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We study the state-space geometry of various extremal and nonextremal black holes in string theory. From the notion of the
intrinsic geometry, we offer a state-space perspective to the black hole vacuum fluctuations. For a given black hole entropy,
we explicate the intrinsic geometric meaning of the statistical fluctuations, local and global stability conditions, and long range
statistical correlations. We provide a set of physical motivations pertaining to the extremal and nonextremal black holes, namely,
the meaning of the chemical geometry and physics of correlation. We illustrate the state-space configurations for general charge
extremal black holes. In sequel, we extend our analysis for various possible charge and anticharge nonextremal black holes. From
the perspective of statistical fluctuation theory, we offer general remarks, future directions, and open issues towards the intrinsic
geometric understanding of the vacuum fluctuations and black holes in string theory.

1. Introduction

In this paper, we study statistical properties of the charged
and anticharged black hole configurations in string theory.
Specifically, we illustrate that the components of the vacuum
fluctuations define a set of local pair correlations against
the parameters, for example, charges, anticharges, mass,
and angular momenta. Our consideration follows from the
notion of the thermodynamic geometry, mainly introduced
by Weinhold [1, 2] and Ruppeiner [3–9]. Importantly, this
framework provides a simple platform to geometrically
understand the statistical nature of local pair correlations
and underlying structures pertaining to the vacuum phase
transitions. In diverse contexts, the state-space geometric
perspective offers an understanding of the phase structures
of mixtures of gases, black hole configurations [10–26],
generalized uncertainty principle [27], strong interactions,
for example, hot QCD [28], quarkonium configurations [29],
and some other systems, as well.

The main purpose of the present paper is to consider
the state-space properties of various possible extremal and

nonextremal black holes in string theory, in general. String
theory [30], as the most promising framework to understand
all possible fundamental interactions, celebrates the physics
of black holes, in both the zero and the nonzero temperature
domains. Our consideration hereby plays a crucial role
in understanding the possible phases and stability of the
string theory vacua. A further motivation follows from the
consideration of the string theory black holes; namely,N = 2

supergravity arises as a low energy limit of the Type II string
theory solution, admitting extremal black holes with the zero
Hawking temperature and a nonzero macroscopic attractor
entropy.

A priori, the entropy depends on a large number of
scalar moduli arising from the compactification of the 10-
dimensional theory down to the 4-dimensional physical
spacetime. This involves a 6-dimensional compactifying
manifold. Interesting string theory compactifications involve
𝑇

6, 𝐾
3
× 𝑇

2, and Calabi-Yau manifolds. The macroscopic
entropy exhibits a fixed point behavior under the radial
flow of the scalar fields. In such cases, the near horizon
geometry of an extremal black hole turns out to be an
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𝐴𝑑𝑆
2
× 𝑆

2 manifold which describes the Bertotti-Robinson
vacuum associated with the black hole. The area of the black
hole horizon is 𝐴 and thus the macroscopic entropy [31–
42] is given as 𝑆macro = 𝜋|𝑍

∞
|

2. This is known as the
Ferrara-Kallosh-Strominger attractor mechanism, which, as
the macroscopic consideration, requires a validity from the
microscopic or statistical basis of the entropy. In this concern,
there have been various investigations on the physics of black
holes, for example, horizon properties [43, 44], counting
of black hole microstates [45–47], spectrum of half-BPS
states in N = 4 supersymmetric string theory [48], and
fractionation of branes [49]. From the perspective of the
fluctuation theory, our analysis is intended to provide the
nature of the statistical structures of the extremal and nonex-
tremal black hole configurations.The attractor configurations
exist for the extremal black holes, in general. However, the
corresponding nonextremal configurations exist in the throat
approximation. In this direction, it is worth mentioning that
there exists an extension of Sen entropy function formalism
for 𝐷

1
𝐷
5
and 𝐷

2
𝐷
6
𝑁𝑆
5
nonextremal configurations [50–

52]. In the throat approximation, these solutions, respectively,
correspond to Schwarzschild black holes in 𝐴𝑑𝑆

3
× 𝑆

3
× 𝑇

4

and 𝐴𝑑𝑆
3
× 𝑆

2
× 𝑆

1
× 𝑇

4. In relation with the intrinsic state-
space geometry, we will explore the statistical understanding
of the attractor mechanism and the moduli space geometry
and explain the vacuum fluctuations of the black brane
configurations.

In this paper, we consider the state-space geometry of
the spherical horizon topology black holes in four spacetime
dimensions. These configurations carry a set of electric mag-
netic charges (𝑞

𝑖
, 𝑝
𝑖
). Due to the consideration of Strominger

and Vafa [53], these charges are associated with an ensemble
of weakly interacting D-branes. Following [53–59], it turns
out that the charges (𝑞

𝑖
, 𝑝
𝑖
) are proportional to the number of

electric andmagnetic branes, which constitute the underlying
ensemble of the chosen black hole. In the large charge limit,
namely, when the number of such branes becomes large,
we have treated the logarithm of the degeneracy of states
of the statistical configuration as the Bekenstein-Hawking
entropy of the associated string theory black holes. For the
extremal black holes, the entropy is described in terms of
the number of the constituent D-branes. For example, the
two charge extremal configurations can be examined in terms
of the winding modes and the momentum modes of an
excited string carrying 𝑛

1
windingmodes and 𝑛

𝑝
momentum

modes. Correspondingly, the state-space geometry of the
nonextremal black holes is described by adding energy to
the extremal D-branes configurations. This renders as the
contribution of the clockwise and anticlockwise momenta in
the Kaluza-Klein scenarios and that of the antibrane charges
in general to the black hole entropy.

From the perspective of black hole thermodynamics, we
describe the structure of the state-space geometry of four-
dimensional extremal and nonextremal black holes in a given
duality frame. Thus, when we take arbitrary variations over
the charges (𝑞

𝑖
, 𝑝
𝑖
) on the electric and magnetic branes, the

underlying statistical fluctuations are described by only the
numbers of the constituent electric and magnetic branes.

From the perspective of the intrinsic state-space geometry,
if one pretends that the notion of statistical fluctuations
applies to intermediate regimes of the moduli space, then
the attractor horizon configurations require an embedding
to the higher dimensional intrinsic Riemanian manifold.
Physically, such a higher dimensionalmanifold can be viewed
as a possible blow-up of the attractor fixed point phase-
space to a nontrivial moduli space. From the perspective
of thermodynamic Ruppenier geometry, we have offered
future directions and open issues in the conclusion. We leave
the explicit consideration of these matters open for further
research.

In Section 2, we define the general notion of vacuum
fluctuations. This offers the physical meaning of the state-
space geometry. In Section 3, we provide a brief review of
statistical fluctuations. In particular, for a given black hole
entropy, we firstly explicate the statistical meaning of state-
space surface and then offer the general meaning of the
local and global stability conditions and long range statistical
correlations. In Section 4, we provide a set of physical
motivations pertaining to the extremal and nonextremal
black holes, the meaning of Wienhold chemical geometry,
and the physics of correlation. In Section 5, we consider
state-space configurations pertaining to the extremal black
holes and explicate our analysis for the two and three charge
configurations. In Section 6, we extend the above analysis for
the four, six, and eight charge-anticharge nonextremal black
holes. Finally, Section 7 provides general remarks, conclusion
and outlook, and future directions and open issues towards
the application of string theory.

