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In the presence of aminimal length, physical objects cannot collapse to an infinite density, singular, matter point. In this paper, we
consider the possible final stage of the gravitational collapse of “thick” matter layers. The energy momentum tensor we choose to
model these shell-like objects is a proper modification of the source for “noncommutative geometry inspired,” regular black holes.
By using higher momenta of Gaussian distribution to localize matter at finite distance from the origin, we obtain new solutions of
the Einstein equation which smoothly interpolates between Minkowski’s geometry near the center of the shell and Schwarzschild’s
spacetime far away from the matter layer. The metric is curvature singularity free. Black hole type solutions exist only for “heavy”
shells; that is,𝑀 ≥ 𝑀

𝑒
, where𝑀

𝑒
is themass of the extremal configuration.We determine theHawking temperature and amodified

area law taking into account the extended nature of the source.

1. Introduction

Relativistic, self-gravitating matter shells have been thor-
oughly investigated in different sectors of theoretical physics:
“...from cosmic inflation to hadronic bags” [1]. Remarkable
applications of gravitational shell models can be found in
the framework of inflationary cosmology, where both the
“birth” and the evolution of vacuumbubbles can be effectively
described in terms of the dynamics of the boundary surface
engulfing a false vacuum domain [1–4]. Matter shells in
general relativity aremodeled as “zero-thickness”membranes
endowed with some characteristic tension determined by
the underlying classical, or quantum, physics. Neglecting the
real width of the mass-energy distribution affects Einstein’s
equations by introducing a surface of discontinuity in the
background spacetime. This approximation allows to encode
all the dynamics in thematching condition between the inner
and outer geometries [5, 6]. Furthermore, contracting matter
shells provide useful analytic toymodels of collapsingmassive
bodies leading to black hole formation. In the spherically
symmetric case, the only dynamical degree of freedom is
given by the shell radius and the system can be quantized
according to the standard principle of quantum mechanics.

In this framework, self-gravitating quantum shells open a
window over the still “murky” quantum features of evaporat-
ing mini black holes [7–11].

In this paper, we are going to investigate the static,
final stage of collapsed matter shell in the presence of a
fundamental minimal length forbidding the shell to contract
into a singular matter point. The emergence of a minimal
length, as a new fundamental constant of nature on the same
ground as 𝑐 and ℎ, is a general feature of different approaches
to quantum gravity [12–14].

In recent years, we showed that the very concept of
“point particle” is meaningless if there exists a lower bound
to physically measurable lengths. For instance, in a series
of papers the repercussions of a natural ultraviolet cutoff
have been analyzed in the context of quantum field theory
[15–20]. This basic notion can be also encoded into the
Einstein equations through a proper choice of the energy
momentum tensor. The most remarkable outcomes of this
procedure are the disappearance of curvature singularities in
the solutions of the Einstein equations [21], a regular behavior
of the Hawking temperature which allows to determine the
physical character of the evaporation remnant [22–26], and
a different form of the relation between entropy and area of
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the event horizon reproducing the celebrated area law for
large, semiclassical black holes [27, 28].

The procedure has been applied in the whole array of
physically meaningful black hole solutions like the neutral,
nonrotating case [29–32], the charged, nonrotating case [33,
34], the “dirty,” neutral, and nonrotating case [35], and the
spinning, neutral [36] and charged cases [37]. In addition,
the regularity of the above metrics has been exploited in
several complementary contexts like the decay of the de Sitter
universe by quantum black hole nucleation [38] and the case
of dimensionally reduced spacetimes [39]. The procedure we
followed has been also recognized as a special result [40] of
recently formulated nonlocal gravity proposals [41, 42] with
important cross-fertilization in the AdS/CFT paradigm [43].

The paper is organized as follows. In Section 2, we will
derive new solutions of Einstein’s equations describing spher-
ically symmetric, static, self-gravitating, thickmatter layers in
the presence of a fundamental minimal length. These types
of objects are modeled by means of a proper modification of
the source for “noncommutative geometry inspired,” regular
black holes. We replace the Gaussian profile of mass-energy,
peaked around the origin, with higher moments of Gaussian
distribution with maxima shifted at finite distance from the
origin. The finite width of the distribution is determined
by the minimal length. In the case of lump-type objects,
the minimal length measures the spread of mass-energy
around the origin and removes the curvature singularity. For
finite width matter layers, with energy density vanishing at
short distance, not only the central curvature singularity is
removed, but the extrinsic curvature discontinuity between
“inner” and “outer” geometry is cured as well. Spacetime
geometry is continuous and differentiable everywhere and
smoothly interpolates between Minkowski’s metric near the
center and Schwarzschild’s spacetime far away from the
matter layer.

