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It is demonstrated that provided a theory involves a minimal length, this theory must be free from such infinitesimal quantities as
infinitely small variations in surface of the holographic screen, its volume, and entropy. The corresponding infinitesimal quantities
in this case must be replaced by the “minimal variations possible”—finite quantities dependent on the existent energies. As a result,
the initial low-energy theory (quantum theory or general relativity) inevitably must be replaced by a minimal length theory that
gives very close results but operates with absolutely other mathematical apparatus.

At the present time all high-energy generalizations (limits)
of the basic components in fundamental physics (quantum
theory [1] and gravity [2]) of necessity lead to a minimal
length on the order of the Planck length 𝑙min ∝ 𝑙

𝑃
. This

follows from string theory [3–6], loop quantum gravity [7],
and other approaches [8–22].

But it is clear that provided a minimal length exists, it
is existent at all the energy scales and not at high (Planck’s)
scales only.

What is inferred on this basis for real physics? At least, it
is suggested that the use of infinitesimal quantities 𝑑𝑥

𝜇
in a

mathematical apparatus of both quantum theory and gravity
is incorrect, despite the fact that both these theories give the
results correlating well with the experiment (e.g., [23]).

Indeed, in all cases, the infinitesimal quantities 𝑑𝑥
𝜇
bring

about an infinitely small length 𝑑𝑠 [2]

𝑑𝑠
2
= 𝑔
𝜇]𝑑𝑥𝜇𝑑𝑥] (1)

that is inexistent because of 𝑙min.
The same is true for any function Υ dependent only on

different parameters 𝐿
𝑖
whose dimensions of length of the

exponents are equal to or greater than 1 ]
𝑖
≥ 1:

Υ ≡ Υ (𝐿
]𝑖
𝑖
) . (2)

Obviously, the infinitely small variation 𝑑Υ of Υ is senseless
as, according to (2), we have

𝑑Υ ≡ 𝑑Υ (]
𝑖
𝐿
]𝑖−1
𝑖

𝑑𝐿
𝑖
) . (3)

But, because of 𝑙min, the infinitesimal quantities 𝑑𝐿
𝑖
make no

sense and hence 𝑑Υmakes no sense too.
Instead of these infinitesimal quantities, it seems reason-

able to denote them as “minimal variations possible” Δmin of
the quantity 𝐿 having the dimension of length, that is, the
quantity

Δmin𝐿 = 𝑙min. (4)

And then

ΔminΥ ≡ ΔminΥ (]
𝑖
𝐿
]𝑖−1
𝑖

Δmin𝐿 𝑖) = ΔminΥ (]
𝑖
𝐿
]𝑖−1
𝑖

𝑙min) .

(5)

However, the “minimal variations possible” of any quan-
tity having the dimensions of length (4) which are equal to
𝑙min ∝ 𝑙

𝑃
require, according to the Heisenberg Uncertainty

Principle (HUP) [24], maximal momentum 𝑝max ∝ 𝑃
𝑃𝑙

and energy 𝐸max ∝ 𝐸
𝑃
. Here 𝑙

𝑃
, 𝑃
𝑃𝑙
, 𝐸
𝑃
are Planck’s length,

momentum, and energy, respectively.
But at low energies (far from the Planck energy) there are

no such quantities and hence in essence Δmin𝐿 = 𝑙min ∝

𝑙
𝑃
(4) corresponds to the high-energy (Planck’s) case only.
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For the energies lower than Planck’s energy, the “minimal
variations possible” Δmin𝐿 of the quantity 𝐿 having the
dimensions of lengthmust be greater than 𝑙min and dependent
on the present 𝐸:

Δmin ≡ Δmin,𝐸, Δmin,𝐸𝐿 > 𝑙min. (6)

Besides, as we have a minimal length unit 𝑙min, it is
clear that any quantity having the dimensions of length is
“quantized”; that is, its valuemeasured in the units 𝑙min equals
an integer number and we have

𝐿 = 𝑁
𝐿
𝑙min, (7)

where𝑁
𝐿
is positive integer number.

Theproblem is that how the “minimal variations possible”
Δmin,𝐸 (6) are dependent on the energy or, similarly, on the
scales of the measured lengths?