2. Definition of State-Space Geometry

Considering the fact that the black hole configurations in
string theory introduce the notion of vacuum, it turns out
for any thermodynamic system, that there exist equilibrium
thermodynamic states given by the maxima of the entropy.
These states may be represented by points on the state-space.
Along with the laws of the equilibrium thermodynamics,
the theory of fluctuations leads to the intrinsic Riemannian
geometric structure on the space of equilibrium states [8, 9].
The invariant distance between two arbitrary equilibrium
states is inversely proportional to the fluctuations connecting
the two states. In particular, a less probable fluctuationmeans
that the states are far apart. For a given set of states {𝑋

𝑖
}, the

state-space metric tensor is defined by

𝑔
𝑖𝑗 (
𝑋) = −𝜕𝑖

𝜕
𝑗
𝑆 (𝑋
1
, 𝑋
2
, . . . , 𝑋

𝑛
) . (1)

A physical motivation of (1) can be given as follows. Up to
the second order approximation, the Taylor expansion of the
entropy 𝑆(𝑋

1
, 𝑋
2
, . . . , 𝑋

𝑛
) yields

𝑆 − 𝑆
0
= −

1

2

𝑛

∑

𝑖=1

𝑔
𝑖𝑗
Δ𝑋

𝑖
Δ𝑋

𝑗
, (2)

where

𝑔
𝑖𝑗
:= −

𝜕

2
𝑆 (𝑋
1
, 𝑋
2
, . . . , 𝑋

𝑛
)

𝜕𝑋

𝑖
𝜕𝑋

𝑗
= 𝑔
𝑗𝑖

(3)
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is called the state-space metric tensor. In the present investi-
gation, we consider the state-space variables {𝑋

1
, 𝑋
2
, . . . , 𝑋

𝑛
}

as the parameters of the ensemble of the microstates of
the underlying microscopic configuration (e.g., conformal
field theory [60], black hole conformal field theory [61], and
hidden conformal field theory [62, 63]), which defines the
corresponding macroscopic thermodynamic configuration.
Physically, the state-space geometry can be understood as the
intrinsic Riemannian geometry involving the parameters of
the underlying microscopic statistical theory. In practice, we
will consider the variables {𝑋

1
, 𝑋
2
, . . . , 𝑋

𝑛
} as the parameters,

namely, charges, anticharges, and others if any, of the corre-
sponding low energy limit of the string theory, for example,
N = 2 supergravity. In the limit, when all the variables,
namely, {𝑋

1
, 𝑋
2
, . . . , 𝑋

𝑛
}, are thermodynamic, the state-space

metric tensor equation (1) reduces to the corresponding
Ruppenier metric tensor. In the discrete limit, the relative
coordinates Δ𝑋𝑖 are defined as Δ𝑋𝑖 := 𝑋𝑖 − 𝑋𝑖

0
, for given

{𝑋

𝑖

0
} ∈ 𝑀

𝑛
. In the Gaussian approximation, the probability

distribution has the following form:

𝑃 (𝑋
1
, 𝑋
2
, . . . , 𝑋

𝑛
) = 𝐴 exp(−1

2

𝑔
𝑖𝑗
Δ𝑋

𝑖
Δ𝑋

𝑗
) . (4)

With the normalization

∫∏

𝑖

𝑑𝑋
𝑖
𝑃 (𝑋
1
, 𝑋
2
, . . . , 𝑋

𝑛
) = 1, (5)

we have the following probability distribution:

𝑃 (𝑋
1
, 𝑋
2
, . . . , 𝑋

𝑛
) =

√𝑔 (𝑋)

(2𝜋)

𝑛/2
exp(−1

2

𝑔
𝑖𝑗
𝑑𝑋

𝑖
⊗ 𝑑𝑋

𝑗
) , (6)

where 𝑔
𝑖𝑗
now, in a strict mathematical sense, is properly

defined as the inner product 𝑔(𝜕/𝜕𝑋𝑖, 𝜕/𝜕𝑋𝑗) on the corre-
sponding tangent space 𝑇(𝑀

𝑛
) ×𝑇(𝑀

𝑛
). In this connotation,

the determinant of the state-space metric tensor,

𝑔 (𝑋) :=

󵄩
󵄩
󵄩
󵄩
󵄩

𝑔
𝑖𝑗

󵄩
󵄩
󵄩
󵄩
󵄩

, (7)

can be understood as the determinant of the corresponding
matrix [𝑔

𝑖𝑗
]
𝑛×𝑛

. For a given state-space manifold (𝑀
𝑛
, 𝑔), we

will think of {𝑑𝑋𝑖} as the basis of the cotangent space𝑇⋆(𝑀
𝑛
).

In the subsequent analysis, by taking an account of the fact
that the physical vacuum is neutral, we will choose𝑋𝑖

0
= 0.

3. Statistical Fluctuations

3.1. Black Hole Entropy. As a first exercise, we have illustrated
thermodynamic state-space geometry for the two charge
extremal black holes with electric charge 𝑞 and magnetic
charge 𝑝. The next step has thence been to examine the
thermodynamic geometry at an attractor fixed point(s) for
the extremal black holes as the maxima of their macro-
scopic entropy 𝑆(𝑞, 𝑝). Later on, the state-space geometry
of nonextremal counterparts has as well been analyzed.
In this investigation, we demonstrate that the state-space
correlations of nonextremal black holes modulate relatively
more swiftly to an equilibrium statistical basis than those of
the corresponding extremal solutions.

3.2. State-Space Surface. The Ruppenier metric on the state-
space (𝑀

2
, 𝑔) of two charge black holes is defined by

𝑔
𝑞𝑞
= −

𝜕

2
𝑆 (𝑞, 𝑝)

𝜕𝑞

2
, 𝑔

𝑞𝑝
= −

𝜕

2
𝑆 (𝑞, 𝑝)

𝜕𝑞𝜕𝑝

,

𝑔
𝑝𝑝
= −

𝜕

2
𝑆 (𝑞, 𝑝)

𝜕𝑝

2
.

(8)

Subsequently, the components of the state-space metric
tensor are associated with the respective statistical pair
correlation functions. It is worth mentioning that the coor-
dinates on the state-space manifold are the parameters of
the microscopic boundary conformal field theory which is
dual the black hole space-time solution. This is because
the underlying state-space metric tensor comprises of the
Gaussian fluctuations of the entropy which is the function
of the number of the branes and antibranes. For the chosen
black hole configuration, the local stability of the underly-
ing statistical system requires both principle minors to be
positive. In this setup, the diagonal components of the state-
space metric tensor, namely, {𝑔

𝑥𝑖𝑥𝑖
| 𝑥
𝑖
= (𝑛,𝑚)}, signify the

heat capacities of the system. This requires that the diagonal
components of the state-space metric tensor

𝑔
𝑥𝑖𝑥𝑖
> 0, 𝑖 = 𝑛,𝑚, (9)

be positive definite. In this investigation, we discuss the
significance of the above observation for the eight parameter
nonextremal black brane configurations in string theory.
From the notion of the relative scaling property, we will
demonstrate the nature of the brane-brane pair correlations;
namely, from the perspective of the intrinsic Riemannian
geometry, the stability properties of the eight parameter black
branes are examined from the positivity of the principle
minors of the space-state metric tensor. For the Gaussian
fluctuations of the two charge equilibrium statistical configu-
rations, the existence of a positive definite volume form on
the state-space manifold (𝑀

2
(𝑅), 𝑔) imposes such a global

stability condition. In particular, the above configuration
leads to a stable statistical basis if the determinant of the state-
space metric tensor,

