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Tools of quantum information theory can be exploited to provide a convenient description of the phenomena of particle mixing
and flavor oscillations in terms of entanglement, a fundamental quantum resource. We extend such a picture to the domain of
quantum field theory where, due to the nontrivial nature of flavor neutrino states, the presence of antiparticles provides additional
contributions to flavor entanglement. We use a suitable entanglement measure, the concurrence, that allows extracting the two-
mode (flavor) entanglement from the full multimode, multiparticle flavor neutrino states.

1. Introduction

In the last years, many efforts have been dedicated to the
investigation of entanglement in the domain of elementary
particle physics and quantum field theory [1–11]. The under-
standing of the role of nonlocal quantum correlations in
infinite-dimensional systems of fields and particles, as well
as the underlying mechanism governing their aggregation,
represents a main goal. For systems composed by identical
particles and/or sets of in general distinguishable field modes
(either discrete or continuous, finite or infinite), the charac-
terization and quantification of entanglement are achieved
unambiguously only by properly taking into account the
algebra of observables besides the tensor product structure
of the individual state spaces. In the case of quantum fields,
a further extension of such a framework is needed to take
into account the correlations among distinguishable physical
field modes rather than among indistinguishable particles
and excitations [12–27].

For instance, the single-particle Bell superposition state
|0, 1⟩ + |1, 0⟩ between any two modes of the electromagnetic
field is a well-known example of a maximally (bipartite)
entangled quantum state (i.e., with maximal von Neumann
entropy of the reduced single-mode densitymatrices), despite

the fact that it involves only one excitation of the field
(a single photon) [26]. In this case, the entanglement is
between two different field modes with occupation numbers
ranging between 0 and 1. Considering single-particle or
multiparticle (e.g., multiphoton) states of many modes leads
to straightforward generalizations that allow considering the
bipartite and multipartite multimode field entanglement of
single-particle and multiparticle states. In the same way, it
is possible to make precise sense of Bell nonlocality in the
context of single-particle, multimode states [28–30].

In this context, it has been recently recognized that the
phenomena of particle mixing and flavor oscillations can be
understood in terms of quantum entanglement [4, 5]. In par-
ticular, a connection has been established among the flavor
transition probabilities and the multimode, single-particle
entanglement for oscillating neutrinos [5]. Such a connection
allows in principle engineering experimental protocols for
the transfer of the quantum information encoded in neutrino
states to spatially delocalized two-flavor charged lepton states
[4, 5]. The above analysis has been carried out in the
context of quantum mechanics (QM), using the well-known
Pontecorvo formalism for neutrino oscillations. On the other
hand, it has been shown that flavor mixing in the context
of quantum field theory (QFT) is associated with a highly

Hindawi Publishing Corporation
Advances in High Energy Physics
Volume 2014, Article ID 359168, 6 pages
http://dx.doi.org/10.1155/2014/359168



2 Advances in High Energy Physics

nontrivial nature of the vacuum for the mixed fields [31–34].
As a consequence, neutrino states turn out to be multimode,
multiparticle states, with a very rich structure of quantum
correlations. In [6, 7], we studied the entanglement in such
a system by means of entropic measures and found a relation
with experimentally measurable quantities, like the variances
of the lepton numbers and charges.

In the present work, we further investigate along this
direction by adopting an alternative operational viewpoint
on the entanglement associated with the system of oscillating
neutrinos. Indeed, entanglement is an observable-induced,
relative physical quantity [15–22], endowed with a specific
operational meaning according to the selected reference
quantum observables and quantum subsystems. By assuming
the particle-antiparticle species as further quantum modes,
we investigate the entanglement content of the neutrino
system in the state obtained by tracing out the antiparticle
species. Since such a state turns out to be a mixed one, we
adopt the concurrence as a measure for the quantification of
its entanglement content. Our results are in line with those of
[6, 7] and naturally generalize the QM ones presented in [5].

The paper is organized as follows. In Section 2 we
review the quantum information tools exploited in the paper
and some results corresponding to the QM framework. In
Section 3 we investigate the entanglement phenomenology
of neutrino mixing and flavor oscillations adopting a QFT
framework, and we discuss the nontrivial structure of flavor
entanglement that emerges in the QFT framework.