To solve the above-mentioned problem, initially we can
use the space-time quantum fluctuations (STQF) with regard
to quantum theory and gravity.

The definition (STQF) is closely associated with the
notion of “space-time foam.” The notion “space-time foam,”
introduced byWheeler about 60 years ago for the description
and investigation of physics at Planck’s scales (EarlyUniverse)
[25, 26], is fairly settled. Despite the fact that in the last decade
numerous works have been devoted to physics at Planck’s
scales within the scope of this notion, for example, [27–46],
by this time still their is no clear understanding of the “space-
time foam” as it is.

On the other hand, it is undoubtful that a quantum theory
of the Early Universe should be a deformation of the well-
known quantum theory.

In my works with colleagues [47–56], I have put forward
one of the possible approaches to resolution of a quantum
theory at Planck’s scales on the basis of the density matrix
deformation.

In accordance with the modern concepts, the space-time
foam [26] notion forms the basis for space-time at Planck’s
scales (Big Bang). This object is associated with the quantum
fluctuations generated by uncertainties in measurements of
the fundamental quantities, inducing uncertainties in any
distance measurement. A precise description of the space-
time foam is still lacking along with an adequate quantum
gravity theory. But for the description of quantum fluctua-
tions we have a number of interesting methods (e.g., [36–
46, 57, 58]).

In what follows, we use the terms and symbols from [38].
Then for the fluctuations 𝛿𝑙 of the distance 𝑙 we have the
following estimate:

(𝛿𝑙)
𝛾
≳ 𝑙
𝛾

𝑃
𝑙
1−𝛾

= 𝑙
𝑃
(

𝑙

𝑙
𝑃

)

1−𝛾

= 𝑙 (
𝑙
𝑃

𝑙
)

𝛾

= 𝑙𝜆
𝛾

𝑙
, (8)

or that same one:


(𝛿𝑙)
𝛾

min
= 𝛽𝑙
𝛾

𝑃
𝑙
1−𝛾

= 𝛽𝑙
𝑃
(

𝑙

𝑙
𝑃

)

1−𝛾

= 𝛽𝑙𝜆
𝛾

𝑙
, (9)

where 0 < 𝛾 ≤ 1, coefficient 𝛽 is of order 1, and 𝜆
𝑙
≡ 𝑙
𝑃
/𝑙.

From (8) and (9), we can derive the quantum fluctuations
for all the primary characteristics, specifically for the time
(𝛿𝑡)
𝛾
, energy (𝛿𝐸)

𝛾
, and metrics (𝛿𝑔

𝜇])𝛾. In particular, for
(𝛿𝑔
𝜇])𝛾, we can use formula (10) in [38]:

(𝛿𝑔
𝜇])
𝛾
≳ 𝜆
𝛾
. (10)

Further in the text it is assumed that the theory involves
a minimal length on the order of Planck’s length

𝑙min ∝ 𝑙
𝑃 (11)

or similarly

𝑙min = 𝜉𝑙
𝑃
, (12)

where the coefficient 𝜉 is on the order of unity too.
In this case the origin of the minimal length is not

important. For simplicity, we assume that it comes from the
generalized uncertainty principle (GUP) that is an extension
of HUP for Planck’s energies, where gravity must be taken
into consideration [3–22]:

Δ𝑥 ≥
ℎ

Δ𝑝
+ 𝛼

𝑙
2

𝑃

Δ𝑝

ℎ
. (13)

Here𝛼 is themodel-dependent dimensionless numerical
factor.

Inequality (13) leads to the minimal length 𝑙min = 𝜉𝑙
𝑃

=

2√𝛼

𝑙
𝑃
.

Therefore, in this case, replacement of Planck’s length by
the minimal length in all the above formulae is absolutely
correct and is used without detriment to the generality [59]:

𝑙
𝑃
→ 𝑙min. (14)

Thus, 𝜆
𝑙
≡ 𝑙min/𝑙 and then (8)–(10) upon the replacement

of (14) remain unchanged.
As noted in the overview [38], the value 𝛾 = 2/3 derived

in [57, 58] is totally consistent with the Holographic Principle
[60–63].

