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We consider a quintessencemodel of dark energy inspired by scalar-tensor theories of gravity where the scalar field is nonminimally
coupled to gravity and dark matter. By considering exponential potential as self-interaction potential, the stability and existence
of the critical points are discussed in details. With nonminimally coupled dark sector with gravity, we obtain scaling solutions
to address the coincidence problem by considering complex velocity for dark matter. The statefinder diagnostic shows that the
equation of state reaches Λ𝐶𝐷𝑀model in the future.

1. Introduction

Recent observational pieces of evidence [1–6] have revealed
that today the energy density of the universe is dominated
by a component with negative pressure that violates the
strong energy condition (SEC).This yet unknown component
is called “dark energy” (DE), which derives the positively
accelerated phase of the universe expansion. Modification of
gravity on vast scale may be another alternative to explain
this accelerated phase of expansion [7, 8]. In the framework
of dark energy proposal, the simplest model is a cosmological
constant, whereas, the cosmological constant proposal suffers
from serious difficulties such as a huge fine-tuning [9–12].
In fact, there is no convincing explanation for the very small
value of the Λ and also no concrete solution for coincidence
problemandneed for huge fine-tuning. Coincidence problem
is that why are the energy densities of both dark components
(dark energy and dark matter) the same order of magnitude
today?The dynamical dark energymodels such as light scalar
fields, quintessence [13, 14], phantom fields [15], tachyon
fields [16, 17], and other similar theories that are capable
of explaining the late-time cosmic acceleration can alleviate
the coincidence problem [18]. It is possible to construct a
generalized model of quintessence field that the background
and the dark energy evolve independently, but there is
a nonminimal coupling between both dark components

[19–26]. Because the nature of the dark matter (DM) is yet
unknown, it is possible to consider additional interactions
between the dark components, without tension with the
observational facts. Nevertheless, solar system tests impose
some restrictions on the nonminimal coupling between the
dark matter and the dark energy [27]. Currently no specific
coupling between the dark sectors has been known based on
fundamental theories. Therefore, suggested coupling models
will necessarily be phenomenological [28, 29], though some
models seem to have more physical justification than others
[19]. Herewe are going to study an interactingmodel inwhich
the dark sectors are coupled to each other in a background
gravitational field nonminimally coupled to the dark energy.
We seek scaling solutions to address the coincidence problem
in a manner much similar to the chameleon mechanism.

The paper is organized as follows. In Section 2 we review
some new details of two models of interaction between
the dark sectors and scalar curvature with minimal and
nonminimal coupling. We present existence and stability of
the critical points in phase space. In Section 3, we present a
model in which the scalar field is coupled nonminimally with
both gravity and dark matter. The cosmological dynamics of
themodel is studied via dynamical system technique and also
statefinder diagnostic. Scaling solutions are obtained in this
section and the coincidence problem is addressed through a
manner similar to the chameleon mechanism. This is done
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by relaxing the reality of sound velocity and allowing to have
complex sound speed profile. The coincidence problem can
be evaded in this case since, a constant ratio between the
dark energy and dark matter density is a stable attractor.
We suppose universal coupling of the quintessence field to
all sorts of matter (radiation is excluded). We note also
that actually there is no need to consider the coupling
between quintessence field and baryonic matter. In fact, the
quintessence field has couplingwith darkmatter. In Section 4,
conclusions are presented.

2. Preliminaries

2.1. Minimal Coupling of Quintessence Field with DarkMatter.
The action for a quintessence field minimally coupled with
the dark matter is given by

S = ∫𝑑
4
𝑥√−𝑔 [

𝑅

2
−
1

2
𝑔
𝑎𝑏
∇
𝑎
𝜑∇
𝑏
𝜑 − 𝑉 (𝜑) +L

𝑚
] , (1)

where 𝑅 is the curvature scalar, 𝜑 is the quintessence scalar
field, 𝑉(𝜑) the quintessence self-interaction potential, which
we consider as 𝑉(𝜑) = 𝑉

0
𝑒
−𝜆𝜑, where 𝜆 and 𝑉

0
are positive

constants and L
𝑚
is the Lagrangian density of matter (all

sorts of matter except radiation and baryonic matter. Note
that the only sort of matter here is the dark matter).The FRW
line element is given by

𝑑𝑠
2
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2
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(2)

where 𝑡 is the cosmic time, (𝑟, 𝜃, 𝜙) are the spatial (radial and
angular) coordinates and 𝑘 is the spatial curvature where 𝑘 =

0, +1, −1 corresponding to the flat, closed and open universes,
respectively. We consider the system of units in which 8𝜋𝐺 =

𝑐 = ℏ = 1.The field equations that are derived from the action
(1) are

3𝐻
2
+
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𝑎2
= 𝜌
𝑚
+
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𝑑𝑉 (𝜑)

𝑑𝜑
= 0, (5)

where 𝛾 ≡ 1 + 𝑤
𝑚
is the barotropic index which depends on

the type of matter. The continuity equations are
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𝑚
+ 3𝐻𝛾𝜌

𝑚
= 0, ̇𝜌

𝜑
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𝜑
) 𝜌
𝜑
= 0. (6)

The Friedmann equation (3) with 𝑘 = 0 is as follows:

1 = Ω
𝑚
+ Ω
𝜑
, (7)

which Ω
𝑚
= 𝜌
𝑚
/3𝐻
2 andΩ
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𝜑
/3𝐻
2, (7) implies that

0 ≤ Ω
𝜑
, Ω

𝑚
≤ 1. (8)

We study cosmological dynamics of the model by trans-
lating our equations in the language of the autonomous
dynamical system. We define the following dimensionless
quantities:

𝑥
1
=
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, 𝑥
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.

