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We address the effect of a quantum gravity induced minimal length on a physical observable for three-dimensional Yang-Mills.
Our calculation is done within stationary perturbation theory. Interestingly enough, we find an ultraviolet finite interaction energy,
which contains a regularized logarithmic function and a linear confining potential.This result highlights the role played by the new
quantum of length in our discussion.

1. Introduction

It is known that one of the main unsolved problems in
high energy physics is a quantitative description (from first
principles) of confinement in quantum chromodynamics
(QCD). Albeit phenomenological models still represent a key
tool for understanding confinement physics. In this context
we recall the phenomenon of condensation, where in the
scenario of dual superconductivity, it is conjectured that the
QCDvacuumbehaves as a dual-type II superconductor.More
explicitly, due to the condensation of magnetic monopoles,
the chromoelectric field acting between 𝑞𝑞 pair is squeezed
into strings, and the nonvanishing string tension represents
the proportionality constant in the linear potential. Inci-
dentally, lattice calculations have confirmed this picture by
showing the formation of tubes of gluonic fields connecting
colored charges [1].

It is also known that considerable attention has been paid
to the investigation of extensions of the standardmodel (SM),
such as Lorentz invariance violation and fundamental length
[2–7], because the SM does not include a quantum theory of
gravitation. In this respect we recall that, in the last few years,
the emphasis of quantumgravity has been on effectivemodels
incorporating aminimal length scale. In fact, there are several
approaches on how to incorporate a minimal length scale
in a quantum field theory, leading to a model of quantum

space-time [8–11]. Of these, noncommutative quantum field
theories have motivated a great interest [12–17]. Notice that
this noncommutative geometry is an intrinsic property of
space-time. In addition, we also recall that most of the known
results in the noncommutative approach have been achieved
using a Moyal star-product. Nevertheless, in recent times, a
new formulation of noncommutative quantumfield theory in
the presence of a minimal length has been proposed in [18–
20]. Afterwards, this approach was further developed by the
introduction of a new multiplication rule, which is known
as Voros star-product. Notwithstanding, physics turns out
be independent from the choice of the type of product [21].
Consequently, with the introduction of noncommutativity by
means of a minimal length, the theory becomes ultraviolet
finite and the cutoff is provided by the noncommutative
parameter 𝜃.

In this perspective the present work is an extension of
our previous study [22]. Thus, the basic ideas underlying the
analysis of this paper are derived from our earlier paper [22].
Specifically, in this work wewill focus attention on the impact
of a minimal length on a physical observable for pure Yang-
Mills theory in (2 + 1)𝐷. It is worth noting here that Yang-
Mills theories in (2+1)𝐷 are very relevant for a reliable com-
parison between results coming from continuum and lattice
calculations [23]. Also, (2 + 1)𝐷 theories have been raising
a great deal of interest in connection with branes activity,
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for example, issues like self-duality [24] and new possibilities
for supersymmetry breaking as induced by 3-branes [25].
Yet, (2 + 1)𝐷 theories may be adopted to describe the high-
temperature limit of models in (3 + 1)𝐷 [26]. In fact, such
theories are of interest to probe low-dimensional condensed
matter systems, such as spin or pairing fluctuations by means
of effective gauge theories, for which (2 + 1)𝐷 theories are a
very good approximation [27]. Thus, in order to accomplish
the purpose of studying the impact of a minimal length for
Yang-Mills theory in (2 + 1)𝐷, we will work out the static
potential for the case under consideration. As we will see,
the presence of a minimal length leads to an ultraviolet finite
static potential, which contains a regularized logarithmic
function and a linear confining potential. Accordingly, our
study offers a straightforward calculation in which some
features of three-dimensional nonabelian gauge theories
become more transparent.

2. Interaction Energy

We will now discuss the interaction energy for Yang-Mills
theory in the presence of aminimal length.We start thenwith
the three-dimensional space-time Lagrangian:

L = −
1

4
Tr (𝐹𝜇]𝐹
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) = −

1
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],
with 𝑓

𝑎𝑏𝑐 the structure constants of the gauge group.
As we have indicated in [22], our analysis is based in

perturbation theory along the lines of [28–30]. To do this,
we will work out the vacuum expectation value of the energy
operator 𝐻(⟨0|𝐻|0⟩) at lowest order in 𝑔, in the Coulomb
gauge.The canonicalHamiltonian can beworked as usual and
is given by
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where the color-electric field E𝑎 has been separated into
transverse and longitudinal parts: E𝑎

= E𝑎
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𝑎.
Next, by making use of Gauss’s law
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Following our earlier procedure, the corresponding for-
mulation of this theory in the presence of a minimal length
is by means of a smeared source [22, 31, 32]. Thus, we will
take the sources as 𝜌
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where 𝑡
𝑎

𝑞
and 𝑡

𝑎

𝑞
are the color charges of a heavy antiquark

𝑞
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and a quark 𝑞𝑖 in a normalized color singlet state |Ψ⟩ =
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the anti-Hermitian generators 𝑇
𝑎 are in the fundamental

representation of SU(N).
By proceeding in the same way as in [22], we obtain the

expectation value of the energy operator 𝐻 to order 𝑔
2 and

𝑔
4:

𝑉 = 𝑉1 + 𝑉2, (5)

where
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The 𝑉1 term is exactly the one obtained in [32]. Conse-
quently, (6) takes the form

𝑉1 = −𝑔
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with |r| ≡ |y − y󸀠| = 𝑟 and 𝜇 is an infrared regulator. Again,
as in our previous analysis [32], unexpected features are
found. Interestingly, it is observed that, unlike the Coulomb
potential which is singular at the origin, 𝑉1 is finite there:
𝑉1 = (𝑔

2
𝐶𝐹/2𝜋) ln(2𝜇√𝜃).