󵄩
󵄩
󵄩
󵄩

𝑔

󵄩
󵄩
󵄩
󵄩

= 𝑆
𝑛𝑛
𝑆
𝑚𝑚
− 𝑆

2

𝑛𝑚
, (10)

remains positive. Indeed, for the two charge black brane
configurations, the geometric quantities corresponding to the
underlying state-space manifold elucidate typical features of
the Gaussian fluctuations about an ensemble of equilibrium
brane microstates. In this case, we see that the Christoffel
connections on the (𝑀

2
, 𝑔) are defined by

Γ
𝑖𝑗𝑘
= 𝑔
𝑖𝑗,𝑘
+ 𝑔
𝑖𝑘,𝑗
− 𝑔
𝑗𝑘,𝑖
. (11)

The only nonzero Riemann curvature tensor is

𝑅
𝑞𝑝𝑞𝑝

=

𝑁

𝐷

, (12)
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where

𝑁 := 𝑆
𝑝𝑝
𝑆
𝑞𝑞𝑞
𝑆
𝑞𝑝𝑝
+ 𝑆
𝑞𝑝
𝑆
𝑞𝑞𝑝
𝑆
𝑞𝑝𝑝

+ 𝑆
𝑞𝑞
𝑆
𝑞𝑞𝑝
𝑆
𝑝𝑝𝑝
− 𝑆
𝑞𝑝
𝑆
𝑞𝑞𝑞
𝑆
𝑝𝑝𝑝

− 𝑆
𝑞𝑞
𝑆

2

𝑞𝑝𝑝
− 𝑆
𝑝𝑝
𝑆

2

𝑞𝑞𝑝
,

(13)

𝐷 := (𝑆
𝑞𝑞
𝑆
𝑝𝑝
− 𝑆

2

𝑞𝑝
)

2

. (14)

The scalar curvature and the corresponding 𝑅
𝑖𝑗𝑘𝑙

of an
arbitrary two-dimensional intrinsic state-space manifold
(𝑀
2
(𝑅), 𝑔)may be given as

𝑅 (𝑞, 𝑝) =

2

󵄩
󵄩
󵄩
󵄩

𝑔

󵄩
󵄩
󵄩
󵄩

𝑅
𝑞𝑝𝑞𝑝

(𝑞, 𝑝) . (15)

3.3. Stability Conditions. For a given set of variables
{𝑋

1
, 𝑋

2
, . . . , 𝑋

𝑛
}, the local stability of the underlying state-

space configuration demands the positivity of the heat
capacities:

{𝑔
𝑖𝑖
(𝑋

𝑖
) > 0; ∀𝑖 = 1, 2, . . . , 𝑛} . (16)

Physically, the principle components of the state-spacemetric
tensor {𝑔

𝑖𝑖
(𝑋

𝑖
) | 𝑖 = 1, 2, . . . , 𝑛} signify a set of defi-

nite heat capacities (or the related compressibilities), whose
positivity apprises that the black hole solution complies an
underlying, locally in equilibrium, statistical configuration.
Notice further that the positivity of principle components
is not sufficient to insure the global stability of the chosen
configuration and thus one may only achieve a locally
stable equilibriumstatistical configuration. In fact, the global
stability condition constraint over the allowed domain of the
parameters of black hole configurations requires that all the
principle components and all the principle minors of the
metric tensor must be strictly positive definite [6]. The above
stability conditions require that the following set of equations
must be simultaneously satisfied:

𝑝
0
:= 1,

𝑝
1
:= 𝑔
11
> 0,

𝑝
2
:=

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑔
11
𝑔
12

𝑔
12
𝑔
22

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

> 0,

𝑝
3
:=

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑔
11
𝑔
12
𝑔
13

𝑔
12
𝑔
22
𝑔
23

𝑔
13
𝑔
23
𝑔
33

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

> 0,

...

𝑝
𝑛
:=

󵄩
󵄩
󵄩
󵄩

𝑔

󵄩
󵄩
󵄩
󵄩

> 0.

(17)

3.4. Long Range Correlations. The thermodynamic scalar
curvature of the state-space manifold is proportional to the
correlation volume [6]. Physically, the scalar curvature sig-
nifies the interaction(s) of the underlying statistical system.

Ruppenier has in particular noticed for the black holes in
general relativity that the scalar curvature

𝑅 (𝑋) ∼ 𝜉

𝑑
, (18)

where 𝑑 is the spatial dimension of the statistical system
and the 𝜉 fixes the physical scale [6]. The limit 𝑅(𝑋) →

∞ indicates the existence of certain critical points or phase
transitions in the underlying statistical system. The fact that
“all the statistical degrees of freedom of a black hole live
on the black hole event horizon” signifies that the state-
space scalar curvature, as the intrinsic geometric invariant,
indicates an average number of correlated Plank areas on
the event horizon of the black hole [8]. In this concern, [9]
offers interesting physical properties of the thermodynamic
scalar curvature and phase transitions in Kerr-Newman black
holes. Ruppeiner [6] has further conjectured that the global
correlations can be expressed by the following arguments: (a)
the zero state-space scalar curvature indicates certain bits of
information on the event horizon, fluctuating independently
of each other; (b) the diverging scalar curvature signals a
phase transition indicating highly correlated pixels of the
information.

4. Some Physical Motivations

4.1. Extremal Black Holes. The state-space of the extremal
black hole configuration is a reduced space comprising of
the states which respect the extremality (BPS) condition.The
state-spaces of the extremal black holes show an intrinsic
geometric description. Our intrinsic geometric analysis offers
a possible zero temperature characterization of the limiting
extremal black brane attractors. From the gauge/gravity
correspondence, the existence of state-space geometry could
be relevant to the boundary gauge theories, which have
finitely many countable sets of conformal field theory states.

4.2. Nonextremal Black Holes. We will analyze the state-
space geometry of nonextremal black holes by the addition
of antibrane charge(s) to the entropy of the corresponding
extremal black holes. To interrogate the stability of a chosen
black hole system, we will investigate the question that the
underlying metric 𝑔

𝑖𝑗
(𝑋
𝑖
) = −𝜕

𝑖
𝜕
𝑗
𝑆(𝑋
1
, 𝑋
2
, . . . , 𝑋

𝑛
) should

provide a nondegenerate state-space manifold. The exact
dependence varies case to case. In the next section, we will
proceed in our analysis with an increasing number of the
brane charges and antibrane charges.

4.3. Chemical Geometry. The thermodynamic configurations
of nonextremal black holes in string theory with small
statistical fluctuations in a “canonical” ensemble are stable if
the following inequality holds:

󵄩
󵄩
󵄩
󵄩
󵄩

𝜕
𝑖
𝜕
𝑗
𝑆 (𝑋
1
, 𝑋
2
, . . . , 𝑋

𝑛
)

󵄩
󵄩
󵄩
󵄩
󵄩

< 0. (19)

The thermal fluctuations of nonextremal black holes, when
considered in the canonical ensemble, give a closer approxi-
mation to the microcanonical entropy:

𝑆 = 𝑆
0
−

1

2

ln (𝐶𝑇2) + ⋅ ⋅ ⋅ . (20)
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In (20), the 𝑆
0
is the entropy in the “canonical” ensemble

and 𝐶 is the specific heat of the black hole statistical
configuration. At low temperature, the quantum effects
dominate and the above expansion does not hold anymore.
The stability condition of the canonical ensemble is just
𝐶 > 0. In other words, the Hessian function of the inter-
nal energy with respect to the chemical variables, namely,
{𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
}, remains positive definite. Hence, the energy

as the function of the {𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
} satisfies the following

condition:
󵄩
󵄩
󵄩
󵄩
󵄩

𝜕
𝑖
𝜕
𝑗
𝐸 (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
)

