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ESS will be a premier neutron source facility. Unprecedented neutron beam intensities are ensured by spallation reactions of
a 5MW, 2.0GeV proton beam impinging on a tungsten target equipped with advanced moderators. The work presented here
aims at investigating possibilities for installing an ultra cold neutron (UCN) source at the ESS. One consequence of using the
recently proposed flat moderators is that they take up less space than the moderators originally foreseen and thus leave more
freedom to design a UCN source, close to the spallation hotspot. One of the options studied is to place a large 4He UCN source
in a through-going tube which penetrates the shielding below the target. First calculations of neutron flux available for UCN
production are given, along with heat-load estimates. It is estimated that the flux can give rise to a UCN production at a rate
of up to 1.5 ⋅ 108 UCN/s. A production in this range potentially allows for a number of UCN experiments to be carried out at
unprecedented precision, including, for example, quantum gravitational spectroscopy with UCNs which rely on high phase-space
density.

1. Introduction

The fundamental physics community has expressed strong
interest to investigate the possibility of installing source of
ultra cold neutrons (UCNs) at the ESS. There are a number
of different ways in which this could be realized. This paper
focuses on the in-pile option, in particular the possibility
that a UCN source could be hosted in a through-going tube
that penetrates the monolith shielding as well as the outer
and inner reflectors. This would allow the UCN converter
to come as close as possible to the spallation region, thereby
subject to the highest possible input neutron flux. In order
not to conflict with the cold/thermal moderators at the
ESS, the tube must pass under the lower moderator. The
study presented here details the impact on the cold/thermal
moderator performance inflicted by the introduction of a
through-going tube and relates this to the location of the
through-going tube. In addition first estimates of the possible
UCN production rate are given.

2. Through-Going Tube in Baseline Design

The possibilities for installing a UCN moderator at the
ESS strongly depend on the layout of the target-moderator-
reflector. In Figure 1, the central parts of the target-
moderator-reflector are shown according to the baseline
design of the Technical Design Report [1]. In this scenario,
voluminous parahydrogen moderators (two cylinders of
16 cm diameter, 13 cm high) are situated on each side of
the target and thus close to the spallation neutron density
hotspot. The introduction of a UCN moderator would have
to stay clear of the two existing moderators, for example,
by placing it in a through-going tube underneath the lower
parahydrogen moderator. As the main focus of the ESS
facility is providing cold and thermal neutrons, it is essential
when altering the baseline design to monitor the perfor-
mance impact on the cold/thermal neutrons available in the
instruments beamlines. Therefore, a study was carried out
monitoring the flux available for UCN moderation versus
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Figure 1: Vertical (a) and horizontal (b) cross-section of the target-moderator-reflector geometry in the Technical Design Report [1].
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Figure 2: Geometry of the target, moderator, and reflector showing the UCN through-going tube (white areas in upper and lower left-hand
inserts) placed at 𝑦 = −47.5 cm (central), corresponding to the topmost of the studied geometries. The blue stars in the lower right-hand
insert show the position of the lower point detectors. Note that the 𝑥𝑧-plane (lower right-hand insert) is cut at 𝑦 = −18 cm; wherefore the
UCN tube is not visible.

the impact on neutron flux in the cold/thermal beamlines—
for different vertical positions of the through-going tube.

3. Simulation Setup

Based on the baseline MCNPX [2, 3] model used for the
neutronics calculations of the ESS Technical Design Report
(TDR) [1], a 25 cm × 25 cm tube is defined. To avoid the for-
ward directed high energy shower particles from the proton
beam impacting the target wheel, while obtaining maximal
thermal flux, the tube is centered around and parallel to the
𝑥-axis (i.e., perpendicular to the proton beam). The tube
is centered at 𝑧 = 0 while the 𝑦 coordinate (the “depth”
under the proton beam) is left free and various possibilities
are studied: 𝑦 ∈ [−47.5; −62.5] cm (central in tube) (the
coordinate system used at the ESS is right-handed, with

the protons travelling along the z-axis, impacting the target
in the origin; the y-axis is positive upwards (i.e., opposite
gravity)). Figure 2 shows an example in which the void
volume (the UCN through-going tube) replaces parts of the
beryllium inner reflector (red) but more severely impacts the
outer reflector (orange).