The following points of importance should be noted [59].
(1.1) It is clear that at Planck’s scales, that is, at theminimal

length scales,

𝑙 → 𝑙min, (15)

models for different values of the parameter 𝛾 are coincident.
(1.2) As noted, specifically in (7), provided some quantity

has a minimal measuring unit, values of this quantity are
multiples of this unit.

Naturally, any quantity having a minimal measuring unit
is uniformly discrete.

The latter property is not met, in particular, by the energy
𝐸.

As 𝐸 ∼ 1/𝑙, where 𝑙 is measurable scale, the energy 𝐸 is a
discrete but nonuniformquantity. It is clear that the difference
between the adjacent values of 𝐸 is the less the lower 𝐸. In
other words, for 𝑙 ≫ 𝑙min, that is,

𝐸 ≪ 𝐸
𝑃
, (16)

𝐸 becomes a practically continuous quantity.
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(1.3) In fact, the parameter 𝜆
𝑙
was introduced earlier

in [47–56] as a deformation parameter on going from the
canonical quantum mechanics to the quantum mechanics at
Planck’s scales (Early Universe) that are considered to be the
quantum mechanics with the fundamental length (QMFL):

0 < 𝛼
𝑥
=

𝑙
2

min
𝑥2

≤
1

4
, (17)

where 𝑥 is the measuring scale, 𝑙min ∼ 𝑙
𝑝
.

The deformation is understood as an extension of a
particular theory by inclusion of one or several additional
parameters in such a way that the initial theory appears in
the limiting transition [64].

Obviously, everywhere, apart from the limiting point
𝜆
𝑥
= 1 or 𝑥 = 𝑙min, we have

𝜆
𝑥
= √𝛼
𝑥
. (18)

From (17) it is seen that at the limiting point 𝑥 = 𝑙min
the parameter 𝛼

𝑥
is not defined due to the appearance of

singularity [47–56]. But at this point its definition may be
extended (regularized).

The parameter 𝛼
𝑙
has the following clear physical mean-

ing:

𝛼
−1

𝑙
∼ 𝑆
𝐵𝐻

, (19)

where

𝑆
𝐵𝐻

=
𝐴

4𝑙2
𝑝

(20)

is the well-known Bekenstein-Hawking formula for the black
hole entropy in the semiclassical approximation [65, 66] for
the black hole event horizon surface 𝐴, with the character-
istics linear dimension (“radius”) 𝑅 = 𝑙. This is especially
obvious in the spherically symmetric case.

In what follows we use both parameters 𝜆
𝑥
and 𝛼

𝑥
.

Turning back to the introductory section of this work and
to the definition Δmin,𝐸𝐿, we assume the following:

Δmin,𝐸𝐿
 =


(𝛿𝐿)
𝛾

min
, (21)

where |(𝛿𝐿)
𝛾
|min is from formula (9), 𝛾 is fixed parameter

from formulae (8) and (9), and 𝐸 = 𝑐ℎ/𝐿.
In physics, and in thermodynamics in particular, the

extensive quantities or parameters are those proportional
to the mass of a system or to its volume. Proceeding from
definition (2) of the function Υ(𝐿

]𝑖
𝑖
), one can generalize this

notion, taking, as a generalized extensive quantity (GEQ) of
some spatial system Ω, the function dependent only on the
linear dimensions of this system, with the exponents no less
than 1.

The function Υ(𝐿
]𝑖
𝑖
), ]
𝑖
≥ 1, (2) is GEQ of the system Ω

with the characteristic linear dimensions 𝐿
𝑖
, 𝑖 = 1, . . . , 𝑛, or,

identically, a sumof the systemsΩ
𝑖
, 𝑖 = 1, . . . , 𝑛, each ofwhich

has its individual characteristic linear dimension 𝐿
𝑖
.

Then from the initial formulae (2)–(6) it directly follows
that provided the minimal length 𝑙min is existent, there are no
infinitesimal variations of GEQ.

In the first place, this is true for such simplest objects as
the 𝑛-dimensional sphere 𝐵

𝑛
, 𝑛 ≥ 2, whose surface area (area

of the corresponding hypersphere 𝑆
𝑛
) and volume 𝑉

𝑛
repre-

sent GEQs and are equal to the following:

𝑆
𝑛
= 𝑛𝐶
𝑛
𝑅
𝑛−1

; 𝑉
𝑛
= 𝐶
𝑛
𝑅
𝑛
, (22)

where 𝑅—radius of a sphere the length of which is a charac-
teristic linear size, 𝐶

𝑛
= 𝜋
𝑛/2

/Γ((𝑛/2) + 1), and Γ(𝑥) is a
gamma-function.