2. Entanglement and Flavor Oscillations:
Quantum Mechanics

In this section, we briefly review the background of the
present analysis, that is, the formalism developed and the
results obtained within the quantum mechanical framework
[4, 5]. Flavor mixing of neutrinos for two generations is
described by the 2 × 2 rotation matrix U(𝜃) [35]

U (𝜃) = (
cos 𝜃 sin 𝜃
− sin 𝜃 cos 𝜃) , (1)

where 𝜃 is the mixing angle. The two-flavor neutrino states
are defined as

󵄨󵄨󵄨󵄨󵄨
](𝑓)⟩ = U (𝜃)

󵄨󵄨󵄨󵄨󵄨
](𝑚)⟩ , (2)

where |](𝑓)⟩ = (|]𝑒⟩, |]𝜇⟩)
𝑇 are the states with definite

flavors 𝑒, 𝜇 and |](𝑚)⟩ = (|]1⟩, |]2⟩)
𝑇 those with definite

masses 𝑚1, 𝑚2. Both |]𝛼⟩ (𝛼 = 𝑒, 𝜇) and |]𝑗⟩ (𝑗 = 1, 2)

are orthonormal. By describing the free propagation of the
neutrino mass eigenstates with plane waves of the form
|]𝑗(𝑡)⟩ = 𝑒

−𝑖𝜔𝑗𝑡|]𝑗⟩,𝜔𝑗 denoting the frequency associated with
themass eigenstate |]𝑗⟩, the time evolution of the flavor states
is given by

󵄨󵄨󵄨󵄨󵄨
](𝑓) (𝑡)⟩ = U (𝑡)

󵄨󵄨󵄨󵄨󵄨
](𝑓)⟩ ≡ U (𝜃)U0 (𝑡)U

−1
(𝜃)

󵄨󵄨󵄨󵄨󵄨
](𝑓)⟩ , (3)

where |](𝑓)⟩ are the flavor states at 𝑡 = 0, and U0(𝑡) =

diag(𝑒−𝑖𝜔1𝑡, 𝑒−𝑖𝜔2𝑡). By assuming the neutrino occupation

number associated with a given flavor (mode) as reference
quantum number, one can establish the following correspon-
dences with two-qubit states:

󵄨󵄨󵄨󵄨]𝑒⟩ ≡ |1⟩]𝑒 |0⟩]𝜇 ≡ |10⟩𝑒𝜇,

󵄨󵄨󵄨󵄨󵄨
]𝜇⟩ ≡ |0⟩]𝑒 |1⟩]𝜇 ≡ |01⟩𝑒𝜇,

(4)

where |𝑗⟩]𝛼 stands for a 𝑗-occupation number state of a
neutrino in mode 𝛼. Entanglement is thus established among
flavormodes, in a single-particle setting. For instance, the free
evolution of the electron-neutrino state |]𝑒(𝑡)⟩ can be written
in the form

󵄨󵄨󵄨󵄨]𝑒 (𝑡)⟩ = U𝑒𝑒 (𝑡) |10⟩𝑒𝜇 + U𝑒𝜇 (𝑡) |01⟩𝑒𝜇, (5)

where |U𝑒𝑒(𝑡)|2 + |U𝑒𝜇(𝑡)|2 = 1 due to normalization.
Thus, the time-evolved states |](𝑓)(𝑡)⟩ are entangled Bell-
like superpositions of the two masses with time-independent
coefficients or flavor eigenstates with time-dependent coeffi-
cients. It is worth remarking that the entanglement of (5) is in
principle experimentally accessible, throughout a scheme for
its transfer from single-neutrino states to two-flavor charged
lepton states [5].

The entanglement content of the pure two-qubit state
equation (5) is quantified by the von Neumann entropy of
the reduced density matrix (or any other monotonic function
of it), which is the widely accepted measure of the bipartite
entanglement of pure states [36]. For other measures of
entanglement (bipartite and multipartite systems), see [37–
42]. In the instance of mixed states, a particularly convenient
measure for two-qubit systems is the concurrence 𝐶(𝜌) [43,
44]. For the particular case of a pair of qubits, such a measure
is closely related to the entanglement of formation 𝐸𝐹(𝜌),
which is the prototype of the convex-roof-based measures.
The entanglement of formation has a simple physical inter-
pretation: it is the minimal amount of entanglement needed
for the production of a mixed state described by a given
density matrix.