As in the cases previously discussed, black hole type
solutions exist only for “heavy” shells; that is,𝑀 ≥ 𝑀

𝑒
, where

𝑀
𝑒
is the mass of the extremal configuration. “Light” matter

layers with 𝑀 < 𝑀
𝑒
will settle down in a smooth solitonic

type configuration with no horizons or curvature singularity.
In Section 3, we study the thermodynamic properties

of black hole solutions and determine both the Hawking
temperature, 𝑇

𝐻
, and the relation between entropy and area

of the horizon. We recover the celebrated area law in the
limit of large, semiclassical black holes. On a general ground,
we find the leading term is one-fourth of the area but in
units of an “effective” gravitational coupling constant,𝐺

𝑁
(𝑟
+
),

depending on the radius of black hole. For “large” 𝑟
+
, the

Newton constant is recovered. Finally, in Section 4, we will
draw the conclusions.

2. Thick Shells

In a previous series of papers we solved the Einstein equations
including the effects of a minimal length on a proper energy-
momentum tensor

𝑅
𝜇] −

1

2
𝑔
𝜇]𝑅 = 8𝜋𝐺𝑁𝑇𝜇], (1)

where 𝑇
𝜇] = diag(𝜌, 𝑝

𝑟
, 𝑝
⊥
, 𝑝
⊥
). The energy density is a min-

imal width Gaussian distribution

𝜌 = 𝜌
0
(𝑟) ≡

𝑀

(4𝜋𝜃)
3/2

𝑒
−𝑟
2
/4𝜃

, (2)

representing a “blob-like” object, centred around the origin,
with a characteristic extension given by 𝑙 ∝ √𝜃. A simple way
to derive the above energy profile is based on the following
considerations. At classical level point-like objects in spheri-
cal coordinates are described by a profile

𝜌cl (𝑟) =
𝑀

4𝜋𝑟2
𝛿 (𝑟) , (3)

where 𝛿(𝑟) is the Dirac delta. We recall that a Dirac delta
function can be represented as the derivative of a Heaviside
step-function Θ(𝑟)

𝛿 (𝑟) =
𝑑

𝑑𝑟
Θ (𝑟) . (4)

However, in the presence of a minimal length the very con-
cept of sharp step is no longer meaningful. Rather we expect
the local loss of resolution to sweeten the step. Accordingly,
it can be shown that in the framework of a minimal length
a modified step function can be defined through an integral
representation of the Heaviside function without taking the
limit√𝜃 → 0 [44]:

Θ (𝑟) 󳨀→ 𝑃
0
(𝑟) =

1

√4𝜋𝜃3/2
∫

𝑟

0

𝑥
2

𝑒
−𝑥
2
/4𝜃

𝑑𝑥. (5)

The Gaussian profile (2) is therefore obtained as

𝜌
0
(𝑟) =

𝑀

4𝜋𝑟2

𝑑

𝑑𝑟
𝑃
0
(𝑟) . (6)

In order to solve Einstein’s equations, we need to determine
the remaining components of the energy-momentum tensor.
The radial pressure 𝑝

𝑟
is fixed by the equation of state 𝑝

𝑟
=

−𝜌 reproducing the de Sitter “vacuum” equation of state at
short distance. This is a key feature to build up a regular,
stable configuration, where the negative pressure balances the
gravitational pull. In other words, the singularity theorem is
evaded by a violation of null energy condition triggered by
the short distance vacuum fluctuations.

Finally, the tangential pressure 𝑝
⊥
is obtained in terms of

𝜌 by the divergence-free condition ∇
𝜇
𝑇
𝜇]
= 0.