Of course, the same is true for the 𝑛-dimensional cube (or
hypercube)𝐴

𝑛
; its surface area and its volume are GEQs, and

a length of its edge is a characteristic linear dimension.
Provided 𝑙min exists, there are no infinitesimal increments

for both the surface area and volume of 𝐴
𝑛
or 𝐵
𝑛
; only

minimal variations possible for these quantities are the case.
In what follows we consider only the spatial systems

whose surface areas and volumes are GEQs.
Let us consider a simple but very important example of

gravity in horizon spaces.
Gravity and thermodynamics of horizon spaces and their

interrelations are currently most actively studied [67–79]. Let
us consider a relatively simple illustration—the case of a static
spherically symmetric horizon in space-time, the horizon
being described by the metric

𝑑𝑠
2
= −𝑓 (𝑟) 𝑐

2
𝑑𝑡
2
+ 𝑓
−1

(𝑟) 𝑑𝑟
2
+ 𝑟
2
𝑑Ω
2
. (23)

The horizon location will be given by a simple zero of the
function 𝑓(𝑟), at the radius 𝑟 = 𝑎.

This case is studied in detail by Padmanabhan in hisworks
[67, 78] and by the author of this paper in [80]. We use
the notation system of [78]. Let, for simplicity, the space be
denoted byH.

It is known that for horizon spaces one can introduce the
temperature that can be identified with an analytic continua-
tion to imaginary time. In the case under consideration ([78],
Equation (116)),

𝑘
𝐵
𝑇 =

ℎ𝑐𝑓

(𝑎)

4𝜋
. (24)

Therewith, the conditions 𝑓(𝑎) = 0 and 𝑓

(𝑎) ̸= 0 must

be fulfilled.
Then at the horizon 𝑟 = 𝑎 Einstein’s equations have the

form

𝑐
4

𝐺
[
1

2
𝑓

(𝑎) 𝑎 −

1

2
] = 4𝜋𝑃𝑎

2
, (25)

where 𝑃 = 𝑇
𝑟

𝑟
is the trace of the momentum-energy tensor

and radial pressure.
Now we proceed to the variables “𝛼” from formula (17)

to consider (25) in a new notation, expressing 𝑎 in terms of
the corresponding deformation parameter 𝛼. In what follows
we omit the subscript in formula (17) of 𝛼

𝑥
, where the context

implies which index is the case. In particular, here we use 𝛼

instead of 𝛼
𝑎
. Then we have

𝑎 = 𝑙min𝛼
−1/2

. (26)
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Therefore,

𝑓

(𝑎) = −2𝑙

−1

min𝛼
3/2

𝑓

(𝛼) . (27)

Substituting this into (25), we obtain in the considered
case of Einstein’s equations in the “𝛼-representation” as
follows [80]:

𝑐
4

𝐺
(−𝛼𝑓


(𝛼) −

1

2
) = 4𝜋𝑃𝛼

−1
𝑙
2

min. (28)

Multiplying the left- and right-hand sides of the last
equation by 𝛼, we get

𝑐
4

𝐺
(−𝑓

(𝛼) 𝛼
2
−

1

2
𝛼) = 4𝜋𝑃𝑙

2

min. (29)

L.h.s. of (29) is dependent on 𝛼. Because of this, r.h.s. of
(29) must be dependent on 𝛼 as well; that is, 𝑃 = 𝑃(𝛼); that
is,

𝑐
4

𝐺
(−𝑓

(𝛼) 𝛼
2
−

1

2
𝛼) = 4𝜋𝑃 (𝛼) 𝑙

2

min. (30)

Note that in this specific case the parameter 𝛼 within
constant factors is coincident with the Gaussian curvature𝐾

𝑎

[81] corresponding to 𝑎:

𝑙
2

min
𝑎2

= 𝑙
2

min𝐾𝑎. (31)