We briefly recall the definition of the concurrence, which
will be used in this work. Let 𝜌 be the density operator
corresponding to an arbitrary 𝑁-qubit state and describing
a system partitioned into 𝑁 parties. The reduced density
operator 𝜌(𝛼;𝛽) associated with 𝜌 is defined as

𝜌
(𝛼;𝛽)

= Tr𝛾 ̸= 𝛼,𝛽 [𝜌] , (6)

where the trace operation ismade over all the parties different
from 𝛼 and 𝛽. Next, the spin-flipped state 𝜌(𝛼;𝛽) reads

𝜌
(𝛼;𝛽)

= (𝜎𝑦 ⊗ 𝜎𝑦) 𝜌
(𝛼;𝛽)∗

(𝜎𝑦 ⊗ 𝜎𝑦) , (7)

where the complex conjugate is taken in the standard basis
{|00⟩, |01⟩, |10⟩, |11⟩}. Then the concurrence is expressed in
terms of square roots 𝜆𝑖 of the eigenvalues of the non-
Hermitian matrix 𝜌(𝛼;𝛽)𝜌(𝛼;𝛽):

𝐶 (𝜌
(𝛼;𝛽)

) = max {0, 𝜆1 − 𝜆2 − 𝜆3 − 𝜆4} , (8)
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Figure 1: QM instance. The concurrence 𝐶(]𝑒 ;]𝜇) as function of the
scaled time 𝜏 = (𝜔2 − 𝜔1)𝑡. The mixing angle 𝜃 is fixed at the
experimental value sin2𝜃 = 0.314.

where the 𝜆𝑖s are nonnegative real numbers taken in decreas-
ing order with respect to the index 𝑖. The concurrence
equation (8) can be easily computed for the pure two-qubit
Bell state |]𝑒(𝑡)⟩, that is, (5), with density matrix 𝜌𝑒 =

|]𝑒(𝑡)⟩⟨]𝑒(𝑡)|. The concurrence 𝐶(]𝑒 ;]𝜇) ≡ 𝐶(𝜌
(]𝑒 ;]𝜇)) writes

𝐶
(]𝑒 ;]𝜇) = 2

󵄨󵄨󵄨󵄨U𝑒𝑒 (𝑡)
󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨󵄨
U𝑒𝜇 (𝑡)

󵄨󵄨󵄨󵄨󵄨
. (9)

It is worth noticing that, in the instance of pure states, the
concurrence coincides with the square root of the linear
entropy. In Figure 1, we show the behavior of 𝐶

(]𝑒 ;]𝜇) as
functions of the scaled, dimensionless time 𝜏 = (𝜔2 −𝜔1)𝑡. At
time 𝜏 = 0, the two flavors are not mixed, the entanglement
is zero, and the global state of the system is factorized. For
𝜏 > 0, flavor oscillations occur, and the linear entropy exhibits
a typical oscillatory behavior; the entanglement is maximal at
largest mixing.

3. Entanglement and Flavor Oscillations:
Quantum Field Theory

In this section, first we review the essential features of
a specific QFT model of particle mixing describing the
phenomena of neutrino oscillations [31, 32]. For a general
theory of mixing for an arbitrary number of fields see also
[45].

Then, by using such a model, we present a generalization
of the above analysis to the QFT framework. The neutrino
Dirac fields ]𝑒(𝑥) and ]𝜇(𝑥) are defined through the mixing
relations