As the source is static and spherically symmetric, the line
element can be cast in the form

𝑑𝑠
2

= −𝑓 (𝑟) 𝑑𝑡
2

+
𝑑𝑟
2

𝑓 (𝑟)
+ 𝑟
2

Ω
2 (7)

with

𝑓 (𝑟) = 1 −
2𝐺
𝑁
𝑚(𝑟)

𝑟
. (8)

The cumulative mass distribution𝑚(𝑟) is given by

𝑚(𝑟) = 4𝜋∫

𝑟

0

𝑑𝑟
󸀠

(𝑟
󸀠

)
2

𝜌
0
(𝑟
󸀠

) . (9)



Advances in High Energy Physics 3
P
k
(r
)

r

√𝜃

1

0.8

0.6

0.4

0.2

0

0 5 10 15 20 25

Figure 1: Plot of the function 𝑃
𝑘
(𝑟) as a function of 𝑟/√𝜃 for 𝑘 = 0

(purple), 𝑘 = 1 (cyan), 𝑘 = 2 (blue), 𝑘 = 7 (red), 𝑘 = 8 (pink),
𝑘 = 20 (green), and 𝑘 = 21 (yellow). For comparison, the Heaviside
function is plotted in black.

We notice that the parameter𝑀 corresponds to the totalmass
energy of the system; namely,

𝑀 = lim
𝑟→∞

𝑚(𝑟) . (10)

The above profile cures the usual Dirac delta (singular) dis-
tribution associated to a point particle, and leads to a family
of regular black hole solutions [29–39].

A crucial point at the basis of the above line of reasoning
is the modification of the step function in the presence of a
minimal length. We notice that the profile (5) is just one of
the possible choices one can have to account for the loss of
resolution of the edge of the step [44]. In other words, there
exist alternative representations of the Heaviside function for
which one can deliberately avoid the limit √𝜃 → 0. For
instance, the family of distributions

Θ (𝑟) 󳨀→ 𝑃
𝑘
(𝑟) =

1

√𝜋𝜃𝑘+3/2

(𝑘 + 1)!

[2 (𝑘 + 1)]!
∫

𝑟

0

𝑥
2𝑘+2

𝑒
−𝑥
2
/4𝜃

𝑑𝑥

(11)

account for minimal length effects growing with the index 𝑘,
where 𝑘 = 0, 1, 2, . . . is a natural number (see Figure 1). This
can be seen by the limit 𝑟/√𝜃 ≫ 1

𝑃
𝑘
(𝑟) ≈ 1 −

4
𝑘+1

√𝜋

(𝑘 + 1)!

[2 (𝑘 + 1)]!
(
𝑟

2√𝜃

)

2𝑘+1

𝑒
−𝑟
2
/4𝜃 (12)

which shows that the distributions 𝑃
𝑘
(𝑟) reach the plateau

(i.e., 𝑃
𝑘
≈ 1) more slowly as 𝑘 increases.

Here, we want to explore the nature of the solutions
emerging for the above admissible profiles for amodified step
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Figure 2: Plot of the radial density profile 𝜌(𝑟) as a function of 𝑟 in
√𝜃-units for 𝑘 = 1 (cyan), 𝑘 = 2 (blue), 𝑘 = 7 (red), 𝑘 = 8 (pink),
𝑘 = 20 (green), and 𝑘 = 21 (yellow). The function 𝜌(𝑟) has been
normalized so that its integration over a spherical volume gives 1.

function. By replacing 𝑃
0
with a generic 𝑃

𝑘
in (6), we derive

the following energy density profile:

𝜌
𝑘
(𝑟) ≡ 𝑀

𝑟
2𝑘

𝑒
−𝑟
2
/4𝜃

4𝑘+2𝜋𝜃𝑘+3/2 Γ (𝑘 + 3/2)
, (13)

which corresponds to higher moments of the Gaussian.
For 𝑘 = 0, the function 𝜌

𝑘
turns into the Gaussian

distribution, centred around the origin, while for 𝑘 ≥ 1 the
matter distribution is more and more diluted near the origin,
being peaked at 𝑟

𝑀
= 2√𝑘𝜃. As a result, the density function

(13) describes a whole family of “mass-degenerate” shells,
with the same 𝑀, but concentrated at a distance given by
𝑟
𝑀

(see Figure 2). Equation (13) discloses further properties
of the minimal length, which assumes a new intriguing
meaning. In the case of point particle, √𝜃 represents the
spread of the object around the origin. For matter shells, we
see that √𝜃 relates to the shell thickness or, in other words, a
measure of the intrinsic fuzziness of the layer. Just as a particle
cannot be exactly localized at a single point, we cannot have
zero-width layers as well. Thus, as the matter distribution is
smooth everywhere, there is no discontinuity in the extrinsic
curvature between the “inner” and “outer” geometries. No
matching condition is required and we can look for a single,
smooth, metric inside, across, and outside the matter layer.