󵄩
󵄩
󵄩
󵄩
󵄩

> 0. (21)

The state-space coordinates {𝑋𝑖} and intensive chemical
variables {𝑥

𝑖
} are conjugate to each other. In particular, the

{𝑋

𝑖
} are defined as the Legendre transform of {𝑥

𝑖
}, and thus

we have

𝑋

𝑖
:=

𝜕𝑆 (𝑥)

𝜕𝑥
𝑖

. (22)

4.4. Physics of Correlation. Geometrically, the positivity of
the heat capacity𝐶 > 0 turns out to be the positivity condition
of 𝑔
𝑖𝑗
> 0, for a given 𝑖. In many cases, the state-space stability

restriction on the parameters of the black hole corresponds
to the situation away from the extremality condition; namely,
𝑟
+
= 𝑟
−
. Far from the extremality condition, even at the

zero antibrane charge or angular momentum, we find that
there is a finite value of the thermodynamic scalar curvature,
unlike the nonrotating or only brane-charged configurations.
It turns out that the state-space geometry of the two charge
extremal configurations is flat. Thus, the Einstein-Hilbert
contributions lead to a noninteracting statistical system.
At the tree level, some black hole configurations turn out
to be ill-defined, as well. However, we anticipate that the
corresponding state-space configuration would become well-
defined when a sufficient number of higher derivative cor-
rections [64–67] are taken into account with respect to the
𝛼

󸀠-corrections and the string loop 𝑙
𝑠
corrections. For the BTZ

black holes [13], we notice that the large entropy limit turns
out to be the stability bound, beyond which the underlying
quantum effects dominate.

For the black hole in string theory, the Ricci scalar of
the state-space geometry is anticipated to be positive definite
with finitely many higher order corrections. For nonextremal
black brane configurations, which are far from the extremal-
ity condition, such effects have been seen from the nature
of the state-space scalar curvature 𝑅(𝑆(𝑋

1
, 𝑋
2
, . . . , 𝑋

𝑛
)).

Indeed, [12, 14] indicate that the limiting state-space scalar
curvature 𝑅(𝑆(𝑋

1
, 𝑋
2
, . . . , 𝑋

𝑛
))|no anticharge ̸= 0 gives a set of

stability bounds on the statistical parameters. Thus, our
consideration yields a classification of the domain of the
parameters and global correlation of a nonextremal black
hole.

4.5. String Theory Perspective. In this subsection, we recall
a brief notion of entropy of a general string theory black
brane configuration from the viewpoint of the counting of
the black hole microstates [53, 53–59, 68]. Given a string

theory configuration, the choice of compactification [30]
chosen is the factorization of the type M

(3,1)
× 𝑀
6
, where

𝑀
6
is a compact internal manifold. From the perspective of

statistical ensemble theory, we will express the entropy of a
nonextremal black hole as the function of the numbers of
branes and antibranes. Namely, for the charged black holes,
the electric and magnetic charges (𝑞

𝑖
, 𝑝
𝑖
) form a coordinate

chart on the state-space manifold. In this case, for a given
ensemble of 𝐷-branes, the coordinate 𝑞

𝑖
is defined as the

number of the electric branes and 𝑝
𝑖
as the number of the

magnetic branes. Towards the end of this paper, we will
offer further motivation for the consideration of the state-
space geometry of large charged nonspherical horizon black
holes in spacetime dimensions 𝐷 ≥ 5. In this concern,
[68] plays a central role towards the formation of the
lower dimensional black hole configuration. Namely, for the
torus compatifications, the exotic branes play an important
role concerning the physical properties of supertubes, the
𝐷
0
-𝐹
1
system and associated counting of the black hole

microstates.
In what follows, we consider the four-dimensional string

theory black holes in a given duality basis of the charges
(𝑞
𝑖
, 𝑝
𝑖
). From the perspective of string theory, the exotic

branes and nongeometric configurations offer interesting
fronts for the black holes in three spacetime dimensions. In
general, such configurations could carry a dipole or a higher
pole charge, and they leave the four-dimension black hole
configuration asymptotically flat. In fact, for the spacetime
dimensions 𝐷 ≥ 4, [68] shows that a charge particle
corresponds to an underlying gauge field, modulo 𝑈-duality
transformations. From the perspective of nonextremal black
holes, by taking appropriate boundary condition, namely,
the unit asymptotic limit of the harmonic function which
defines the spacetime metric, one can choose the spacetime
regions such that the supertube effects arising fromnonexotic
branes can effectively be put off in an asymptotically flat
space [68]. This allows one to compute the Arnowitt-Deser-
Misner (ADM) mass of the asymptotic black hole. From the
viewpoint of the statistical investigation, the dependence of
the mass to the entropy of a nonextremal black hole comes
from the contribution of the antibranes to the counting
degeneracy of the states.

5. Extremal Black Holes in String Theory

5.1. Two Charge Configurations. The state-space geometry of
the two charge extremal configurations is analyzed in terms of
the winding modes and the momentum modes of an excited
string carrying 𝑛

1
windingmodes and 𝑛

𝑝
momentummodes.

In the large charge limit, the microscopic entropy obtained
by the degeneracy of the underlying conformal field theory
states reduces to the following expression:

𝑆micro = 2√2𝑛1𝑛𝑝. (23)

The microscopic counting can be accomplished by consid-
ering an ensemble of weakly interacting D-branes [54]. The
counting entropy and the macroscopic attractor entropy of
the two charge black holes in string theory which have a 𝑛

4



6 Advances in High Energy Physics

number of 𝐷
4
branes and a 𝑛

0
number of 𝐷

0
branes match

and thus we have

𝑆micro = 2𝜋√𝑛0𝑛4 = 𝑆macro. (24)

In this case, the components of underlying state-space metric
tensor are

𝑔
𝑛0𝑛0

=

𝜋

2𝑛
0

√

𝑛
4

𝑛
0

, 𝑔
𝑛0𝑛4

= −

𝜋

2

1

√𝑛0
𝑛
4

,

𝑔
𝑛4𝑛4

=

𝜋

2𝑛
4

√

𝑛
0

𝑛
4

.

(25)

The diagonal pair correlation functions remain positive
definite:

𝑔
𝑛𝑖𝑛𝑖
> 0 ∀𝑖 ∈ {0, 4} | 𝑛𝑖

> 0, 𝑔
𝑛4𝑛4

> 0, ∀ (𝑛
0
, 𝑛
4
) .

(26)

For distinct 𝑖, 𝑗 ∈ {0, 4}, the state-space pair correlation
functions admit

𝑔
𝑖𝑖

𝑔
𝑗𝑗

= (

𝑛
𝑗

𝑛
𝑖

)

2

,

𝑔
𝑖𝑗

𝑔
𝑖𝑖

= −

𝑛
𝑖

𝑛
𝑗

. (27)

The global properties of fluctuating two charge 𝐷
0
-𝐷
4

extremal configurations are determined by possible principle
minors. The first minor constraint 𝑝

1
> 0 directly follows

from the positivity of the first component of metric tensor:

𝑝
1
=

𝜋

2𝑛
0

√

𝑛
4

𝑛
0

. (28)

The determinant of the metric tensor 𝑝
2
:= 𝑔(𝑛

0
, 𝑛
4
) vanishes

identically for all allowed values of the parameters. Thus,
the leading order large charge extremal black branes having
(i) a 𝑛

0
number of 𝐷

0
-branes and a 𝑛

4
number of 𝐷

4
or

(ii) excited strings with a 𝑛
1
number of windings and a

𝑛
𝑝
number of momenta, where either set of charges forms

local coordinates on the state-spacemanifold, find degenerate
intrinsic state-space configurations. For a given configuration
entropy 𝑆

0
:= 2𝜋𝑐, the constant entropy curve can be depicted

as the rectangular hyperbola

𝑛
0
𝑛
4
= 𝑐

2
. (29)

The intrinsic state-space configuration depends on the
attractor values of the scalar fields which arise from the
chosen string compactification. Thus, the possible state-
space Ruppenier geometry may become well-defined against
further higher derivative 𝛼󸀠-corrections. In particular, the
determinant of the state-space metric tensor may take
positive/negative definite values over the domain of brane
charges. We will illustrate this point in a bit more detail in the
subsequent consideration with a higher number of charges
and anticharges.