Substituting r.h.s of (31) into (30), we obtain the Einstein
equation on horizon, in this case in terms of the Gaussian
curvature,

𝑐
4

𝐺
(−𝑓

(𝐾
𝑎
)𝐾
2

𝑎
−

1

2
𝐾
𝑎
) = 4𝜋𝑃 (𝐾

𝑎
) . (32)

This means that up to the constants

−𝑓

(𝐾
𝑎
)𝐾
2

𝑎
−

1

2
𝐾
𝑎
= 𝑃 (𝐾

𝑎
) , (33)

that is, the Gaussian curvature, 𝐾
𝑎
is a solution of Einstein

equations in this case.Then we examine different cases of the
solution (33) with due regard for considerations of formula
(21).

(2.1) First, let us assume that 𝑎 ≫ 𝑙min. As, according to
(7), the radius 𝑎 is quantized, we have 𝑎 = 𝑁

𝑎
𝑙min with the

natural number 𝑁
𝑎
≫ 1. Then it is clear that the Gaussian

curvature𝐾
𝑎
= 1/𝑎

2
≈ 0 takes a (nonuniform) discrete series

of values close to zero, and, within the factor 1/𝑙2min, this series
represents inverse squares of natural numbers:

(𝐾
𝑎
) = (

1

𝑁2
𝑎

,
1

(𝑁
𝑎
± 1)
2
,

1

(𝑁
𝑎
± 2)
2
, . . .) . (34)

Let us return to formulas (9) and (21) for 𝑙 = 𝑎; consider

((𝛿𝑎)

𝛾
)
min


= 𝛽𝑁
𝑎
𝑙min𝑁

−𝛾

𝑎
= 𝛽𝑁

1−𝛾

𝑎
𝑙min, (35)

where 𝛽 in this case contains the proportionality factor that
relates 𝑙min and 𝑙

𝑃
.

Then, according to (21), 𝑎
±1

is a measurable value of the
radius 𝑟 following after 𝑎, and we have

(𝑎
±1
)
𝛾
≡ 𝑎 ± ((𝛿𝑎)

𝛾
)
min

= 𝑎 ± 𝛽𝑁
1−𝛾

𝑎
𝑙min

= 𝑁
𝑎
(1 ± 𝛽𝑁

−𝛾

𝑎
) 𝑙min.

(36)

But, as 𝑁
𝑎
≫ 1, for sufficiently large 𝑁

𝑎
and fixed 𝛾, the

bracketed expression in r.h.s. (36) is close to 1:

1 ± 𝛽𝑁
−𝛾

𝑎
≈ 1. (37)

Obviously, we get

lim
𝑁𝑎→∞

(1 ± 𝛽𝑁
−𝛾

𝑎
) → 1. (38)

As a result, the Gaussian curvature𝐾
𝑎±1

corresponding to
𝑟 = 𝑎
±1

𝐾
𝑎±1

=
1

𝑎2
±1

∝
1

𝑁2
𝑎
(1 ± 𝛽𝑁

−𝛾

𝑎 )
2 (39)

in the case under study is only slightly different from𝐾
𝑎
.

And this is the case for sufficiently large values of 𝑁
𝑎
,

for any value of the parameter 𝛾, and for 𝛾 = 1 as well,
corresponding to the absolute minimum of fluctuations ≈

𝑙min, or more precisely, to 𝛽𝑙min. However, as all the quantities
of the length dimension are quantized and the factor 𝛽 is on
the order of 1, actually we have 𝛽 = 1.

Because of this, provided the minimal length is involved,
𝑙min (9) is read as


(𝛿𝑙)
1

min
= 𝑙min. (40)

But, according to (12), 𝑙min = 𝜉𝑙
𝑃
is on the order of

Planck’s length, and it is clear that the fluctuation |(𝛿𝑙)
1
|min

corresponds to Planck’s energies and Planck’s scales. The
Gaussian curvature𝐾

𝑎
, due to its smallness (𝐾

𝑎
≪ 1 up to the

constant factor 𝑙−2min) and smooth variations independent of 𝛾
(formulas (36)–(39)), is insensitive to the differences between
various values of 𝛾.