We can define the distance between two shells corre-
sponding to different moments as the distance between the
peaks:

Δ𝑟
𝑀

2√𝜃

= √𝑘 + 1 − √𝑘. (14)

We see that for higher moments Δ𝑟
𝑀

vanishes as we are at
length scale much larger than √𝜃 and the relative distance
cannot be resolved anymore.

A stable solution of the Einstein equations can be
obtained by sourcing the gravitational field by the energy
momentum tensor of an anisotropic fluid; the choice 𝑝

𝑟
=

−𝜌
𝑘
for thematter equation of state allows to have 𝑔

00
= −𝑔
−1

𝑟𝑟
.

Furthermore, the hydrodynamic equilibrium equation will
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Figure 3: Plot of 𝑔
00
(𝑟) as a function of 𝑟 in√𝜃-units for fixed value

of 𝑘 = 1 and different values of the mass𝑀; that is,𝑀 = 1 (blue),
𝑀 = 𝑀

𝑒
(magenta), and𝑀 = 5 (brown). Here,𝑀

𝑒
≃ 2.36976 is the

extremal mass for the case 𝑘 = 1.

give 𝑝
⊥
in terms of 𝜌

𝑘
, while the metric itself results in being

independent from 𝑝
⊥
. The solution of the Einstein equations

reads in geometric units, 𝑐 = 1, 𝐺
𝑁
= 1:

𝑑𝑠
2

= −(1 −
2𝑚 (𝑟)

𝑟
) 𝑑𝑡
2

+ (1 −
2𝑚 (𝑟)

𝑟
)

−1

𝑑𝑟
2

+ 𝑟
2

𝑑Ω
2

,

(15)

𝑚(𝑟) ≡ 4𝜋∫

𝑟

0

𝑑𝑟
󸀠

𝑟
󸀠2

𝜌 (𝑟
󸀠

) = 𝑀

𝛾 (𝑘 + 3/2; 𝑟
2

/4𝜃)

Γ (𝑘 + 3/2)
, (16)

where 𝛾(𝑘+3/2; 𝑟2/4𝜃) is the lower, incomplete Euler Gamma
function. By taking into account the asymptotic form of 𝛾(𝑘+
3/2; 𝑟
2

/4𝜃) for small argument, one finds that the metric (15)
is essentially flat near the origin, the contrary towhat happens
for the case 𝑘 = 0 in which a regular de Sitter core forms.
Indeed, one finds that

𝑓 (𝑟) ≃ 1 −
1

2𝑘 + 3
[

4𝑀

𝑟Γ (𝑘 + 3/2)
](

𝑟
2

4𝜃
)

𝑘+3/2

, (17)

𝑑𝑠
2

= − (1 − 𝑂 (𝑟
2𝑘+2

)) 𝑑𝑡
2

+ (1 − 𝑂 (𝑟
2𝑘+2

))
−1

𝑑𝑟
2

+ 𝑟
2

𝑑Ω
2

.

(18)

The asymptotic behavior (18) can be seen as a generalization
of the “Gauss Theorem”: inside an empty, classical, thin shell
of matter, the Newtonian gravitational field is zero; that is,
spacetime is flat. Introducing a finite width density, smoothly
decreasing both toward the origin and space-like infinity,
causes small deviations from perfect flatness.

Going back to (15), the presence of event horizons is read
from the zeroes of 𝑔−1

𝑟𝑟
(see Figure 3). Due to the nontrivial

structure of the metric, it is more convenient to look at the
“horizon equation” in the form

𝑀 ≡ 𝑈(𝑟
𝐻
) , 𝑈 (𝑟

𝐻
) ≡

𝑟
𝐻

2

Γ (𝑘 + 3/2)

𝛾 (𝑘 + 3/2; 𝑟
2

𝐻
/4𝜃)

. (19)

The problem of finding the horizons in the metric (15) is
mapped in the equivalent problemof determining the turning
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Figure 4: Plot of 𝑈(𝑟
𝐻
) as a function of 𝑟