(9)

By rewriting the Friedmann equation (3) (with 𝑘 = 0)
in terms of the new variables, we obtain a constraint on the
parameters space of the model as follows:

1 = 𝑥
2

1
+ 𝑥
2

2
+ 𝑥
2

3
, (10)

which allows to seek for evolution of just two variables since
the third one can be obtained by this constraint. In what
follows we choose 𝑥

1
and 𝑥

3
as our independent variables.

Using these phase space variables, the evolution equations
(4) and the equation of state parameter 𝜔tot = 𝑃tot/𝜌tot =

(𝑃
𝜑
+ (𝛾 − 1)𝜌

𝑚
)/(𝜌
𝜑
+ 𝜌
𝑚
) can be rewritten as follows:
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1
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, (12)
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2

3
− 1. (13)

In the next step, we introduce a new time variable 𝑁 =

ln 𝑎(𝑡) that is related to the cosmic time through 𝑑𝑁 = 𝐻𝑑𝑡

and obtain the following autonomous system of equations:

𝑑𝑥
1

𝑑𝑁
=

�̈�
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− 𝑥
1

�̇�
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,
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3
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3

2
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�̇�

𝐻2
]𝑥
3
. (14)

The stability around the fixed points is related to the form
of the eigenvalues in each critical point. In Table 1 we exhibit
the properties of the critical points such as the existence
and stability. Furthermore, we present 𝜔tot𝑐 as the value of
the total equation of state parameter at the critical points
to see the possibility of accelerated expansion in this setup
(𝜔tot𝑐 < −1/3). The eigenvalues can be obtained by using the
above autonomous equations, the results of which are shown
in Table 2. As we see in Table 1, among the five fixed points,
only point 𝐸

±
exhibits scaling solution for late-time. Using

(8), (9), (10), and (13), we find for this point

0 < Ω
𝑚
= 𝑥
2

3
, Ω

𝜑
= (1 − 𝑥

2

3
) < 1,

𝜔tot < −
1

3
.

(15)

According to Table 1, this point can be either stable node or
stable spiral. In Figure 1, if we choose 𝜆 and 𝛾 parameters
from the blue shaded region, point 𝐸

±
will be stable node,

but if we select these parameters from the green shaded
region, point 𝐸

±
will be stable spiral. The phase space of

this critical point is illustrated in Figure 3(a). All the phase
space trajectories diverge from the unstable point (radiation
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Table 1: Properties of the critical points.

Point (𝑥
1𝑐
, 𝑥
3𝑐
) Existence Stability Ω

𝜑
𝜔tot𝑐 ̈𝑎

𝑐
> 0

𝐴 (+1, 0) ∀𝜆, 𝛾 Saddle point if 𝜆 > √6 and 0 < 𝛾 < 2,
unstable node if 𝜆 < √6 and 0 < 𝛾 < 2

1 1 No

𝐵 (−1, 0) ∀𝜆, 𝛾 Saddle point if 𝜆 < −√6 and 0 < 𝛾 < 2,
unstable node if 𝜆 > −√6 and 0 < 𝛾 < 2

1 1 No

𝐶(
√6𝜆

6
, 0) ∀𝛾, 𝜆2 ≤ 6

Stable node if 𝜆2 < 6 and 𝜆2 < 3𝛾,
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2
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1 𝜆
2

3
− 1 𝜆

2
< 2
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2
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√6

2𝜆
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𝜆
) 𝜆

2
≥ 3𝛾

Stable node for left panel of Figure 1
Stable spiral for right panel of Figure 1

3𝛾

𝜆2
𝛾 − 1 𝛾 <

2

3

Table 2: The eigenvalues of the critical points.
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, 𝑥
3𝑐
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1
, 𝜎
2
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2
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Figure 1: 𝐸
±
is a stable node in the blue shaded region of 𝜆-𝛾 space (a), while it is a stable spiral in the green shaded region of (b).
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domination) and converge towards the attractor. As has been
shown in Figure 4(a), this critical point cannot cross the
phantom divide line and reaches to recent quantity of 𝜔 that
tends to be less than −1 [30]. To have such an observationally
supported crossing, we add a further ingredient to the theory:
the nonminimal coupling between the dark energy and scalar
curvature [31]. Furthermore, it is important to keep in mind
that if we consider negative values of 𝛾 for 𝐸

±
to have 𝜔tot𝑐 <

−1, then the critical point 𝐷
±
will be also a stable attractor

point, which is not acceptable since it should be a transient
matter dominated epoch.

2.2. Nonminimal Coupling of Dark Energy with Ricci Scalar.
We consider the following action in the spirit of the scalar-
tensor theories:

S = ∫𝑑
4
𝑋√−𝑔

× [(
1

2
−
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2
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2
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∇
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𝑏
𝜑 − 𝑉 (𝜑) +L

𝑚
] ,

(16)

where 𝜉 is the nonminimal coupling between the
quintessence field as dark energy and scalar curvature. The
energy density and pressure of the scalar field nonminimally
coupled to gravity are defined as follows [32]:

𝜌
𝜑
=
1

2
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2
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𝜑
2
.
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The field equations derived from action (16) are given as

3𝐻
2
+
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�̈� + 3𝐻�̇� +
𝑑𝑉 (𝜑)

𝑑𝜑
+ 𝜉𝑅𝜑 = 0, (20)

where 𝛾 ≡ 1 + 𝜔
𝑚
is the barotropic index of ordinary matter.