We now turn our attention to the 𝑉2 term, which is given
by
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In passing we recall that to obtain (9) we have expressed the
𝐴
𝑎𝑖-fields in terms of a normal mode expansion: 𝐴𝑎𝑖
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that the correction term of order 𝑔4 represents an antiscreen-
ing effect. Incidentally, it is of interest to notice that precisely
this term is in the origin of asymptotic freedom in the (3+1)𝐷

case, which is due to the instantaneous Coulomb interaction
of the quarks.

When the integral (10) is performed, one gets
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Expression (9) then becomes
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We now proceed to calculate the integral (12). Following
our earlier procedure [32], (12) is further rewritten as
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Hence, at leading order in 𝜃, (14) reduces to

𝐼 = −
1

2(𝜋)
3/2

{𝑟𝛾(
1

2
,
𝑟
2

4𝜃
) + 2√𝜃𝑒

−𝑟
2
/4𝜃

+
𝜃

𝑟
𝛾(

1

2
,
𝑟
2

4𝜃
)} ,

(15)

where 𝛾(1/2, 𝑟2/4𝜃) is the lower incomplete Gamma function
defined by the following integral representation:
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Now we focus on the (𝑔
4
) screening contribution to the

potential, which is due to the exchange of transverse gluons.
From our above perturbation theory, we find that𝑉∗
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By substituting (19) into (18) and following our earlier
procedure, the 𝑉
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Integrating now over l, one then obtains I(k) =
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It is straightforward to see that this integral is exactly the one
obtained in expression (12).

By putting together (8), (12), and (22), we evaluate the
interquark potential in position space. We thus finally obtain
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which is ultraviolet finite (Figure 1). An immediate conse-
quence of this is that for 𝜃 = 0 one obtains the known
interquark potential at order 𝑔

4 [30]. Note that in Figure 1,
for illustrative purposes, we have defined 𝑔

2
𝐶𝐹/2𝜋 = 1,

𝑔
4
𝐶𝐴𝐶𝐹/2(𝜋)

3/2
= 1, 𝜇 = 1, and√𝜃 = 1.4.
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Figure 1: The potential 𝑉, as a function of 𝑥 = 𝑟/2√𝜃.

3. Conclusion

To conclude, let us put our work in its proper perspective.
As already anticipated, this work is a sequel to [22], where
we have considered a three-dimensional extension of the
recently (3 + 1)𝐷 calculation in the presence of a minimal
length. To do this, we have exploited a correct identification
of field degrees with observable quantities. Once the iden-
tification has been made, the computation of the potential
is achieved by means of Gauss’ law. Interestingly enough,
it was found that the static potential profile is ultraviolet
finite, which contains a regularized logarithmic function and
a linear potential leading to confinement of static sources.
Finally, we note that our results agree for the 𝜃 = 0 case
with the calculation shown in [30]. Also very recently, in
the context of the Georgi-Glashow model it has been shown
that there is confinement at distances much larger than
the screening length [33]. Since our calculation has shown
that there is confinement in three-dimensional Yang-Mills,
it seems a challenging work to extend the above analysis to
the Georgi-Glashow model. We expect to report on progress
along these lines soon.
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useful discussions. This work was partially supported by
Fondecyt (Chile) Grant no. 1130426. The author also wishes
to thank the Field Theory Group of the CBPF for hospitality
and PCI/MCT for support.

References

[1] S. Capstick et al., “Key issues in hadronic physics,” http://arxiv
.org/abs/hep-ph/0012238.

[2] G. Amelino-Camelia, “Special treatment,” Nature, vol. 418, no.
6893, pp. 34–35, 2002.

[3] T. Jacobson, S. Liberati, and D. Mattingly, “Threshold effects
and Planck scale Lorentz violation: combined constraints from
high energy astrophysics,” Physical Review D, vol. 67, Article ID
124011, 2003.

[4] T. J. Konopka and S. A. Major, “Observational limits on
quantum geometry effects,”New Journal of Physics, vol. 4, article
57, 2002.

[5] S. Hossenfelder, “Interpretation of quantum field theories with
a minimal length scale,” Physical Review D, vol. 73, Article ID
105013, 2006.

[6] P. Nicolini, “Noncommutative black holes, the final appeal to
quantum gravity: a review,” International Journal of Modern
Physics A, vol. 24, no. 7, p. 1229, 2009.

[7] P. Nicolini, A. Smailagic, and E. Spallucci, “Noncommutative
geometry inspired Schwarzschild black hole,” Physics Letters B,
vol. 632, no. 4, pp. 547–551, 2006.

[8] J.Magueijo andL. Smolin, “Lorentz invariancewith an invariant
energy scale,” Physical Review Letters, vol. 88, no. 19, Article ID
190403, 2002.

[9] S. Hossenfelder,M. Bleicher, S. Hofmann, J. Ruppert, S. Scherer,
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