𝐻
in √𝜃-units for 𝑘 = 0

(blue), 𝑘 = 1 (magenta), and 𝑘 = 4 (brown).

points for the motion of a “test particle” of energy𝑀 subject
to the “potential” 𝑈(𝑟

𝐻
). The intersection(s) between a line

𝑀 = const. and the plot of the function 𝑈(𝑟
𝐻
), in the

plane𝑀-𝑟
𝐻
, represent the allowed radii of inner/outer event

horizons (see Figure 4). The asymptotic behavior of 𝑈(𝑟
𝐻
) is

obtained from the corresponding approximate forms of 𝛾:

𝑈 (𝑟
𝐻
) ≈

𝑟
𝐻

2
, 𝑟
𝐻
≫ √𝜃,

𝑈 (𝑟
𝐻
) ≈ √𝜃Γ (𝑘 +

5

2
)(

𝑟
2

𝐻

4𝜃
)

−(𝑘+1)

, 𝑟
𝐻
≪ √𝜃.

(20)

Thus, 𝑈(𝑟
𝐻
) is a convex function with a single minimum

determined by the condition

𝑑𝑈

𝑑𝑟
𝐻

= 0 󳨀→
𝑟
2𝑘+3

𝑒

22𝑘+2𝜃𝑘+3/2
= 𝛾(𝑘 +

3

2
;
𝑟
2

𝑒

4𝜃
) 𝑒
𝑟
2

𝑒
/4𝜃

. (21)

The radius 𝑟
𝑒
represents the size of an extremal configuration

with a couple of degenerate horizons: 𝑟
−
= 𝑟
+
≡ 𝑟
𝑒
.

Once 𝑟
𝑒
is numerically determined from (21), one gets the

corresponding mass𝑀
𝑒
from the potential:

𝑀
𝑒
= 𝑈 (𝑟

𝑒
) = 𝑈min . (22)

An order ofmagnitude estimate for 𝑟
𝑒
and𝑀

𝑒
can be obtained

by keeping only the leading theta term:

𝑟
𝑒
∝ √𝜃 󳨀→ 𝑀

𝑒
∝
√𝜃

𝐿Pl.
𝑀Pl., (23)

where 𝐿Pl. is the Planck length; that is, 𝐿Pl. = 𝑀
−1

Pl. = √𝐺𝑁.
This estimate suggests that (near/)extremal configurations
are close to a full quantum gravity regime. As such, they
are appropriate candidates to describe the end-point of
the Hawking evaporation process where the semiclassical
description breaks down.

In summary

(i) for𝑀 > 𝑀
𝑒
, we find a geometry with noncoincident

inner and outer horizons 𝑟
−
< 𝑟
+
. It is worth to

remark that there is no curvature singularity in 𝑟 = 0.
Spacetime is flat near the origin;
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(ii) for𝑀 = 𝑀
𝑒
, we have an extremal configuration with

a pair of degenerate horizons, 𝑟
−
= 𝑟
+
≡ 𝑟
𝑒
.

(iii) for𝑀 < 𝑀
𝑒
, there are neither horizons nor curvature

singularities.Themetric is smooth and regular every-
where. The shell is too light and diluted to produce
any relevant alteration of the spacetime fabric. After
collapse, it will settle into a sort of solitonic objectwith
no horizon of curvature singularity.

Massive layers will produce horizons, but no curvature singu-
larities. This is a crucial point which marks a departure with
respect to all the existing literatures. Our approach must not
be confusedwith previous contributions inwhich generalized
matter shells containing polytropic and Chaplygin gas cannot
ultimately resolve the emergence of singularities [45].