5.2. Three Charge Configurations. From the consideration of
the two derivative Einstein-Hilbert action, [53] shows that the
leading order entropy of the three charge 𝐷

1
-𝐷
5
-𝑃 extremal

black holes is

𝑆micro = 2𝜋√𝑛1𝑛5𝑛𝑝 = 𝑆macro. (30)

The concerned components of state-space metric tensor are
given in Appendix A. Hereby, it follows further that the local
state-space metric constraints are satisfied as

𝑔
𝑛𝑖𝑛𝑖
> 0 ∀𝑖 ∈ {1, 5, 𝑝} | 𝑛

𝑖
> 0. (31)

For distinct 𝑖, 𝑗 ∈ {1, 5} and 𝑝, the list of relative correlation
functions is depicted in Appendix A. Further, we see that the
local stabilities pertaining to the lines and two-dimensional
surfaces of the state-space manifold are measured as

𝑝
1
=

𝜋

2𝑛
1

√

𝑛
5
𝑛
𝑝

𝑛
1

, 𝑝
2
= −

𝜋

2

4𝑛
1
𝑛

2

5
𝑛
𝑝

(𝑛

2

𝑝
𝑛
1
+ 𝑛

3

5
) . (32)

The stability of the entire equilibrium phase-space configura-
tions of the 𝐷

1
-𝐷
5
-𝑃 extremal black holes is determined by

the 𝑝
3
:= 𝑔 determinant of the state-space metric tensor:

󵄩
󵄩
󵄩
󵄩

𝑔

󵄩
󵄩
󵄩
󵄩

= −

1

2

𝜋

3
(𝑛
1
𝑛
5
𝑛
𝑝
)

−1/2

. (33)

The universal nature of statistical interactions and the other
properties concerning Maldacena, Strominger, and Witten
(MSW) rotating black branes [55] are elucidated by the state-
space scalar curvature:

𝑅 (𝑛
1
, 𝑛
5
, 𝑛
𝑝
) =

3

4𝜋
√
𝑛
1
𝑛
5
𝑛
𝑝

. (34)

The constant entropy (or scalar curvature) curve defining the
state-space manifold is the higher dimensional hyperbola:

𝑛
1
𝑛
5
𝑛
𝑝
= 𝑐

2
, (35)

where 𝑐 takes respective values of (𝑐
𝑆
, 𝑐
𝑅
) = (𝑆

0
/2𝜋, 3/4𝜋𝑅

0
).

In [12, 14, 17, 18], we have shown that similar results hold
for the state-space configuration of the four charge extremal
black holes.

6. Nonextremal Black Holes in String Theory

6.1. Four Charge Configurations. The state-space configura-
tion of the nonextremal𝐷

1
–𝐷
5
black holes is consideredwith

nonzero momenta along the clockwise and anticlockwise
directions of the Kaluza-Klein compactification circle 𝑆1.
Following [56], themicroscopic entropy and themacroscopic
entropy match for given total mass and brane charges :

𝑆micro = 2𝜋√𝑛1𝑛5 (√𝑛𝑝 + √𝑛𝑝) = 𝑆macro. (36)

The state-space covariant metric tensor is defined as a nega-
tive Hessianmatrix of the entropy with respect to the number
of 𝐷
1
, 𝐷
5
branes {𝑛

𝑖
| 𝑖 = 1, 5} and clockwise-anticlockwise
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Kaluza-Klein momentum charges {𝑛
𝑝
, 𝑛
𝑝
}. Herewith, we find

that the components of the metric tensor take elegant forms.
The corresponding expressions are given in Appendix B. As
in the case of the extremal configurations, the state-space
metric satisfies the following constraints:

𝑔
𝑛𝑖𝑛𝑖
> 0, ∀𝑖 = 1, 5; 𝑔

𝑛𝑎𝑛𝑎
> 0, ∀𝑎 = 𝑝, 𝑝. (37)

Furthermore, the scaling relations for distinct 𝑖, 𝑗 ∈

{1, 5} and 𝑝, concerning the list of relative correlation
functions, are offered in Appendix B. In this case, we
find that the stability criteria of the possible surfaces and
hypersurfaces of the underlying state-space configuration
are determined by the positivity of the following principle
minors:

𝑝
0
= 1, 𝑝

1
=

𝜋

2

√

𝑛
5

𝑛

3

1

(
√
𝑛
𝑝
+ √𝑛
𝑝
) ,

𝑝
2
= 0, 𝑝

3
= −

1

2𝑛
𝑝

𝜋

3

√𝑛1
𝑛
5

(
√
𝑛
𝑝
+ √𝑛
𝑝
) .

(38)

The complete local stability of the full nonextremal 𝐷
1
–𝐷
5

black brane state-space configuration is ascertained by the
positivity of the determinant of the metric tensor:

𝑔 (𝑛
1
, 𝑛
5
, 𝑛
𝑝
, 𝑛
𝑝
) = −

1

4

𝜋

4

(𝑛
𝑝
𝑛
𝑝
)

3/2
(
√
𝑛
𝑝
+ √𝑛
𝑝
)

2

. (39)

The global state-space properties concerning the four charge
nonextremal 𝐷

1
–𝐷
5
black holes are determined by the

regularity of the invariant scalar curvature:

𝑅 (𝑛
1
, 𝑛
5
, 𝑛
𝑝
, 𝑛
𝑝
) =

9

4𝜋√𝑛1
𝑛
5

(
√
𝑛
𝑝
+ √𝑛
𝑝
)

−6

𝑓 (𝑛
𝑝
, 𝑛
𝑝
) ,

(40)

where the function 𝑓(𝑛
𝑝
, 𝑛
𝑝
) of two momenta (𝑛

𝑝
, 𝑛
𝑝
) run-

ning in opposite directions of the Kaluza-Klein circle 𝑆1 has
been defined as

𝑓 (𝑛
𝑝
, 𝑛
𝑝
) := 𝑛

5/2

𝑝
+ 10𝑛

3/2

𝑝
𝑛
𝑝
+ 5𝑛

1/2

𝑝
𝑛
𝑝

2

+ 5𝑛

2

𝑝
𝑛
𝑝

1/2
+ 10𝑛

𝑝
𝑛
𝑝

3/2
+ 𝑛
𝑝

5/2
.