]𝑒 (𝑥) = cos 𝜃]1 (𝑥) + sin 𝜃]2 (𝑥) ,

]𝜇 (𝑥) = − sin 𝜃]1 (𝑥) + cos 𝜃]2 (𝑥) ,
(10)

where, in standard notation, 𝑥 stands for the four-vector 𝑥 ≡

(𝑡, x) and the free fields ]1(𝑥) and ]2(𝑥) with definite masses

𝑚1 and 𝑚2. The generator of the mixing transformations is
given by

𝐺𝜃 (𝑡) = exp [𝜃∫𝑑
3x (]†1 (𝑥) ]2 (𝑥) − ]†2 (𝑥) ]1 (𝑥))] (11)

so that

]𝛼𝜎 (𝑥) = 𝐺
−1

𝜃 (𝑡) ]𝛼𝑖 (𝑥) 𝐺𝜃 (𝑡) , (12)

where (𝜎, 𝑖) = (𝑒, 1), (𝜇, 2), and the superscript 𝛼 = 1, . . . , 4

denotes the spinorial component. At finite volume, 𝐺𝜃(𝑡)
is a unitary operator, that is, 𝐺−1𝜃 (𝑡) = 𝐺−𝜃(𝑡) = 𝐺

†

𝜃
(𝑡),

preserving the canonical anticommutation relations. The
generator 𝐺−1𝜃 (𝑡) maps the Hilbert space for free fields H1,2
to the Hilbert space for mixed fields H𝑒,𝜇; that is, 𝐺

−1
𝜃 (𝑡) :

H1,2 󳨃→ H𝑒,𝜇. In particular, the flavor vacuum is given by
|0(𝑡)⟩𝑒,𝜇 = 𝐺

−1
𝜃 (𝑡) |0⟩1,2 at finite volume 𝑉. We denote by

|0⟩𝑒,𝜇 the flavor vacuum at 𝑡 = 0. It is worth noticing that,
in the infinite volume limit, the flavor and the mass vacua are
unitarily inequivalent.The free fields ]𝑖(𝑥) (𝑖 = 1, 2) are given
by the following expansions:

]𝑖 (𝑥) =
1

√𝑉
∑
k,𝑟

[𝑢
𝑟

k,𝑖𝛼
𝑟

k,𝑖 (𝑡) + V𝑟−k,𝑖𝛽
𝑟†

−k,𝑖 (𝑡)] 𝑒
𝑖k⋅x

, (13)

where k is the momentum vector, 𝑟 = 1, 2 denotes the
helicity, 𝛼𝑟k,𝑖(𝑡) = 𝛼

𝑟
k,𝑖𝑒
−𝑖𝜔𝑘,𝑖𝑡, 𝛽𝑟†k,𝑖(𝑡) = 𝛽

𝑟†
k,𝑖𝑒
𝑖𝜔𝑘,𝑖𝑡, and 𝜔𝑘,𝑖 =

√k2 + 𝑚2
𝑖
. The operators 𝛼

𝑟
k,𝑖 and 𝛽

𝑟
k,𝑖 are the annihilation

operators for the vacuum state |0⟩𝑚 ≡ |0⟩1 ⊗ |0⟩2; that is,
𝛼
𝑟
k,𝑖|0⟩𝑚 = 𝛽

𝑟
k,𝑖|0⟩𝑚 = 0. The anticommutation relations

are the usual ones; extended details, for example, on the
orthonormality and completeness relations are presented in
our previous works [31, 32]. By use of 𝐺𝜃(𝑡), the flavor fields
can be expanded as

]𝜎 (x) =
1

√𝑉
∑
k,𝑟

[𝑢
𝑟

k,𝑖𝛼
𝑟

k,𝜎 (𝑡) + V𝑟−k,𝑖𝛽
𝑟†

−k,𝜎 (𝑡)] 𝑒
𝑖k⋅x

. (14)

The flavor annihilation operators are defined as 𝛼
𝑟
k,𝜎(𝑡) ≡

𝐺
−1
𝜃 (𝑡)𝛼

𝑟
k,𝑖𝐺𝜃(𝑡) and 𝛽

𝑟†
k,𝜎(𝑡) ≡ 𝐺

−1
𝜃 (𝑡)𝛽

𝑟†
k,𝑖𝐺𝜃(𝑡). Without any

loss of generality, let us choose the reference frame such that
k = (0, 0, |k|); we have

𝛼
𝑟

k,𝑒 (𝑡) = cos 𝜃𝛼𝑟k,1 (𝑡)