We can estimate the size of these objects by solving iter-
atively (19) and truncating the procedure at the first order in
the expansion parameter exp(−𝑀2/𝜃):

𝑟
+
≃ 2𝑀[

[

1 −

(𝑀
2

/𝜃)
𝑘+1/2

Γ (𝑘 + 3/2)
𝑒
−𝑀
2
/𝜃]

]

. (24)

This quantity can be compared with the shellmean radius

⟨𝑟⟩ ≡
4𝜋

𝑀
∫

∞

0

𝑑𝑟𝑟
2

𝑟𝜌 (𝑟) = 2√𝜃
Γ (𝑘 + 2)

Γ (𝑘 + 3/2)
. (25)

We notice that for 𝑘 ≫ 1 the leading contribution to the
ratio 𝑟

+
/⟨𝑟⟩ is given by

𝑟
+

⟨𝑟⟩
≈
𝑀

√𝜃

1

√𝑘 + 1

. (26)

Thus, for an assigned 𝑀 the ratio decreases with 𝑘. The
horizon radius is determined by the total mass energy𝑀 and
is weakly 𝑘 dependent. On the contrary, ⟨𝑟⟩ ∝ √𝑘 + 1√𝜃

and grows with 𝑘, which means that for higher moments the
horizon is surrounded by a cloud of matter.

3. Thermodynamics

Massive shells will collapse into black holes described by
the line element (7), (8). This is not the end of story as
these objects are semiclassically unstable under Hawking’s
emission. We are now ready to study the thermodynamic
properties of these solutions starting from the Hawking
temperature:

𝑇
𝐻
=

1

4𝜋𝑟
+

[1 −
𝑟
2𝑘+3

+

22𝑘+2𝜃𝑘+3/2

𝑒
−𝑟
2

+
/4𝜃

𝛾 (𝑘 + 3/2; 𝑟2
+
/4𝜃)

] . (27)

It can be easily verified that 𝑇
𝐻
is vanishing for the extremal

configuration 𝑇
𝐻
(𝑟
+
= 𝑟
𝑒
) = 0. For 𝑘 = 0, we obtain

the temperature of the black hole as in [31]. The behavior
of the temperature can be found in Figure 5 and Table 1. We
notice that the regularity of the manifold for any 𝑘 leads to
a cooling down of the horizon in the terminal phase of the
Hawking process. At 𝑟

+
= 𝑟max, the presence of a maximum
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Figure 5: Plot of 𝑇(𝑟
+
) as a function of 𝑟

+
in √𝜃-units for 𝑘 = 0

(blue), 𝑘 = 1 (magenta), 𝑘 = 4 (brown), and 𝑘 = 15 (green). The
dashed line represents the classical case; that is, 𝜃 = 0.

Table 1: Some values of parameters of the matter shells.

𝑟
𝑒

𝑀
𝑒

𝑇max 𝑟max

𝑘 = 0 3.0224 1.9041 0.014937 4.76421
𝑘 = 1 4.0431 2.3698 0.012783 5.72632
𝑘 = 4 5.9269 3.2647 0.009960 7.56069
𝑘 = 15 9.7347 5.1245 0.006799 11.3419

temperature corresponds to an infinite discontinuity of the
heat capacity which is usually interpreted as the signal of a
“change of state” for the system. For 𝑟

+
> 𝑟max, the black hole

is thermodynamically unstable and increases its temperature
by radiating away its own mass. After crossing 𝑟max, that
is, for 𝑟

+
< 𝑟max, the black hole enters a stability phase

asymptotically ending into a degenerate (zero-temperature)
extremal configuration. By increasing 𝑘, we just lower down
the maximum temperature. As a result, the solution is
unaffected by any relevant quantum back reaction as already
proved for the case 𝑘 = 0 in [31].

A further important consequence of 𝑇
𝐻
≤ 𝑇max is that (in

extradimensional models) the black hole mainly radiates on
the brane [46], it never becomes hot enough to warm up the
bulk in a significant way.

The area-entropy law can be recovered from the relation

𝑑𝑀 = 𝑇
𝐻
𝑑𝑆, (28)

where 𝑑𝑆 is the horizon entropy variation triggered by a
variation 𝑑𝑀 in the total mass energy𝑀. In order to translate
the first law of black hole thermodynamics (28) into a relation
involving the area of the event horizon, we need to write mass
energy variation as

𝑑𝑀 =
𝜕𝑈

𝜕𝑟
+

𝑑𝑟
+

(29)

and to take into account that the minimum of 𝑈(𝑟
+
) is the

mass of the extremal black hole. Thus, when integrating
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(29), the lower integration limit is the radius of the extremal
configuration

𝑆 = ∫

𝑟
+

𝑟
𝑒

𝑑𝑥
1

𝑇
𝐻

𝜕𝑈

𝜕𝑥

= 2𝜋Γ (𝑘 +
3

2
) ∫

𝑟
+

𝑟
𝑒

𝑑𝑟
𝑟

𝛾 (𝑘 + 3/2; 𝑟2/4𝜃)
,

(30)

wherewe have inserted (27) and (29) into (30). By performing
the integral, one gets