Consequently, for sufficiently small Gaussian curvature
𝐾
𝑎
, we can take any parameter from the interval 0 < 𝛾 ≤ 1 as

𝛾.
It is obvious that the case 𝛾 = 1, that is, |(𝛿𝑙)

1
|min = 𝑙min,

is associated with infinitely small variations 𝑑𝑎 of the radius
𝑟 = 𝑎 in the Riemannian geometry.

Since then𝐾
𝑎
is varying practically continuously, in terms

of 𝐾
𝑎
up to the constant factor we can obtain the following

expression:

𝑑 [𝐿 (𝐾
𝑎
)] = 𝑑 [𝑃 (𝐾

𝑎
)] , (41)

where we have

𝐿 (𝐾
𝑎
) = −𝑓


(𝐾
𝑎
)𝐾
2

𝑎
−

1

2
𝐾
𝑎
, (42)

that is, l.h.s of (32) (or (33)).
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But in fact, as in this case the energies are low, it is more
correct to consider

𝐿 ((𝐾
𝑎±1

)
𝛾
)

− 𝐿 (𝐾
𝑎
) = [𝑃 (𝐾

𝑎±1
)
𝛾
] − [𝑃 (𝐾

𝑎
)] ≡ 𝐹

𝛾
[𝑃 (𝐾

𝑎
)] ,

(43)

where 𝛾 < 1, rather than (41).
In view of the foregoing arguments (2.1), the difference

between (43) and (41) is insignificant and it is perfectly
correct to use (41) instead of (43).

(2.2) Now we consider the opposite case or the transition
to the ultraviolet limit

𝑎 → 𝑙min = 𝜅𝑙min. (44)

That is,

𝑎 = 𝜅𝑙min. (45)

Here 𝜅 is on the order of 1.
Taking into consideration point (1.1) stating that in this

case models for different values of the parameter 𝛾 are
coincident, by formula (40) for any 𝛾, we have


(𝛿𝑙)
𝛾

min
=

(𝛿𝑙)
1

min
= 𝑙min. (46)

But in this case the Gaussian curvature𝐾
𝑎
is not a “small

value” continuously dependent on 𝑎, taking, according to
(39), a discrete series of values𝐾

𝑎
, 𝐾
𝑎±1

, 𝐾
𝑎±2

, . . ..
Yet (25), similar to (32), (33) is valid in the semiclassical

approximation only, that is, at low energies.
Then, in accordance with the above arguments, the

limiting transition to high energies (44) gives a discrete chain
of equations or a single equation with a discrete set of
solutions as follows:

−𝑓

(𝐾
𝑎
)𝐾
2

𝑎
−

1

2
𝐾
𝑎
= Θ (𝐾

𝑎
) ;

−𝑓

(𝐾
𝑎±1

)𝐾
2

𝑎±1
−

1

2
𝐾
𝑎±1

= Θ (𝐾
𝑎±1

) ;

(47)

and so on. Here Θ(𝐾
𝑎
) is some function that in the limiting

transition to low energies must reproduce the low-energy
result to a high degree of accuracy; that is, 𝑃(𝐾

𝑎
) appears for

𝑎 ≫ 𝑙min from formula (33):

lim
𝐾𝑎→0

Θ(𝐾
𝑎
) = 𝑃 (𝐾

𝑎
) . (48)

In general, Θ(𝐾
𝑎
) may lack coincidence with the high-

energy limit of the momentum-energy tensor trace (if any):

lim
𝑎→ 𝑙min

𝑃 (𝐾
𝑎
) . (49)

At the same time,whenwenaturally assume that the static
spherically-symmetric horizon space-time with the radius
of several Planck’s units (45) is nothing else but a micro
black hole, then the high-energy limit (49) is existing and
the replacement of Θ(𝐾

𝑎
) by 𝑃(𝐾

𝑎
) in r.h.s. of the foregoing

equations is possible to give a hypothetical gravitational
equation for the event horizon micro black hole. But a
question arises, for which values of the parameter 𝑎 (45) (or
𝐾
𝑎
) is this valid and what is a minimal value of the parameter

𝛾 = 𝛾(𝑎) in this case.
In all the cases under study, (2.1) and (2.2), the deforma-

tion parameter 𝛼
𝑎
(17) (𝜆

𝑎
(18)) is, within the constant factor,

coincident with the Gaussian curvature 𝐾
𝑎
(resp., √𝐾

𝑎
) that

is in essence continuous in the low-energy case and discrete
in the high-energy case.