+ sin 𝜃 (󵄨󵄨󵄨󵄨𝑈k
󵄨󵄨󵄨󵄨 𝛼
𝑟

k,2 (𝑡) + 𝜖
𝑟 󵄨󵄨󵄨󵄨𝑉k

󵄨󵄨󵄨󵄨 𝛽
𝑟†

−k,2 (𝑡)) ,
(15)

where 𝜖𝑟 = (−1)
𝑟 and

󵄨󵄨󵄨󵄨𝑈k
󵄨󵄨󵄨󵄨 ≡ 𝑢
𝑟†

k,𝑖𝑢
𝑟

k,𝑗 = V𝑟†−k,𝑖V
𝑟

−k,𝑗

=
|k|2 + (𝜔𝑘,1 + 𝑚1) (𝜔𝑘,2 + 𝑚2)

2√𝜔𝑘,1𝜔𝑘,2 (𝜔𝑘,1 + 𝑚1) (𝜔𝑘,2 + 𝑚2)

,

󵄨󵄨󵄨󵄨𝑉k
󵄨󵄨󵄨󵄨 ≡ 𝜖
𝑟
𝑢
𝑟†

k,1V
𝑟

−k,2 = −𝜖
𝑟
𝑢
𝑟†

k,2V
𝑟

−k,1

=
(𝜔𝑘,1 + 𝑚1) − (𝜔𝑘,2 + 𝑚2)

2√𝜔𝑘,1𝜔𝑘,2 (𝜔𝑘,1 + 𝑚1) (𝜔𝑘,2 + 𝑚2)

|k| ,

(16)
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with 𝑖, 𝑗 = 1, 2, 𝑖 ̸= 𝑗, and |𝑈k|
2
+ |𝑉k|

2
= 1. The explicit

expression for the flavor states |]𝑟k,𝑒⟩ at time 𝑡 = 0 is

󵄨󵄨󵄨󵄨󵄨
]𝑟k,𝑒⟩ ≡ 𝛼

𝑟†

k,𝑒 (0) |0⟩𝑒,𝜇

= [cos 𝜃𝛼𝑟†k,1 +
󵄨󵄨󵄨󵄨𝑈k

󵄨󵄨󵄨󵄨 sin 𝜃𝛼
𝑟†

k,2

− 𝜖
𝑟 󵄨󵄨󵄨󵄨𝑉k

󵄨󵄨󵄨󵄨 sin 𝜃𝛼
𝑟†

k,1𝛼
𝑟†

k,2𝛽
𝑟†

−k,1]

× 𝐺
−1

𝜃,k,𝑟 (𝑡) ∏
p ̸= k

𝐺
−1

𝜃,p,𝑠 (𝑡) |0⟩1,2,

(17)

where𝐺𝜃(𝑡) = ∏p∏
2

𝑠=1𝐺𝜃,p,𝑠(𝑡). In the state (17), amultiparti-
cle component is present, disappearing in the relativistic limit
|k| ≫ √𝑚1𝑚2: indeed, for large |k|, since one gets |𝑈k|

2
→ 1

and |𝑉k|
2
→ 0, the (quantum-mechanical) Pontecorvo states

are recovered. In order to simplify the notation, we omit the
superscript 𝑟 (by fixing 𝑟 = 2) and the subscript k, thus
restricting the analysis to the flavor neutrino state |]𝑒⟩ of
fixed momentum and helicity. Let us consider again the free
evolution of the electron-neutrino state (17):

󵄨󵄨󵄨󵄨]𝑒 (𝑡)⟩ = 𝑒
−𝑖𝐻0𝑡 󵄨󵄨󵄨󵄨]𝑒⟩ , (18)

where 𝐻0 is the standard QFT free Hamiltonian. Finally, in
the Hilbert spaceH𝑒,𝜇, (18) can be written in the form