The continuity equations are given as

̇𝜌
𝑚
+ 3𝐻𝛾𝜌
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= 0, ̇𝜌

𝜑
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𝜑
) 𝜌
𝜑
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Similar to the previous subsection, (7) and (8) are valid for
this case too. The dimensionless quantities for this case are
𝑥
1
, 𝑥
2
, and 𝑥

3
defined in the previous subsection, plus the

additional one defined as follows:

𝑥
4
= √𝜉𝜑. (22)

From Friedmann equation (18) with zero spatial curvature
(𝑘 = 0), we have the following constraint:
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In terms of these newvariables, the acceleration equation (19),
the scalar field’s equation ofmotion (20), and equation of state
parameter are given by the following expressions:
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+
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𝑥
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−
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−
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We differentiate the phase space dimensionless variables with
respect to𝑁 = ln 𝑎(𝑡) to find

𝑑𝑥
1

𝑑𝑁
=
√6

6

�̈�

𝐻2
− 𝑥
1

�̇�

𝐻2
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3
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= −[
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]𝑥
3
,

𝑑𝑥
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𝑑𝑁
= √6𝜉𝑥

1
.

(27)

The critical points and their stability around the fixed
points are shown in Table 3 (for 0 < 𝛾 < 2) and eigenvalues
of the Jacobian matrix are presented in Table 4. As Table 3
shows, there is no critical point for late-time. Attractor critical
points 𝐵

+
and 𝐵

−
belong to the future. Fixed point 𝐵

+
can be

either a stable node or a stable spiral depending on the values
of 𝜆 and 𝜉 from blue shaded region or green shaded region
in Figure 2. However, critical point 𝐵

−
is stable spiral. The 2-

dimensional phase space of this critical point is depicted in
the right panel of Figure 3. So, we see that the nonminimal
model allows to reach a stable phase in the future with
equation of state that tends to the Λ𝐶𝐷𝑀 one in the future.
The behavior of 𝜔tot𝑐 is shown in Figure 4(b). There is no
crossing of the phantom divide even in this nonminimal
model. So, similar to the minimal model, this nonminimal
model is not a suitable framework for late time cosmic
dynamics and it is not capable of addressing the coincidence
problem.

3. Dark Energy Coupled Nonminimally with
Gravity and Dark Matter

We consider a scalar field, as dark energy component, which
is nonminimally coupled to gravity and dark matter in the
spirit of scalar-tensor theories:

S = ∫𝑑
4
𝑋√−𝑔

× [(
1

2
−
1

2
𝜉𝜑
2
)𝑅 −
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2
𝑔
𝑎𝑏
∇
𝑎
𝜑∇
𝑏
𝜑 − 𝑉 (𝜑) + 𝛼𝜑

2
L
𝑚
] ,

(28)



Advances in High Energy Physics 5

0

1

2

3

4

5

𝜆

0 0.05 0.10 0.15 0.20

𝜉

Stable node
Stable spiral

(a)

0 0.05 0.10 0.15 0.20

𝜉

Stable spiral

−5

−4

−3

−2

−1

0

𝜆

(b)

Figure 2: (a) In the 𝜆 and 𝜉 parameters space the blue shaded region is valid for stable nodes and the green shaded one is valid for stable
spirals for critical point 𝐵

+
. (b) The green shaded region for stable spiral in the 𝜆 and 𝜉 parameters space for critical point 𝐵

−
.

Table 3: The properties of the critical points.

Point (𝑥
1𝑐
, 𝑥
3𝑐
, 𝑥
4𝑐
) Existence Stability Ω

𝜑
𝜔tot ̈𝑎 > 0

𝐴 (0, 0, 1) ∀𝜆, 𝜉, 𝛾 Saddle point 1
1

3
No

𝐵
+
(0, 0,

−2√𝜉 + √𝜆2 + 4𝜉

𝜆
) ∀𝛾, 𝜆 > 0, 𝜉 > 0

Stable node for left panel of Figure 2
(blue shaded region)
stable spiral for left panel of Figure 2
(green shaded region)

1 −1 1

𝐵
−
(0, 0,

−2√𝜉 − √𝜆2 + 4𝜉

𝜆
) ∀𝛾, 𝜆 < 0, 𝜉 > 0 Stable spiral for right panel of Figure 2 1 −1 1

𝐶
±
(0, ±1, 0) ∀𝜆, 𝜉, 𝛾 Saddle point 0 𝛾 − 1 𝛾 <

2

3

Table 4: The eigenvalues of the critical points.

Point (𝑥
1𝑐
, 𝑥
3𝑐
, 𝑥
4𝑐
) 𝜎

1
, 𝜎
2
, 𝜎
3

𝐴 (0, 0, 1) −1, 4, 2 −
3

2
𝛾

𝐵
+
(0, 0,

−2√𝜉 + √𝜆2 + 4𝜉

𝜆
) −

3

2
𝛾, 𝐺
1
, 𝐺
2

𝐵
−
(0, 0,

−2√𝜉 − √𝜆2 + 4𝜉

𝜆
) −

3

2
𝛾, 𝐺
3
, 𝐺
4

𝐶
±
(0, ±1, 0)

3𝛾,
3

4
𝛾 −

3

2
+
1

4
√9𝛾2 + 144𝛾𝜉 − 36𝛾 − 192𝛾 + 36,

3

4
𝛾 −

3

2
−
1

4
√9𝛾2 + 144𝛾𝜉 − 36𝛾 − 192𝛾 + 36

where 𝛼𝜑
2 is the quintessence-matter coupling function,

(𝛼 is constant). The energy density and pressure of the
nonminimally coupled scalar field in this case are given
by (17) but now with redefined 𝜌

𝑚
(see (32) and (35)

below).