To measure the possible impact on cold/thermal beam-
lines, eight representative point detectors are placed in the
beam-ports at the boundary of the target-moderator-reflector
(TMR) plug, corresponding to the blue stars on the lower
right insert of Figure 2.

4. Results

Comparing flux ratios betweenmodified (i.e., includingUCN
tube) and baseline design in the three energy bins (cold,
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Table 1: Heat-load on cryogenic 4He and integrated cold/intermediate/thermal flux for the ESS implementation of Golub’s UCN design
discussed in the text and shown in Figure 4. The relative statistical uncertainties are ∼0.1%.

Heat-load Flux [0–5]meV Flux [5–20]meV Flux [20–100]meV
[mW/cm3

] [n/cm2/s] [n/cm2/s] [n/cm2/s]
2.5 3.8 ⋅ 1012 9.0 ⋅ 1012 1.8 ⋅ 1012
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Figure 3: Relation between cold, intermediate, and thermal flux
in the lower cold/thermal beamlines versus the flux available for
UCN, central in the through-going tube. The black curve shows the
(unweighted) average between the cold, intermediate, and thermal
curves. Each point corresponds to a specific vertical position of the
through-going tube.

intermediate, and thermal) shows that regardless of the
position of through-going tube, the upper beamlines are
unaffected.

Furthermore, the impact is approximately energy inde-
pendent and does not fluctuate significantly between the four
lower tally positions; therefore, the response of all lower tallies
is collapsed to one average for each position of the through-
going tube.

Finally, the relation between the impact in terms of
relative decrease in available cold/thermal flux at the
cold/thermal instruments versus the (central) flux available
for UCN production is shown in Figure 3.

5. Discussion

There are several conclusions to be drawn for Figure 3. First,
one can conclude that with proper design and carefully
chosen distance from other moderators, a UCN moderator
could be installed at the ESS without seriously impacting the
performance of the scattering experiments. Unfortunately,
one can also see from the figure that regardless of position
under the lower parahydrogen moderator, the flux available
for UCN production is very limited.

FePbBi

He

Be

Pb
H

Figure 4: Assuming that all cold/thermal neutron scattering instru-
ments can be served by a single flat moderator on top of the target
wheel, a large 4He source is installed below the target.

Despite these somewhat discouraging conclusions, there
is some reason for hope. Simultaneously to the work pre-
sented here on through-going tube options, work is being
carried out on the design of the cold moderators at the ESS.
From the neutronics group of the ESS it is suggested to use flat
moderator(s) for increased brightness [4, 5]. One feature of a
flatmoderator is that it is only viewed at a small area.Thus the
amount of reflector “removed” per beamline is rather small,
and the number of beamlines viewing a single moderator can
be increasedwith respect to setup outlined in the TDR. In fact
all the 22 foreseen instruments at the ESS can view one single
flat moderator, with insignificant performance loss. Even in
the case where two flat moderators of different heights will
be installed, the reduced height of the moderator could allow
for the installation of a second moderator below the target at
a position favourble in terms of neutron flux (see Figure 3). In
principle this reopens opportunity for installing a moderator
below the target of a completely different type than the upper
flat parahydrogen moderator.

One possibility would be to install a large 4He moderator
close to the spallation target, as initially suggested by Golub
and colleagues more than 30 years ago [6]. Figure 4 shows
an implementation of a UCN source inspired from this early
work.

From this design, the heat-loads and fluxes shown in
Table 1 are obtained from a MCNPX simulation of the
geometry shown in Figure 4.

In [7] Golub and coauthors provide a scheme for cal-
culating maximum UCN production, given an incoming
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cold/thermal spectrum and integrated flux. Inserting the
values of Table 1 and the observed spectrum, one arrives at a
totalmaximalUCNproduction rate in 30 cm× 30 cm× 30 cm
4He to be 1.5 ⋅ 108UCN/s. It should be stressed that this is the
maximum production rate, and it does not take into account
any of the challenges confronted when attempting to store,
extract or handle the UCN’s.
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