󵄨󵄨󵄨󵄨]𝑒 (𝑡)⟩ = [U𝑒𝑒 (𝑡) 𝛼
†

𝑒 + U𝑒𝜇 (𝑡) 𝛼
†

𝜇 + U𝑒𝑒𝑒𝜇 (𝑡) 𝛼
†

𝑒𝛼
†

𝜇𝛽
†

𝑒

+U𝜇𝜇𝑒𝑒 (𝑡) 𝛼
†

𝑒𝛼
†

𝜇𝛽
†

𝜇] |0⟩𝑒,𝜇,

(19)

where the time-dependent coefficients are given by

U𝑒𝑒 (𝑡) = 𝑒
−𝑖𝜔1𝑡 [cos2𝜃 + sin2𝜃 (𝑒−𝑖(𝜔2−𝜔1)𝑡|𝑈|

2

+ 𝑒
−𝑖(𝜔2+𝜔1)𝑡|𝑉|

2
)] ,

U𝑒𝜇 (𝑡) = 𝑒
−𝑖𝜔1𝑡𝑈 cos 𝜃 sin 𝜃 (𝑒−𝑖(𝜔2−𝜔1)𝑡 − 1) ,

U𝑒𝑒𝑒𝜇 (𝑡) = 𝑒
−𝑖𝜔1𝑡𝑉 cos 𝜃 sin 𝜃 (1 − 𝑒

−𝑖(𝜔2+𝜔1)𝑡) ,

U𝜇𝜇𝑒𝑒 (𝑡) = 𝑒
−𝑖𝜔1𝑡𝑈𝑉sin2𝜃 (𝑒−𝑖(𝜔2+𝜔1)𝑡 − 𝑒

−𝑖(𝜔2−𝜔1)𝑡) ,

󵄨󵄨󵄨󵄨U𝑒𝑒 (𝑡)
󵄨󵄨󵄨󵄨
2
+
󵄨󵄨󵄨󵄨󵄨
U𝑒𝜇 (𝑡)

󵄨󵄨󵄨󵄨󵄨

2
+
󵄨󵄨󵄨󵄨󵄨
U𝑒𝑒𝑒𝜇 (𝑡)

󵄨󵄨󵄨󵄨󵄨

2
+
󵄨󵄨󵄨󵄨󵄨
U𝜇𝜇𝑒𝑒 (𝑡)

󵄨󵄨󵄨󵄨󵄨

2
= 1.

(20)

In the following, in order to conveniently parameterize
the neutrino masses 𝑚1 and 𝑚2, momentum |k|, and the
evolution time 𝑡, we use the real parameters 𝑥 = 𝑚2/𝑚1,
𝑝 = |k|/√𝑚1𝑚2, and 𝜏 = (𝜔2 − 𝜔1)𝑡. Therefore, 𝑥 represents
the ratio between the two masses eigenvalues; 𝑝 expresses
the ratio between themomentum and themasses geometrical
mean and corresponds to the relativistic limit for 𝑝 ≫ 1.

Evidently, the time-evolved state |]𝑒(𝑡)⟩ in the flavor
eigenstates Hilbert space, that is, (19), is a multiparticle
entangled state. Analogously with the Pontecorvo states (5),
we assume the neutrino occupation number as reference
quantum number. However, with respect to (5), we have still
two flavors, but we have a further degree of freedom, that

0

0.25

0.5

0.75

1

0 𝜋

2

𝜋 3𝜋

2

2𝜋

𝜏

C(𝛼; 𝛽)

Figure 2: QFT instance (color online). The concurrences 𝐶
(]𝑒 ;]𝜇)

(full line) and 𝐶
(]𝑒 ;]𝜇) (dashed line) as functions of the scaled time

𝜏 = (𝜔2 −𝜔1)𝑡. The mixing angle 𝜃 is fixed at the experimental value
sin2𝜃 = 0.314; the parameters 𝑥 and 𝑝 are fixed as 𝑥 = 10 and
𝑝 = 5. The concurrence associated with the quantum-mechanical
Pontecorvo states (dotted line), that is, Figure 1, is also reported for
comparison.

is, the neutrino species, that is, particles and antiparticles.
Therefore, we obtain multipartite entanglement in a four-
qubit state. In the instance H𝑒,𝜇, (19) can be written in the
form