The field equations that are derived from the action (28)
with redefined 𝜌

𝑚
are as follows:

3𝐻
2
+
3𝑘

𝑎2
= 𝜌
𝑚
+
1

2
�̇�
2
+ 3𝜉𝐻

2
𝜑
2
+ 6𝜉𝐻𝜑�̇�, (29)
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Figure 3: (a) The phase plane for critical 𝐸
±
(for minimal case) with 𝛾 = 0.5 and 𝜆 = 1.48. The critical points 𝐸

±
(0.17, 0.56) are stable nodes

(sinks) so that the quintessence dominated solution is the late time attractor.The critical points𝐷
±
(0, ±1) and 𝐶(0.6, 0) are saddle points, but

𝐴(+1, 0), 𝐵(−1, 0) fixed points are repeller nodes. All the phase space trajectories diverge from the unstable point and converge towards the
attractor. (b) The phase plane for the critical point 𝐵

+
(for nonminimal case) with 𝛾 = 1, 𝜆 = 1 and 𝜉 = 1/6. The critical point 𝐵

+
(0, 0) is a

stable node (a sink) so that the quintessence dominated solution is a future attractor.
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Figure 4: (a) Effective equation of state parameter (minimal case) versus the cosmic time for the critical points𝐸
±
with initial values 𝑥

1
= 0.41

and 𝑥
3
= 0.56 and the values of 𝛾 and 𝜆 as given in the figure. (b) Effective equation of state parameter versus the cosmic time for the critical

point 𝐵
+
with 𝛾 = 1, 𝜆 = 1, 𝜉 = 1/6 and initial values as given in the figure.
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2�̇� + 3𝐻
2
+

𝑘

𝑎2
= (1 − 𝛾) 𝜌

𝑚
−
1

2
�̇�
2
+ 𝑉 (𝜑) + 4𝜉𝐻𝜑�̇�

− 2𝜉�̇�
2
+ 2𝜉𝜑�̈� + 2𝜉�̇�𝜑

2
+ 3𝜉𝐻

2
𝜑
2
,

(30)

�̈� + 3𝐻�̇� +
𝑑𝑉 (𝜑)

𝑑𝜑
+ 𝜉𝑅𝜑 = 2𝛼𝜑𝜌

𝑚
. (31)

A general coupling between a quintessence field and the
dark matter may be described by the continuity equations as

̇𝜌
𝑚
+ 3𝐻𝛾𝜌

𝑚
= −𝑄, (32)

̇𝜌
𝜑
+ 3𝐻(1 + 𝜔

𝜑
) 𝜌
𝜑
= 𝑄. (33)

Here 𝑄 = 2𝛼𝜑�̇�𝜌
𝑚
is the rate of energy density exchange in

the dark sector with the following properties:

𝑄 > 0, Energy transfers from dark matter

to dark energy,

𝑄 < 0, Energy transfers from dark energy

to dark matter.

(34)

After integration of (32) we find

𝜌
𝑚
= 𝑀𝑎

−3
𝑒
−𝛼𝜑
2

, (35)

where 𝑀 is a constant of integration. By defining 𝜔tot =

𝑃tot/𝜌tot = (𝑃
𝜑
+ 𝑃
𝑚
)/(𝜌
𝜑
+ 𝜌
𝑚
) now the following equation

is valid:

̇𝜌tot + 3𝐻 (1 + 𝜔tot) 𝜌tot = 0. (36)

Like the previous subsection, (7), (8) are valid for this case
too. Now we study cosmological dynamics of this interacting
model as a dynamical system in phase space. Our dimen-
sionless parameters and the Friedmann constraint are similar
to (9), (22), and (23). We rewrite other important equations
of the setup in terms of the new variables. The acceleration
equation (30) and the equation of motion (31) in terms of the
new variables take the following form, respectively:

�̇�

𝐻2
= (−

3

2
𝑥
2

3
− 3𝑥
2

1
+ 6𝜉𝑥

2

1
− 4√6𝜉𝑥

1
𝑥
4

+ 6𝛼𝑥
2

3
𝑥
2

4
+ 3𝜆√𝜉𝑥

4
𝑥
2

2
− 12𝜉𝑥

2

4
)

× (1 − 𝑥
2

4
+ 6𝜉𝑥

2

4
)
−1

,

(37)

�̈�

𝐻2
=
6𝛼𝑥
2

3
𝑥
4

√𝜉

− 3√6𝑥
1
+ 3𝜆𝑥

2

2
− 12√𝜉𝑥

4
− 6√𝜉𝑥

4

�̇�

𝐻2
.

(38)

With 𝑁 = ln 𝑎(𝑡), the following autonomous system of
equations is obtained:

𝑑𝑥
1

𝑑𝑁
=

√6𝛼𝑥
2

3
𝑥
4

√𝜉

− 3𝑥
1
+
√6

2
𝜆𝑥
2

2
− 2√6𝜉𝑥

4

− 2 [√6𝜉𝑥
4
+ 𝑥
1
]
�̇�

𝐻2
,

𝑑𝑥
3

𝑑𝑁
= −[

√6𝛼𝑥
1
𝑥
4

𝜉
+
3

2
+

�̇�

𝐻2
]𝑥
3
,

𝑑𝑥
4

𝑑𝑁
= √6𝜉𝑥

1
.