(41)

By noticing the Pascal coefficient structure in (41), we see that
the above function 𝑓(𝑛

𝑝
, 𝑛
𝑝
) can be factorized as

𝑓 (𝑛
𝑝
, 𝑛
𝑝
) = (𝑛

𝑝
+ 𝑛
𝑝
)

5

. (42)

Thus, (40) leads to the following state-space scalar curvature:

𝑅 (𝑛
1
, 𝑛
5
, 𝑛
𝑝
, 𝑛
𝑝
) =

9

4𝜋√𝑛1
𝑛
5

×(

1

√
𝑛
𝑝
+ √𝑛𝑝

). (43)

In the large charge limit, the nonextremal 𝐷
1
–𝐷
5
black

branes have a nonvanishing small scalar curvature function

on the state-space manifold (𝑀
4
, 𝑔). This implies an almost

everywhere weakly interacting statistical basis. In this case,
the constant entropy hypersurface is defined by the curve

𝑐

2

𝑛
1
𝑛
5

= (
√
𝑛
𝑝
+ √𝑛
𝑝
)

2

. (44)

As in the case of two charge 𝐷
0
-𝐷
4
extremal black holes

and 𝐷
1
-𝐷
5
-𝑃 extremal black holes, the constant 𝑐 takes the

same value of 𝑐 := 𝑆

2

0
/4𝜋

2. For a given state-space scalar
curvature 𝑘, the constant state-space curvature curves take
the following form:

𝑓 (𝑛
𝑝
, 𝑛
𝑝
) = 𝑘√𝑛1

𝑛
5
(
√
𝑛
𝑝
+ √𝑛
𝑝
)

6

. (45)

6.2. Six Charge Configurations. Wenow extrapolate the state-
space geometry of four charge nonextremal𝐷

1
–𝐷
5
solutions

for nonlarge charges, where we are no longer close to an
ensemble of supersymmetric states. In [57], the computation
of the entropy of all such special extremal and near-extremal
black hole configurations has been considered. The leading
order entropy as a function of charges {𝑛

𝑖
} and anticharges

{𝑚
𝑖
} is

𝑆 (𝑛
1
, 𝑚
1
, 𝑛
2
, 𝑚
2
, 𝑛
3
, 𝑚
3
)

:= 2𝜋 (√𝑛1
+ √𝑚1

) (√𝑛2
+ √𝑚2

) (√𝑛3
+ √𝑚3

) .

(46)

For given charges 𝑖, 𝑗 ∈ 𝐴
1
:= {𝑛
1
, 𝑚
1
}; 𝑘, 𝑙 ∈ 𝐴

2
:= {𝑛
2
, 𝑚
2
};

and 𝑚, 𝑛 ∈ 𝐴
3
:= {𝑛

3
, 𝑚
3
}, the intrinsic state-space pair

correlations are in precise accordance with the underlying
macroscopic attractor configurations which are being dis-
closed in the special leading order limit of the nonextremal
𝐷
1
–𝐷
5
solutions. The components of the covariant state-

spacemetric tensor over generic nonlarge charge domains are
not difficult to compute, and, indeed, we have offered their
corresponding expressions in Appendix C.

For all finite (𝑛
𝑖
, 𝑚
𝑖
), 𝑖 = 1, 2, 3, the components involving

brane-brane state-space correlations 𝑔
𝑛𝑖𝑛𝑖

and antibrane-
antibrane state-space correlations 𝑔

𝑚𝑖𝑚𝑖
satisfy the following

positivity conditions:

𝑔
𝑛𝑖𝑛𝑖
> 0, 𝑔

𝑚𝑖𝑚𝑖
> 0. (47)

The distinct {𝑛
𝑖
, 𝑚
𝑖
| 𝑖 ∈ {1, 2, 3}} describing six charge string

theory black holes have three types of relative pair correlation
functions. The corresponding expressions of the relative
statistical correlation functions are given in Appendix C.

Notice hereby that the scaling relations remain similar to
those obtained in the previous case, except that (i) the num-
ber of relative correlation functions has been increased, and
(ii) the set of cross ratios, namely, {𝑔

𝑖𝑗
/𝑔
𝑘𝑙
, 𝑔
𝑘𝑙
/𝑔
𝑚𝑛
, 𝑔
𝑖𝑗
/𝑔
𝑚𝑛
}

being zero in the previous case, becomes ill-defined for the six
charge state-space configurations. Inspecting the specific pair
of distinct charge sets 𝐴

𝑖
and 𝐴

𝑗
, there are now 24 types of

nontrivial relative correlation functions. The set of principle
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components denominator ratios computed from the above
state-space metric tensor reduces to

𝑔
𝑖𝑗

𝑔
𝑘𝑘

= 0, ∀𝑖, 𝑗, 𝑘 ∈ {𝑛
1
, 𝑚
1
, 𝑛
2
, 𝑚
2
, 𝑛
3
, 𝑚
3
} . (48)

For given 𝑖, 𝑗 ∈ 𝐴
1
:= {𝑛
1
, 𝑚
1
}; 𝑘, 𝑙 ∈ 𝐴

2
:= {𝑛
2
, 𝑚
2
}; 𝑚, 𝑛 ∈

𝐴
3
:= {𝑛
3
, 𝑚
3
}, and 𝑔

𝑛𝑖𝑚𝑖
= 0, there are the total 15 types of

trivial relative correlation functions.There are five such trivial
ratios in each family {𝐴

𝑖
| 𝑖 = 1, 2, 3}.The local stability of the

higher charged string theory nonextremal black holes is given
by

𝑝
1
=

𝜋

2𝑛

3/2

1

(√𝑛2
+ √𝑚2

) (√𝑛3
+ √𝑚3

) ,

𝑝
2
=

1

4

𝜋

2

(𝑛
1
𝑚
1
)

3/2
(√𝑛2

+ √𝑚2
)

2
(√𝑛3

+ √𝑚3
)

2
,

𝑝
3
=

1

8

𝜋

3

(𝑛
1
𝑚
1
𝑛
2
)

3/2
√𝑚2

(√𝑛3
+ √𝑚3

)

3

× (√𝑛2
+ √𝑚2

) (√𝑛1
+ √𝑚1

) ,

𝑝
4
= 0.

(49)

The principleminor𝑝
5
remains nonvanishing for all values of

charges on the constituent brane and antibranes. In general,
by an explicit calculation, we find that the hyper-surface
minor 𝑝

5
takes the following nontrivial value:

𝑝
5
= −

1

8

𝜋

5

(𝑛
1
𝑚
1
𝑛
2
𝑚
2
)

3/2
𝑛
3

(√𝑛1
+ √𝑚1

)

3

× (√𝑛2
+ √𝑚2

)

3
(√𝑛3

+ √𝑚3
)

3
.

(50)

Specifically, for an identical value of the brane and antibrane
charges, the minor 𝑝

5
reduces to

𝑝
5 (
𝑘) = −64

𝜋

5

𝑘

5/2
.

(51)

The global stability on the full state-space configuration is
carried forward by computing the determinant of the metric
tensor:

󵄩
󵄩
󵄩
󵄩

𝑔

󵄩
󵄩
󵄩
󵄩

= −

1

16

𝜋

6

(𝑛
1
𝑚
1
𝑛
2
𝑚
2
𝑛
3
𝑚
3
)

3/2
(√𝑛1

+ √𝑚1
)

4

× (√𝑛2
+ √𝑚2

)

4
(√𝑛3

+ √𝑚3
)

4
.

(52)

The underlying state-space configuration remains nonde-
generate for the domain of given nonzero brane antibrane
charges, except for extreme values of the brane and antibrane
charges {𝑛

𝑖
, 𝑚
𝑖
}, when they belong to the set

𝐵 := {(𝑛
1
, 𝑛
2
, 𝑛
3
, 𝑚
1
, 𝑚
2
, 𝑚
3
) |

(𝑛
𝑖
, 𝑚
𝑖
) = (0, 0) , (∞,∞) , some 𝑖} ,

(53)

among the given brane-antibrane pairs {(𝑛
1
, 𝑚
1
), (𝑛
2
,

𝑚
2
), (𝑛
3
, 𝑚
3
)}. The component 𝑅

𝑛1𝑛2𝑚3𝑚4
diverges at the roots

of the two variables polynomials defined as the functions of
brane and antibrane charges:

𝑓
1
(𝑛
2
, 𝑚
2
) = 𝑛

4

2
𝑚

3

2
+ 2(𝑛
2
𝑚
2
)

7/2
+ 𝑛

3

2
𝑚

4

2
,

𝑓
2
(𝑛
3
, 𝑚
3
) = 𝑚

9/2

3
𝑛

4

3
+ 𝑛

4

3
𝑚

9/2

3
.

