑜
𝑐
2
= 0, and, in this

case (𝜎(𝑟) = 0, 𝑟
𝑠
= 0), the results are the same of [17].

Now, the boundary condition (21) gives

|𝑔
𝑘 (𝑅) + 𝑔

𝑁

𝑘
(𝑅)|
2

= |𝑓
𝑘 (𝑅) + 𝑓

𝑁

𝑘
(𝑅)|
2

, (29)

which to 𝑂(𝑎) translates to

(𝑔
2

𝑘
− 𝑓
2

𝑘
) + 2𝑁[𝑔

𝑘 (1 + 𝜎 (𝑅)) cos(
𝑅

𝑎ℎ
) − 𝑓
𝑘
sin( 𝑅

𝑎ℎ
)]

+ 𝑁
2
[(1 + 𝜎 (𝑅))

2
− 1] = 0.

(30)

From (30), we have

𝑓
𝑘
= 𝑔
𝑘
, (31)

tan( 𝑅
𝑎ℎ
) = 1 + 𝜎 (𝑅) ,

𝜎 (𝑅) = 0, or 𝜎 (𝑅) = −2.

(32)

Observing (28), we can write

𝜎 (𝑅)

cos (𝑅/𝑎ℎ)
= 𝑐
1
tan( 𝑅

𝑎ℎ
) + 𝑐
2

+
1.5𝑟
𝑠

𝑎ℎ
[𝐶
𝑖
(
𝑅

𝑎ℎ
) tan( 𝑅

𝑎ℎ
) − 𝑆
𝑖
(
𝑅

𝑎ℎ
)] .

(33)
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From (32) we have

if 𝜎 (𝑅) = 0 then tan( 𝑅
𝑎ℎ
) = 1,

if 𝜎 (𝑅) = −2 then tan( 𝑅
𝑎ℎ
) = −1.

(34)

For the case of𝜎(𝑅) = 0 and 𝑟
𝑠
= 0wehave the same result

of discreteness of space in flat spacetime [17].
For the second case 𝜎(𝑅) = −2, we have, from (33),

4𝑎ℎ

3𝑟
𝑠
cos (𝑅/𝑎ℎ)

+
2𝐶𝑎ℎ

3𝑟
𝑠

= 𝐶
𝑖
(
𝑅

𝑎ℎ
) + 𝑆
𝑖
(
𝑅

𝑎ℎ
) ,

𝐶 is constant.
(35)

If we take the constant 𝐶 = 0, then we have

4𝑎ℎ

3𝑟
𝑠
cos (𝑅/𝑎ℎ)

= 𝐶
𝑖
(
𝑅

𝑎ℎ
) + 𝑆
𝑖
(
𝑅

𝑎ℎ
) . (36)

Suppose that we choose 𝑟
𝑠
= (4/3)𝑎ℎ (very small as

assumption); then we have

1

cos (𝑅/𝑎ℎ)
= 𝐶
𝑖
(
𝑅

𝑎ℎ
) + 𝑆
𝑖
(
𝑅

𝑎ℎ
) . (37)

Equation (37) has infinite number of solutions; we write
some numerical values of it, (𝑅/𝑎ℎ) = 5, 565, (𝑅/𝑎ℎ) = 7.159,
(𝑅/𝑎ℎ) = 11, and 755, (𝑅/𝑎ℎ) = 13.448. So, the radius of cav-
ity 𝑅 has been quantized in terms of 𝑎ℎ and we again arrived
at the quantization of space in Schwarzschild-like metric.

3. Conclusion

Dirac equationswithGUP in Schwarzschildmetric have been
studied. We showed that the assumption of existence of a
minimummeasurable length and a corresponding modifica-
tion of uncertainty principle yields discreteness of space in
thismetric. But the question now arises, what is the guarantee
that this result will continue to hold for more generic curved
spacetimes? We expect that this discreteness will always
appear provided that generalized uncertainty principle enters
into the theory, but in fact we have no mathematical proof
of existence of such discreteness of space if we work on the
general metric of the general relativity theory.
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