(39)

The critical points and stability around these points are
presented in Table 5 and their eigenvalues of the Jacobian
matrix are shown in Table 6.

(i) Critical Point A. The critical point 𝐴 behaves like a saddle
point in the phase space and in this case we have no late-
time acceleration. For this point the universe is radiation
dominated.

(ii) Critical Point 𝐵
±
. Points 𝐵

±
represent a cosmological

constant dominated accelerating phase. In this case, either
a scalar field’s kinetic energy term or a potential energy
term plays the role of a cosmological constant. So, with a
quintessence scalar field nonminimally coupled with dark
matter and curvature, it is possible to realize a stable, de
Sitter, future accelerating phase. The complicated stability
conditions for the critical point 𝐵

±
were confirmed numeri-

cally, and the results are shown in Figure 2. As we see from
Figure 2(a), if we choose 𝜆 and 𝜉 quantities from the blue
shaded region, then we have a stable node, but if we select
these two quantities from the green region, we will have a
stable spiral. For critical point 𝐵

−
there is only a stable spiral

solution that is illustrated in Figure 2(b). The phase portrait
for this case is shown in Figure 7(a). The behavior of 𝜔tot is
drawn in Figure 8(a). This figure shows that we will reach a
stable phase in the future with equation of state parameter
that tends to Λ𝐶𝐷𝑀model.

(iii) Critical Point 𝐶
±
. For this case, there is no contribution of

the scalar field and the universe is dominated by matter fields
other than the quintessence scalar field. These two critical
points behave like saddle points in the phase space if we
consider 0 < 𝛾 < 2. For 𝛾 < 2/3, one can obtain an
accelerating phase of expansion, but this phase is not stable.
However, if we consider 𝛾 < 0, wewill have two kinds of stable
attractors. It will be a stable node if we choose 𝛾 and 𝛼 from
the Figure 5(a), and a stable spiral if we choose 𝛾 and 𝛼 from
Figure 5(b).

(iv) Critical Point 𝐷
±
. The stability conditions for critical

points 𝐷
±
are very complicated and therefore we do not

present their functional form here. However, for complete-
ness the results are illustrated in Figure 6. There are two
situations depending on the values of 𝛾. If we consider 0 <

𝛾 < 2, there is a saddle point. On the other hand for 𝛾 <

0, we can consider the possibility of having complex sound
speed for nonordinary matter fields. In this situation there
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Table 5: Properties of the critical points.

Point (𝑥
1𝑐
, 𝑥
3𝑐
, 𝑥
4𝑐
) Existence Stability Ω

𝜑
𝜔tot ̈𝑎 > 0

𝐴(0, 0, 1) ∀𝜆, 𝛼, 𝜉, 𝛾 Saddle point 1 1

3
No

𝐵
+
(0, 0,

−2𝜉 + √𝜉𝜆2 + 4𝜉2

𝜆√𝜉

)
∀𝛼, 𝛾,

𝜆 > 0, 𝜉 > 0

Stable node for left panel of Figure 2
with 0 < 𝛾 < 2

(blue shaded region)
stable spiral for left panel of Figure 2
with 0 < 𝛾 < 2

(green shaded region)

1 −1 1

𝐵
−
(0, 0,

−2𝜉 − √𝜉𝜆2 + 4𝜉2

𝜆√𝜉

)
∀𝛼, 𝛾,

𝜆 < 0, 𝜉 > 0

Stable spiral for right panel of
Figure 2 with 0 < 𝛾 < 2 1 −1 1

𝐶
±
(0, ±1, 0) ∀𝜆, 𝛼, 𝜉, 𝛾

Saddle point if 0 < 𝛾 < 2 stable node
for left panel of Figure 5 with 𝛾 < 0

stable spiral for right panel of
Figure 5 with 𝛾 < 0

0 𝛾 − 1 𝛾 <
2

3

𝐷
±
(0, ±

√2𝜉 (4 − 3𝛾)

2√𝛼
,√

3𝛾𝜉 − 9𝜉 + 2𝛼

2𝛼
)

∀𝜆, 𝛼 ̸= 0

0 ≤
(−3𝛾 + 4) 𝜉

𝛼
≤ 2

Saddle point if 0 < 𝛾 < 2

stable node for left panel of Figure 6
with 𝛾 < 0

stable spiral for right panel of
Figure 6 with 𝛾 < 0

1 +
(3𝛾 − 4)𝜉

2𝛼
𝛾 − 1 𝛾 <

2

3

Table 6: The eigenvalues of the critical points.

Point (𝑥
1𝑐
, 𝑥
3𝑐
, 𝑥
4𝑐
) 𝜎

1
, 𝜎
2
, 𝜎
3

𝐴 (0, 0, 1) −1, 4, 2 −
3

2
𝛾

𝐵
+
(0, 0,

−2𝜉 + √𝜉𝜆2 + 4𝜉2

𝜆√𝜉

) −
3

2
𝛾, 𝐺
1
, 𝐺
2

𝐵
−
(0, 0,

−2𝜉 − √𝜉𝜆2 + 4𝜉2

𝜆√𝜉

) −
3

2
𝛾, 𝐺
3
, 𝐺
4

𝐶
±
(0, ±1, 0)

3𝛾, (
3

4
𝛾 −

3

2
+
1

4
√9𝛾2 + 144𝛾𝜉 − 36𝛾 − 192𝛾 + 96𝛼 + 36),

(
3

4
𝛾 −

3

2
−
1

4
√9𝛾2 + 144𝛾𝜉 − 36𝛾 − 192𝛾 + 96𝛼 + 36)