󵄨󵄨󵄨󵄨]𝑒 (𝑡)⟩ = U𝑒𝑒 (𝑡) |1000⟩𝑒𝜇𝑒 𝜇 + U𝑒𝜇 (𝑡) |0100⟩𝑒𝜇𝑒 𝜇

+ U𝑒𝑒𝑒𝜇 (𝑡) |1110⟩𝑒𝜇𝑒 𝜇 + U𝜇𝜇𝑒𝑒 (𝑡) |1101⟩𝑒𝜇𝑒 𝜇,
(21)

where |𝑖𝑗𝑘ℎ⟩𝑒𝜇𝑒 𝜇 denotes the four-qubit vector
|𝑖⟩]𝑒 |𝑗⟩]𝜇 |𝑘⟩]𝑒 |ℎ⟩]𝜇 with 𝑖, 𝑗, 𝑘, ℎ = 0, 1. Let us analyze
the entanglement content possessed by a given pair of modes
of |]𝑒⟩, that is, (21), by using the concurrence, that is, by (8).
Specifically, we compute the quantity 𝐶

(𝛼;𝛽) associated with
the twomodes𝛼 ̸= 𝛽 = ]𝑒, ]𝜇, ]𝑒, ]𝜇.We do not report the ana-
lytical expressions for the concurrences, as they are long and
unwieldy and provide no further significant physical insight.

In Figure 2, we plot the quantities 𝐶(]𝑒 ;]𝜇) and 𝐶
(]𝑒;]𝜇) as

functions of the scaled time 𝜏 for 𝑥 = 10 and 𝑝 = 5;
it is worth noticing that such a choice of the parameters
corresponds to the following assumptions: mass 𝑚2 greater
than mass 𝑚1 of one order of magnitude and momentum of
the same order ofmagnitude as themasses geometricalmean.
We observe that the particle-mode entanglement (]𝑒; ]𝜇) is
predominant; thus, most entanglement is shared between
the two particle modes. Notwithstanding, a nonvanishing
(although suppressed), nontrivial, oscillating contribution
originates from the antiparticle-mode pair (]𝑒, ]𝜇).

For completeness, in Figure 3 we also plot the concur-
rences 𝐶(]𝑒 ;]𝑒) and 𝐶

(]𝜇 ;]𝑒), panel (a), and 𝐶
(]𝑒 ;]𝜇) and 𝐶

(]𝜇 ;]𝜇),
panel (b). Specifically, plots in Figure 3 represent the concur-
rences associated with the pairs particle-antiparticle (]𝛼; ]𝛽).
We observe that there exists strong entanglement content in
these pairs; this fact is due to the Bogoliubov contribution in
(15). Let us notice that the curves 𝐶(]𝑒 ;]𝛽) and 𝐶

(]𝜇 ;]𝛽) (with
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Figure 3: QFT instance (color online). In (a) the concurrences𝐶(]𝑒 ;]𝑒) (full line) and𝐶(]𝜇 ;]𝑒) (dashed line), in (b) the concurrences𝐶(]𝑒 ;]𝜇) (full
line) and 𝐶

(]𝜇 ;]𝜇) (dashed line), as functions of the scaled time 𝜏 = (𝜔2 − 𝜔1)𝑡. The mixing angle 𝜃 and the parameters 𝑥 and 𝑝 are fixed as in
Figure 2.

𝛽 = 𝑒, 𝜇) exhibit an opposite behavior; on average, when the
former increases (decreases), the latter decreases (increases).

4. Conclusions

In this paper, we analyzed a paradigmatic phenomenon
of particle physics, that is, neutrino oscillations, from the
point of view of entanglement, one of the fundamental
aspects of quantum theory. More specifically, we studied
the entanglement associated with a QFT model of neutrino
oscillations, generalizing our previous results derived in the
context of QM. The two-mode state, obtained by tracing
out two modes, is a mixed one, and we characterized the
entanglement of such a state by means of the concurrence.

We showed that such a phenomenon, described in a QFT
framework, exhibits significantly more complex effects with
respect to that found in a QM setting. This procedure is
applicable as well to othermultiparticle QFT systems, beyond
the model considered here.

The present analysis has been carried out for the case of
two generations. A further extension can be carried out by
considering the case of three flavors, including CP violation,
for which the structure of QFT flavor states is considerably
more involved [34].

Moreover, the entanglement dynamics has been studied
in the time domain; an analogous study can be carried out in
the space domain, by considering the spatial distribution of
entanglement.

At last, it is also worth remarking that the (exact) results
obtained in our paper represent a canonical example of
evaluation of entanglement for a relativistic system.
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