𝑆 = 𝜋Γ (𝑘 +
3

2
)

× (
𝑟
2

+

𝛾 (𝑘 + 3/2; 𝑟2
+
/4𝜃)

−
𝑟
2

𝑒

𝛾 (𝑘 + 3/2; 𝑟2
𝑒
/4𝜃)

)

+ 𝜋Γ (𝑘 +
3

2
)∫

𝑟
+

𝑟
𝑒

𝑑𝑟𝑟
2
𝛾
󸀠

𝛾2
.

(31)

The first term can be written in terms of the area of the event
horizon as

𝑆 =
1

4𝐺
𝑁

Γ (𝑘 +
3

2
)

× (
𝐴
𝐻

𝛾 (𝑘 + 3/2; 𝑟2
+
/4𝜃)

−
𝐴
𝑒

𝛾 (𝑘 + 3/2; 𝑟2
𝑒
/4𝜃)

) + ⋅ ⋅ ⋅

(32)

and represents the “area law” in our case. We have reinserted
the Newton constant into (32) for reasons to become clear in
a while. The standard form, which is one-fourth of the area,
is recovered in the large black hole limit, 𝑟

𝐻
≫ √𝜃.

Once (32) is written in natural units, we can define an
effective Newton constant as

𝐺
𝑁
󳨀→ 𝐺

𝑁
(𝑟
+
) ≡ 𝐺
𝑁

𝛾 (𝑘 + 3/2; 𝑟
2

+
/4𝜃)

Γ (𝑘 + 3/2)

(33)

and introduce a “modified” area law as

𝑆 (𝑟
𝐻
) =

𝜋𝑟
2

𝐻

4𝐺
𝑁
(𝑟
𝐻
)
. (34)

The interesting feature of𝐺
𝑁
(𝑟
𝐻
) is to be “asymptotically free”

in the sense that it is smaller than 𝐺
𝑁
, which represents the

asymptotic value of the gravitational coupling for large black
holes only (it is interesting to remark that if we apply the
same reasoning to the Newton constant in (8), and replace
𝑟
𝐻

with the radial coordinate 𝑟, we find a radial distance-
dependent gravitational coupling, which is quickly vanishing
in the limit 𝑟 → 0. This asymptotically free behavior of our
model, at short distance, provides an alternative explanation
for the absence of curvature singularity in 𝑟 = 0).

Finally, the second term in (31) gives exponentially small
corrections to the leading area term. It can be analytically
computed for 𝑘 ≫ 1, but it does not introduce any relevant
new effect.

4. Conclusions

In this paper, we derived new static, spherically symmetric
regular solutions of Einstein’s equations, describing the final
state of collapsing matter shells in the presence of an effective
minimal length. This derivation is the result of a long path
starting with the quest of quantum gravity regularized black
hole solutions [21, 29–40]. We showed that our previous
discoveries of noncommutative geometry inspired solutions
correspond to the simplest case within a larger class of regular
gravitational objects. This class, the family of gravitational
shells here presented, has peculiar properties which descend
from the common key feature of the absence of curvature
singularities. Such properties are the existence of extremal
configurations, characterized by aminimalmass belowwhich
horizon cannot form, even in the case of neutral, nonrotating
black holes; the occurrence of a phase transition from a
thermodynamically unstable classical phase to a thermody-
namically stable cooling down in the final stage of the horizon
evaporation. As for the case of regular black holes, these
matter shells correspond to final configurations of dynamical
processes of gravitational collapse in which matter cannot
be compressed below a fundamental length scale. The above
properties are also common to other models of quantum
geometry that have been derived by means of different
formalisms. Specifically the shell profile of the energy density
resembles what one has in the case of loop quantum black
holes, with consequent thermodynamic similarities [47–50].

The study of these objects is far from being complete. We
believe that these new solutions can have repercussions in
a variety of fields. Here we just mention that these regular
shells could affect the stability of the de Sitter space, at
least during inflationary epochs [38] and they could lead
to new insights into the physics of nuclear matter via the
gauge/gravity duality paradigm as well [43].
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