𝐷
±
(0, ±

√2𝜉 (4 − 3𝛾)

2√𝛼
,√

3𝛾𝜉 − 9𝜉 + 2𝛼

2𝛼
) 3𝛾, 𝐺

5
, 𝐺
6

is a stable node for values of 𝜆 and 𝛼 that belong to the
shaded region in Figure 6(a), and a stable spiral for values of
𝜆 and 𝛼 belonging to the shaded region in Figure 6(b). This
point is an accelerated scaling solution. Now, by considering
(8), (9), (22), (23), and (26), the coincidence problem can be
addressed naturally. In fact, with 0 < Ω

𝑚
< 1 and 0 < Ω

𝜑
< 1,

our analysis confirms that Ω
𝑚
/Ω
𝜑
< 1 and 𝜔tot < −1/3. The

phase portrait for this case is shown in Figure 7(b). It has been
shown that if we select 𝜆 and 𝛼 from Figure 6, the critical
points 𝐶

±
(matter dominated phase) will be a saddle point

and all the trajectories converge to the attractor points𝐷
±
. By

adopting suitable values of quantities 𝛾, 𝜆, and 𝛼, the current
value of the darkmatter density,Ω

𝑚
, can be in agreementwith

recent data from Planck + WMAP [30], Ω
𝑚

= 0.315
+0.016

−0.018
.

The behavior of 𝜔tot is shown in Figure 8(b). Now the total

equation of state parameter crosses the phantom divide line
and the universe reaches a stable phase. From Figure 8, we
see that if we choose suitable values for 𝛾, 𝜆, and 𝛼, the value
of the equation of state parameter can be in agreement with
recent observational data; 𝜔tot = −1.13

+0.23

−0.25
according to the

Planck + WP + highL + BAO results [30].

4. Statefinder Diagnostic

The dark energy properties are model-dependent. In order to
distinguish between different types of dark energy models, in
2003 Sahni et al. [33] have suggested a diagnostic proposal by
introducing a new pair of parameters {𝑟, 𝑠}, called statefinder
parameters. These parameters can be constructed by using
both the second and third derivatives of the expansion factor.
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Figure 5: In the 𝛾-𝛼 space with 𝜉 = 1/6, the critical points 𝐶
±
are stable nodes for the shaded region (a). Also the critical points 𝐶

±
with

𝜉 = 1/6 are stable spirals for shaded region (b).
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Figure 6: In the 𝛾-𝛼 space with 𝜉 = 1/6, the critical points 𝐷
±
are stable nodes for the shaded region (a). Also the critical points 𝐷

±
with

𝜉 = 1/6 are stable spirals for shaded region (b).

The second derivative gives the deceleration parameter which
has the following form in a spatially flat universe:

𝑞 = −
̈𝑎

𝑎𝐻2
= −(1 +

�̇�

𝐻2
) . (40)

The statefinder pair, {𝑟, 𝑠}, are defined as

𝑟 =

...
𝑎

𝑎𝐻3
=

�̈�

𝐻3
− 3𝑞 − 2, (41)

𝑠 =
𝑟 − 1

3 (𝑞 − (1/2))
. (42)
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+
(0, 0) is a stable node (a sink) so

that the quintessence dominated solution is the future attractor. The critical points 𝑐
±
(0, ±1) and𝐷

±
(0, ±0.9) are saddle points. (b) The phase

plane for the critical points 𝐷
±
with 𝛾 = −0.1, 𝜆 = 1, 𝛼 = 1.15, and 𝜉 = 1/6. The critical points 𝐷

±
(0, ±0.55) are stable nodes (sinks) so that

the quintessence dominated solution is the late time attractor. The critical points 𝐴(0, 0) and 𝐵
±
(0, ±1) are saddle points.
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= 0.83 as initial values.
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The statefinder diagnostic tool depends on the scale factor.
This shows that the statefinder parameters are geometrical
in essence. Nowadays, the various dark energy models have
been considered from the statefinder diagnostic point of view.
The different dark energy models have various evolutionary
trajectories in {𝑠, 𝑟} plane. So, the statefinder tool can distin-
guish between alternative models. Furthermore, by using the
statefinder parameters, we can study the expansion history of
the universe by using higher derivatives of the scale factor.
The Λ𝐶𝐷𝑀 scenario corresponds to a critical point in the
𝑟-𝑠 phase diagram with {𝑟, 𝑠}

Λ𝐶𝐷𝑀
= {1, 0}. By drawing the

trajectories in the 𝑟-𝑠 phase plane, the discrepancy of the
model from Λ𝐶𝐷𝑀 can be investigated [34]. We can rewrite
(41) as

𝑟 =
𝑑

𝑑𝑁
[
�̇�

𝐻2
] + 2 [

�̇�

𝐻2
]

2

+ 3 [
�̇�

𝐻2
] + 1. (43)

In a minimally coupled quintessence field with the dark
matter, by substituting (11) into (43), 𝑟 is obtained to be as
follows

𝑟 = −3𝛾𝑥
3
𝑥


3
− 6𝑥
1
𝑥


1
+ 2 [

�̇�

𝐻2
]

2

+ 3
�̇�

𝐻2
+ 1, (44)

where a prime denotes derivative with respect to𝑁 = ln 𝑎(𝑡).
Also 𝑠 parameter can be derived by substituting (44),

(40), and (11) into (42). Due to its lengthy form, we avoid
presenting this quantity explicitly. Now, we examine the
numerical analysis of the statefinder diagnostic. Figure 9 for
the late time stable scaling solutions𝐸