In this way the above-mentioned example shows that,
despite the absence of infinitesimal spatial-temporal incre-
ments owing to the existence of 𝑙min and the essential
“discreteness” of a theory, this discreteness at low energies is
not felt, the theory being actually continuous. The indicated
discreteness is significant only in the case of high (Planck’s)
energies.

In [78] it is shown that the Einstein equation for horizon
spaces in the differential formmay be written as a thermody-
namic identity (the first principle of thermodynamics) ([78],
formula (119)):

ℎ𝑐𝑓

(𝑎)

4𝜋⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑘𝐵𝑇

𝑐
3

𝐺ℎ
𝑑(

1

4
4𝜋𝑎
2
)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑑𝑆

−
1

2

𝑐
4
𝑑𝑎

𝐺⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

−𝑑𝐸

= 𝑃𝑑(
4𝜋

3
𝑎
3
)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑃𝑑𝑉

, (50)

where, as noted above, 𝑇 is temperature of the horizon
surface, 𝑆 is corresponding entropy, 𝐸 is internal energy, and
𝑉 is space volume.

Note that, because of the existing 𝑙min, practically all
quantities in (50) (except of 𝑇) represent GEQ. Apparently,
the radius of a sphere 𝑟 = 𝑎, its volume 𝑉, and entropy
represent such quantities

𝑆 =
4𝜋𝑎
2

4𝑙2
𝑃

=
𝜋𝑎
2

𝑙2
𝑃

, (51)

within the constant factor 1/4𝑙
2

𝑃
equal to a sphere with the

radius 𝑎.
Because of this, there are no infinitesimal increments

of these quantities, that is, 𝑑𝑎, 𝑑𝑉, 𝑑𝑆. And, provided 𝑙min is
involved, the Einstein equation for the above-mentioned case
in the differential form (50) makes no sense and is useless.
If 𝑑𝑎 may be, purely formerly, replaced by 𝑙min, then, as the
quantity 𝑙min is fixed, it is obvious that “𝑑𝑆” and “𝑑𝑉” in (50)
will be growing as 𝑎 and 𝑎

2, respectively. And at low energies,
that is, for large values of 𝑎 ≫ 𝑙min, this naturally leads to
infinitely large rather than infinitesimal values.

In a similar way it is easily seen that the “Entropic
Approach to Gravity” [82] in the present formalism is invalid
within the scope of the minimal length theory. In fact, the
“main instrument” in [82] is a formula for the infinitesimal
variation 𝑑𝑁 in the bit numbers𝑁 on the holographic screen
Swith the radius𝑅 andwith the surface area𝐴 ([82], formula
(4.18)):

𝑑𝑁 =
𝑐
3

𝐺ℎ
𝑑𝐴 =

𝑑𝐴

𝑙2
𝑃

. (52)

As 𝑁 = 𝐴/𝑙
2

𝑃
and 𝐴 represents GEQ, it is clear that 𝑁 is

also GEQ and hence neither 𝑑𝐴 nor 𝑑𝑁makes sense.
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It is obvious that infinitesimal variations of the screen
surface area 𝑑𝐴 are possible only in a continuous theory
involving no 𝑙min.

When 𝑙min ∝ 𝑙
𝑃
is involved, the minimal variation Δ𝐴 is

evidently associated with a minimal variation in the radius 𝑅

𝑅 → 𝑅 ± 𝑙min (53)

is dependent on 𝑅 and growing as 𝑅 for 𝑅 ≫ 𝑙min:

Δ
±
𝐴 (𝑅) = (𝐴 (𝑅 ± 𝑙min) − 𝐴 (𝑅)) ∝ (

±2𝑅

𝑙min
+ 1)

= ±2𝑁
𝑅
+ 1,

(54)

where𝑁
𝑅
= 𝑅/𝑙min, as indicated above.

But, as noted above, a minimal increment of the radius 𝑅
equal to |Δmin𝑅| = 𝑙min ∝ 𝑙

𝑃
corresponds only to the case

of maximal (Planck’s) energies or, similarly, to the parameter
𝛾 = 1 in formula (21). However, in [82], the considered low
energies are far from the Planck energies and hence in this
case in (21) 𝛾 < 1, (53), and (54) are, respectively, replaced
by

𝑅 → 𝑅 ±𝑁
1−𝛾

𝑅
𝑙min, (55)

Δ
±
𝐴 (𝑅) = (𝐴 (𝑅 ± 𝑁

1−𝛾

𝑅
𝑙min) − 𝐴 (𝑅)) ∝ ±𝑁

2−𝛾

𝑅
+ 𝑁
2−2𝛾

𝑅

= 𝑁
2−2𝛾

𝑅
(±𝑁
𝛾

𝑅
+ 1) .

(56)

An increase of r.h.s in (56) with the growth of 𝑅 (or
identically of𝑁

𝑅
) for 𝑅 ≫ 𝑙min is obvious.

So, if 𝑙min is involved, formula (4.18) from [82] makes no
sense similar to other formulae derived on its basis (4.19),
(4.20), (4.22), (5.32)–(5.34),. . . in [82] and similar to the
derivation method for Einstein’s equations proposed in this
work.

Proceeding from the principal parameters of this work
𝛼
𝑙
(or 𝜆
𝑙
), the fact is obvious and is supported by formula (19)

given in this paper, meaning that

𝛼
−1

𝑅
∼ 𝐴. (57)

That is, small variations of 𝛼
𝑅
(low energies) result in large

variations of 𝛼−1
𝑅
, as indicated by formula (54).

In fact, we have no-go theorems.
The last statements concerning 𝑑𝑆, 𝑑𝑁 may be explicitly

interpreted using the language of a quantum information
theory as follows: due to the existence of the minimal length
𝑙min, the minimal area 𝑙2min and volume 𝑙3min are also involved,
and that means “quantization” of the areas and volumes. As,
up to the known constants, the “bit number”𝑁 from (52) and
the entropy 𝑆 from (51) are nothing else but

𝑆 =
𝐴

4𝑙2min
, 𝑁 =

𝐴

𝑙2min
, (58)

it is obvious that there is a “minimalmeasure” for the “amount
of data” that may be referred to as “one bit” (or “one qubit”).

The statement that there is no such quantity as 𝑑𝑁 (and,
resp., 𝑑𝑆) is equivalent to claiming the absence of 0.25 bit,
0.001 bit, and so on.

This inference completely conforms to the Hooft-
Susskind Holographic Principle (HP) [60–63] that includes
two main statements as follows.

(a) All information contained in a particular spatial
domain is concentrated at the boundary of this
domain.

(b) A theory for the boundary of the spatial domain
under study should contain maximally one degree of
freedom per Planck’s area 𝑙2

𝑃
.

In fact (but not explicitly) HP implicates the existence of
𝑙min = 𝑙

𝑃
. The existence of 𝑙min ∝ 𝑙

𝑃
totally conforms to HP,

providing its generalization. Specifically, without the loss of
generality, 𝑙2

𝑃
in point (b) may be replaced by 𝑙

2

min.
So, the principal inference of this work is as follows:

provided the minimal length 𝑙min is involved, its existence
must be taken into consideration not only at high but also
at low energies, both in a quantum theory and in gravity.
This becomes apparent by rejection of the infinitesimal
quantities associated with the spatial-temporal variations
𝑑𝑥
𝜇
, . . .. In other words, with the involvement of 𝑙min, the

general relativity (GR) must be replaced by a (still unframed)
minimal length gravitation theory that may be denoted as
Grav𝑙min . In their results GR and Grav𝑙min should be very close
but, as regards their mathematical apparatus (instruments),
these theories are absolutely different.

Besides, Grav𝑙min should offer a rather natural transition
from high to low energies

[𝑁
𝐿
≈ 1] → [𝑁

𝐿
≫ 1] , (59)

and vice versa

[𝑁
𝐿
≫ 1] → [𝑁

𝐿
≈ 1] , (60)

where 𝑁
𝐿

is integer from formula (7) determining the
characteristics scale of the lengths 𝐿 (energies 𝐸 ∼ 1/𝐿 ∝

1/𝑁
𝐿
).
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