±
, shows the trajectories

of {𝑟, 𝑠}, {𝑞, 𝑠}, and {𝑞, 𝑟} phase plane for two different 𝛾 and 𝜆
parameters. If 𝛾 = 0.5 and 𝜆 = 1.48, the initial values will be
𝑥
01

= 0.41 and 𝑥
03

= 0.56 with (𝑥
2

03
= Ω
𝑚
= 0.315) for blue,

dashed line. For 𝛾 = 0.05 and 𝜆 = 0.47, the initial values will
be𝑥
01
= 0.13 and𝑥

03
= 0.56 for purple solid line and this is in

agreement with Planck data [30]. As the figure illustrates with
various 𝛾 and 𝜆 parameters, the trajectories evolve differently.
One can choose small values of 𝛾 and 𝜆 in order to approach
the Λ𝐶𝐷𝑀 model in this framework. We note also that in
this platform one can choose the suitable values of 𝛾 and 𝜆

in order to find more viable values ofΩ
𝑚
in comparison with

recent observations.
After studying statefinder diagnostic for the case with

minimal coupling between the quintessence field and dark
matter, now we extend our analysis to the nonminimal
coupling between the dark energy component and the scalar
curvature.The 𝑟 parameter can be obtained by replacing (24)
into (43)

𝑟 = 1

+

−3𝛾𝑥
3
𝑥


3
− 6𝑥
1
𝑥


1
− 4√6𝜉 (𝑥

4
𝑥


1
+ 𝑥
1
𝑥


4
) + 12𝜉𝑥

1
𝑥


1

1 − 𝑥
2

4
+ 6𝜉𝑥

2

4

+ (6𝜆√𝜉𝑥
4
[(𝑥
2

1
+ 𝑥
2

3
+ 𝑥
2

4
+ 2√6𝜉𝑥

1
𝑥
4
− 1)

1/2

]

× [𝑥
1
𝑥


1
+ 𝑥
3
𝑥


3
+ 𝑥
4
𝑥


4
+ √6𝜉 (𝑥



1
𝑥
4
+ 𝑥
1
𝑥


4
)])

× (1 − 𝑥
2

4
+ 6𝜉𝑥

2

4
)
−1

+

3𝜆√𝜉 (1 − 𝑥
2

1
− 𝑥
2

3
− 𝑥
2

4
− 2√6𝜉𝑥

1
𝑥
4
) 𝑥


4
− 24𝜉𝑥

3
𝑥


4

1 − 𝑥
2

4
+ 6𝜉𝑥

2

4

+ [(
2𝑥
4
𝑥


4
− 12𝜉𝑥

4
𝑥


4

1 − 𝑥
2

4
+ 6𝜉𝑥

2

4

) + 3]
�̇�

𝐻2
+ 2(

�̇�

𝐻2
)

2

.

(45)

As we have mentioned previously, 𝑠 parameter can be
obtained by replacing (45), (40), and (24) in (42). Now we
present the numerical analysis of the statefinder diagnostic.
Figure 10 for the stable node 𝐵

+
shows the trajectories of

{𝑟, 𝑠}, {𝑞, 𝑠}, and {𝑞, 𝑟} phase planes for two different initial
values with 𝛾 = 1, 𝜆 = 1, and 𝜉 = 1/6. As this figure
indicates, the model with ordinary dark mater (𝛾 = 1) and
a nonminimally coupled quintessence field, the trajectories
of {𝑟, 𝑠}, {𝑞, 𝑠}, and {𝑞, 𝑟} in phase plane reach a stable point
in the future, that is, corresponding to the Λ𝐶𝐷𝑀 model
({𝑟, 𝑠, 𝑞} = {1, 0, −1}).

Now we study statefinder diagnostic for a general model
with dark energy nonminimally coupled to both dark matter
and scalar curvature. Similar to our previous treatment, the 𝑟
parameter can be derived by replacing (37) into (43)

𝑟 = 1 + ( − 3𝛾𝑥
3
𝑥


3
− 6𝑥
1
𝑥


1
− 4√6𝜉 (𝑥

4
𝑥


1
+ 𝑥
1
𝑥


4
)

+ 12𝜉𝑥
1
𝑥


1
+ 6𝛼 (2𝑥

4
𝑥


4
𝑥
2

3
+ 2𝑥
2

4
𝑥
3
𝑥


3
) )

× (1 − 𝑥
2

4
+ 6𝜉𝑥

2

4
)
−1

+ (6𝜆√𝜉𝑥
4
[(𝑥
2

1
+ 𝑥
2

3
+ 𝑥
2

4
+ 2√6𝜉𝑥

1
𝑥
4
− 1)

1/2

]

× [𝑥
1
𝑥


1
+ 𝑥
3
𝑥


3
+ 𝑥
4
𝑥


4
+ √6𝜉 (𝑥



1
𝑥
4
+ 𝑥
1
𝑥


4
)])

× (1 − 𝑥
2

4
+ 6𝜉𝑥

2

4
)
−1

+

3𝜆√𝜉 (1 − 𝑥
2

1
− 𝑥
2

3
− 𝑥
2

4
− 2√6𝜉𝑥

1
𝑥
4
) 𝑥


4
− 24𝜉𝑥

3
𝑥


4

1 − 𝑥
2

4
+ 6𝜉𝑥

2

4

+ [(
2𝑥
4
𝑥


4
− 12𝜉𝑥

4
𝑥


4

1 − 𝑥
2

4
+ 6𝜉𝑥

2

4

) + 3]
�̇�

𝐻2
+ 2(

�̇�

𝐻2
)

2

.

(46)

The parameter 𝑠 can be calculated by replacing (46), (40),
and (37) into (42). For this model we analyze numerically
the statefinder diagnostic for critical points 𝐵

+
, and 𝐷

±
.

If we consider 0 < 𝛾 < 2, then the critical points
𝐷
±
for the late time scaling solution will be saddle points

(see Table 5). In addition, by considering the attractor
points 𝐵

±
, the model reaches the Λ𝐶𝐷𝑀 model in the

future. For stable node 𝐵
+
, the trajectories of {𝑟, 𝑠}, {𝑞, 𝑠},

and {𝑞, 𝑟} in phase plane with two initial conditions are
drawn in Figure 11. In these figures we considered two
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Figure 9: Trajectories of the stable nodes 𝐸
±
in {𝑟, 𝑠} phase plane with initial values 𝑥

1
= 0.41 and 𝑥

3
= 0.56 for the blue dashed line, and

𝑥
1
= 0.13 and 𝑥

3
= 0.56 for purple solid line with the specified values of 𝛾 and 𝜆 (a). Point 𝑇 shows the late time values of {𝑟, 𝑠} in this model.

Point 𝐹 is the stable state of {𝑟, 𝑠} in the future. The value of the statefinder {𝑟, 𝑠} in the Λ𝐶𝐷𝑀 scenario is shown by Λ𝐶𝐷𝑀 point. (b) shows
the trajectories of the stable nodes 𝐸

±
in {𝑞, 𝑟} phase plane with the same initial values as for (a). (c) is devoted to {𝑞, 𝑠} phase plane.

different sets of initial values for 𝑥
1
, 𝑥
3
, and 𝑥

4
as have

been shown in figures and we have set also 𝜉 = 1/6,
𝜆 = 0.5, 𝛼 = 0.1, and 𝛾 = 1 (for ordinary dark matter).
These two different initial values lead to the trajectories that
evolve to the same fixed point in the future. For stable nodes

𝐷
±
, with 𝛾 < 0 (corresponding to nonordinary dark matter)

we have late time scaling solutions. The trajectories of {𝑟, 𝑠},
{𝑞, 𝑠}, and {𝑞, 𝑟} in phase plane with two different values of the
𝛾 parameter, but with the same initial conditions,𝑥

1
= 0,𝑥

3
=

0.56, and 𝑥
4
= 0.83, have been shown in Figure 12. As this
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Figure 10: Trajectories in {𝑟, 𝑠}, {𝑞, 𝑟}, and {𝑞, 𝑠} phase planes for the stable node 𝐵
+
with 𝜆 = 1 and 𝛾 = 1 (corresponding to ordinary dark

matter) with two sets of initial conditions.

figure illustrates, with different values of the 𝛾 parameter the
trajectories evolve differently. With both adopted values of
the 𝛾 parameter, the model approaches the Λ𝐶𝐷𝑀model in
the late time and also the future. However, it is possible to
choose the values of 𝛾 so that the model tends to the Λ𝐶𝐷𝑀
model at late time or future.

5. Summary and Conclusion

In this paper we have studied an interacting model in which
the dark sectors (dark matter and dark energy) are coupled
to each other in a background gravitational field which is
nonminimally coupled to the dark energy. We have shown
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Figure 11: Trajectories in {𝑟, 𝑠}, {𝑞, 𝑟}, and {𝑞, 𝑠} phase planes for the stable node 𝐵
+
with 𝜉 = 1/6, 𝜆 = 0.5, 𝛼 = 0.1, and 𝛾 = 1 with two sets of

initial conditions as specified in the figures.

the possibility of having scaling solutions in this setup. These
solutions are capable of addressing the coincidence problem
in a manner much similar to the chameleon mechanism. In
fact, we have introduced the idea that 𝛾, as the barotropic
index, is capable of getting negative values for nonordi-
nary dark matter (or in some nonstandard situations). This

assumption opens new windows in the issue of dark energy
interacting with dark matter. With this assumption, it is
possible to have complex sound velocity in themediummuch
similar to the complex index of refraction in optical media.

In summary, in the first part of the paper we have
considered a minimal model with no interaction between
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Figure 12: Trajectories in {𝑟, 𝑠}, {𝑞, 𝑟}, and {𝑞, 𝑠} phase planes for the stable nodes 𝐷
±
with 𝜉 = 1/6, 𝜆 = 1 and initial conditions 𝑥

1
= 0,

𝑥
3
= 0.56, and 𝑥

4
= 0.83.

the dark sectors. In this case there is no crossing of the
phantom divide. In the next step we considered nonminimal
coupling between dark energy and gravitational sector but
without any interaction between the dark sectors. In this case,
there is no attractor solution for late time. There is also no
possibility for transition to phantom phase. In the last step we
supposed a general model with interaction between the dark

sectors and also between dark energy and scalar curvature.
This general model in the spirit of scalar-tensor theories
provides a lot of interesting facilities: there is a possiblity
to cross the phantom divide line by the equation of state
parameter in some subspaces of the model parameter space,
it is possible to address the coincidence problem in a natural
manner and finally there is a late time attractor which goes
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to Λ𝐶𝐷𝑀 in the future via statefinder diagnostic analysis. In
each step we have compared our results with observational
data from Planck +WP + highL + BAO joint data set.

Appendix

The values of the parameters 𝐺
𝑖
introduced in Tables 4 and 6

are as follows:

𝐺
1,2

= ±
1

2
(∓ 27𝜉𝜆

2

+ (− 3 (9𝜉𝜆
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2
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