(54)

However, the component 𝑅
𝑛3 ,𝑚3,𝑛3 ,𝑚3

with an equal number
of brane and antibrane charges diverges at a root of a single
higher degree polynomial:

𝑓 (𝑛
1
, 𝑚
1
, 𝑛
2
, 𝑚
2
, 𝑛
3
, 𝑚
3
)

:= 𝑛

4

2
𝑚

3

2
𝑛

9/2

3
𝑚

4

3
+ 𝑛

4

2
𝑚

3

2
𝑛

4

3
𝑚

9/2

3

+ 2𝑛

7/2

2
𝑚

7/2

2
𝑛

9/2

3
𝑚

4

3
+ 2𝑛

7/2

2
𝑚

7/2

2
𝑛

4

3
𝑚

9/2

3

+ 𝑛

3

2
𝑚

4

2
𝑛

9/2

3
𝑚

4

3
+ 𝑛

3

2
𝑚

4

2
𝑛

4

3
𝑚

9/2

3
.

(55)

Herewith, from the perspective of state-space global invari-
ants, we focus on the limiting nature of the underlying ensem-
ble. Thus, we may choose the equal charge and anticharge
limit by defining𝑚

𝑖
:= 𝑘 and 𝑛

𝑖
:= 𝑘 for the calculation of the

Ricci scalar. In this case, we find the following small negative
curvature scalar:

𝑅 (𝑘) = −

15

16

1

𝜋𝑘

3/2
. (56)

Further, the physical meaning of taking an equal value of
the charges and anticharges lies in the ensemble theory,
namely, in the thermodynamic limit, all the statistical fluctu-
ations of the charges and anticharges approach to a limiting
Gaussian fluctuations. In this sense, we can take the average
over the concerned individual Gaussian fluctuations. This
shows that the limiting statistical ensemble of nonextremal
nonlarge charge 𝐷

1
–𝐷
5
solutions yields an attractive state-

space configuration. Finally, such a limiting procedure is
indeed defined by considering the standard deviations of the
equal integer charges and anticharges, and thus our interest
in calculating the limiting Ricci scalar in order to know
the nature of the long range interactions underlying in the
system.

For a given entropy 𝑆
0
, the constant entropy hypersurface

is again some nonstandard curve:

(√𝑛1
+ √𝑚1

) (√𝑛2
+ √𝑚2

) (√𝑛3
+ √𝑚3

) = 𝑐, (57)

where the real constant 𝑐 takes the precise value of 𝑆
0
/2𝜋.

6.3. Eight Charge Configurations. From the perspective of the
higher charged and anticharged black hole configurations in
string theory, let us systematically analyze the underlying sta-
tistical structures. In this case, the state-space configuration
of the nonextremal black hole involves finitely many non-
trivially circularly fibered Kaluza-Klein monopoles. In this
process, we enlist the complete set of nontrivial relative state-
space correlation functions of the eight charged anticharged
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configurations, with respect to the lower parameter configu-
rations, as considered in [12, 14].There have been calculations
of the entropy of the extremal, near-extremal, and general
nonextremal solutions in string theory; see, for instance,
[58, 59]. Inductively, the most general charge anticharge
nonextremal black hole has the following entropy:

𝑆 (𝑛
1
, 𝑚
1
, 𝑛
2
, 𝑚
2
, 𝑛
3
, 𝑚
3
, 𝑛
4
, 𝑚
4
) = 2𝜋

4

∏

𝑖=1

(√𝑛𝑖
+ √𝑚𝑖

) .

(58)

For the distinct 𝑖, 𝑗, 𝑘 ∈ {1, 2, 3, 4}, we find that the compo-
nents of the metric tensor are

𝑔
𝑛𝑖𝑛𝑖
=

𝜋

2𝑛

3/2

𝑖

∏

𝑗 ̸= 𝑖

(
√
𝑛
𝑗
+
√
𝑚
𝑗
) ,

𝑔
𝑛𝑖𝑛𝑗
= −

𝜋

2(𝑛
𝑖
𝑛
𝑗
)

1/2
∏

𝑖 ̸= 𝑘 ̸= 𝑗

(√𝑛𝑘
+ √𝑚𝑘

) ,

𝑔
𝑛𝑖𝑚𝑖

= 0,

𝑔
𝑛𝑖𝑚𝑗

= −

𝜋

2(𝑛
𝑖
𝑚
𝑗
)

1/2
∏

𝑖 ̸= 𝑘 ̸= 𝑗

(√𝑛𝑘
+ √𝑚𝑘

) ,

𝑔
𝑚𝑖𝑚𝑖

=

𝜋

2𝑚

3/2

𝑖

∏

𝑗 ̸= 𝑖

(
√
𝑛
𝑗
+
√
𝑚
𝑗
) ,

𝑔
𝑚𝑖𝑚𝑗

= −

𝜋

2(𝑚
𝑖
𝑚
𝑗
)

1/2
∏

𝑖 ̸= 𝑘 ̸= 𝑗

(√𝑛𝑘
+ √𝑚𝑘

) .

(59)

From the above depiction, it is evident that the principle
components of the state-space metric tensor {𝑔

𝑛𝑖𝑛𝑖
, 𝑔
𝑚𝑖𝑚𝑖

|

𝑖 = 1, 2, 3, 4} essentially signify a set of definite heat
capacities (or the related compressibilities) whose positivity
in turn apprises that the black brane solutions comply with
an underlying equilibrium statistical configuration. For an
arbitrary number of the branes {𝑛

𝑖
} and antibranes {𝑚

𝑖
}, we

find that the associated state-space metric constraints as the
diagonal pair correlation functions remain positive definite.
In particular, ∀𝑖 ∈ {1, 2, 3, 4}; it is clear that we have the
following positivity conditions:

𝑔
𝑛𝑖𝑛𝑖
> 0 | 𝑛

𝑖
, 𝑚
𝑖
> 0, 𝑔

𝑚𝑖𝑚𝑖
> 0 | 𝑛

𝑖
, 𝑚
𝑖
> 0. (60)

As observed in [12, 14], we find that the ratios of diagonal
components vary inversely with a multiple of a well-defined
factor in the underlying parameters, namely, the charges and
anticharges, which changes under the Gaussian fluctuations,
whereas the ratios involving offdiagonal components in effect
uniquely inversely vary in the parameters of the chosen set𝐴

𝑖

of equilibrium black brane configurations. This suggests that
the diagonal components weaken in a relatively controlled
fashion into an equilibrium, in contrast with the off diagonal
components, which vary over the domain of associated
parameters defining the𝐷

1
-𝐷
5
-𝑃-𝐾𝐾 nonextremal nonlarge

charge configurations. In short, we can easily substantiate,
for the distinct 𝑥

𝑖
:= (𝑛

𝑖
, 𝑚
𝑖
) | 𝑖 ∈ {1, 2, 3, 4} describing

eight (anti)charge string theory black holes, that the relative

pair correlation functions have distinct types of relative
correlation functions. Apart from the zeros, infinities, and
similar factorizations, we see that the nontrivial relative
correlation functions satisfy the following scaling relations:

𝑔
𝑥𝑖𝑥𝑖

𝑔
𝑥𝑗𝑥𝑗

= (

𝑥
𝑗

𝑥
𝑖

)

3/2
√
𝑛
𝑗
+
√
𝑚
𝑗

√𝑛𝑖
+ √𝑚𝑖

,

𝑔
𝑥𝑖𝑥𝑗

𝑔
𝑥𝑘𝑥𝑙

= (

𝑥
𝑖
𝑥
𝑗

𝑥
𝑘
𝑥
𝑙

)

−1/2
∏
𝑖 ̸= 𝑝 ̸= 𝑗

(
√
𝑛
𝑝
+
√
𝑚
𝑝
)

∏
𝑘 ̸= 𝑞 ̸= 𝑙

(
√
𝑛
𝑞
+
√
𝑚
𝑞
)

,

𝑔
𝑥𝑖𝑥𝑖

𝑔
𝑥𝑖𝑥𝑘

= − √(

𝑥
𝑘

𝑥

2

𝑖

)

∏
𝑝 ̸= 𝑖
(
√
𝑛
𝑝
+
√
𝑚
𝑝
)

∏
𝑖 ̸= 𝑞 ̸= 𝑘

(
√
𝑛
𝑞
+
√
𝑚
𝑞
)

.

(61)

As noticed in [12, 14], it is not difficult to analyze the statistical
stability properties of the eight charged anticharged nonex-
tremal black holes; namely, we can compute the principle
minors associated with the state-space metric tensor and
thereby argue that all the principle minors must be positive
definite, in order to have a globally stable configuration. In
the present case, it turns out that the above black hole is
stable only when some of the charges and/or anticharges
are held fixed or take specific values such that 𝑝

𝑖
> 0 for

all the dimensions of the state-space manifold. From the
definition of the Hessian matrix of the associated entropy
concerning the most general nonextremal nonlarge charged
black holes, we observe that some of the principle minors 𝑝

𝑖

are indeed nonpositive. In fact, we discover a uniform local
stability criteria on the three-dimensional hypersurfaces,
two-dimensional surface, and the one-dimensional line of
the underlying state-space manifold. In order to simplify the
factors of the higher principle, we may hereby collect the
powers of each factor (√𝑛𝑖+√𝑚𝑖) appearing in the expression
of the entropy. With this notation, Appendix D provides
the corresponding principle minors for the most general
nonextremal nonlarge charged anticharged black hole in
string theory involving finitely many nontrivially circularly
fibered Kaluza-Klein monopoles.

Notice that the heat capacities, as the diagonal com-
ponents 𝑔

𝑖𝑖
, surface minor 𝑝

2
, hypersurface minors 𝑝

3
, 𝑝
5
,

𝑝
6
, and 𝑝

7
, and the determinant of the state-space metric

tensor, as the highest principle minor 𝑝
8
are examined as the

functions of the number of branes 𝑛 and antibranes𝑚. Thus,
they describe the nature of the statistical fluctuations in the
vacuum configuration. The corresponding scalar curvature
is offered for an equal number of branes and antibranes
(𝑛 = 𝑚), which describes the nature of the long range
statistical fluctuations. As per the above evaluation, we have
obtained the exact expressions for the components of the
metric tensor, principle minors, determinant of the metric
tensor, and the underlying scalar curvature of the fluctuating
statistical configuration of the eight parameter black holes
in string theory. Qualitatively, the local and the global
correlation properties of the limiting vacuum configuration
can be realized under the statistical fluctuations. The first
seven principle minors describe the local stability properties,
and the last minor describes the global ensemble stability.
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The scalar curvature describes the corresponding phase
space stability of the eight parameter black hole configura-
tion. In general, there exists an akin higher degree polynomial
equation on which the Ricci scalar curvature becomes null,
and exactly on these points the state-space configuration of
the underlying nonlarge charge nonextremal eight charge
black hole system corresponds to a noninteracting statistical
system. In this case, the corresponding state-space manifold
(𝑀
8
, 𝑔) becomes free from the statistical interaction with a

vanishing state-space scalar curvature. As in case of the six
charge configuration, we find interestingly that there exists
an attractive configuration for the equal number of branes
𝑛 := 𝑘 and antibranes 𝑚 := 𝑘. In the limit of a large 𝑘, the
corresponding system possesses a small negative value of the
state-space scalar curvature:

𝑅 (𝑘) = −

21

32

1

𝜋𝑘

2
. (62)

Interestingly, it turns out that the system becomes noninter-
acting in the limit of 𝑘 → ∞. For the case of the 𝑛 = 𝑘 = 𝑚,
we observe that the corresponding principle minors reduce
to the following constant values:

{𝑝
𝑖
}

8

𝑖=1
= {4𝜋, 16𝜋

2
, 32𝜋

3
, 0, −2048𝜋

5
, −16384𝜋

6
,

−163840𝜋

7
, −1048576𝜋

8
} .

(63)

In this case, we find that the limiting underlying statistical
system remains stable when at most three of the parameters,
namely, {𝑛

𝑖
= 𝑘 = 𝑚

𝑖
}, are allowed to fluctuate. Herewith,

we find for the case of 𝑛 := 𝑘 and 𝑚 := 𝑘 that the state-
space manifold of the eight parameter brane and antibrane
configuration is free from critical phenomena, except for the
roots of the determinant. Thus, the regular state-space scalar
curvature is comprehensively universal for the nonlarge
charge nonextremal black brane configurations in string
theory. In fact, the above perception turns out to be justified
from the typical state-space geometry, namely, the definition
of the metric tensor as the negative Hessian matrix of the
duality invariant expression of the black brane entropy. In this
case, we may nevertheless easily observe, for a given entropy
𝑆
0
, that the constant entropy hypersurface is given by the

following curve:

(√𝑛1
+ √𝑚1

) (√𝑛2
+ √𝑚2

) (√𝑛3
+ √𝑚3

) (√𝑛4
+ √𝑚4

) = 𝑐,

(64)

where 𝑐 is a real constant taking the precise value of
𝑆
0
/2𝜋. Under the vacuum fluctuations, the present analysis

indicates that the entropy of the eight parameter black
brane solution defines a nondegenerate embedding in the
viewpoints of intrinsic state-space geometry.The above state-
space computations determine an intricate set of statistical
properties, namely, pair correlation functions and correlation
volume, which reveal the possible nature of the associated
parameters prescribing an ensemble of microstates of the
dual conformal field theory living on the boundary of the
black brane solution. For any black brane configuration,
the above computation hereby shows that we can exhibit

the state-space geometric acquisitions with an appropriate
comprehension of the required parameters, for example, the
charges and anticharges {𝑛

𝑖
, 𝑚
𝑖
}, which define the coordinate

charts. From the consideration of the state-space geometry,
we have analyzed state-space pair correlation functions and
the notion of stability of the most general nonextremal black
hole in string theory. From the perspective of the intrinsic
Riemannian geometry, we find that the stability of these black
branes has been divulged from the positivity of principle
minors of the space-state metric tensor.

Herewith, we have explicitly extended the state-space
analysis for the four charge and four anticharge nonextremal
black branes in string theory. The present consideration of
the eight parameter black brane configurations, where the
underlying leading order statistical entropy is written as a
function of the charges {𝑛

𝑖
} and anticharges {𝑚

𝑖
}, describes

the stability properties under the Gaussian fluctuations. The
present consideration includes all the special cases of the
extremal and near-extremal configurations with a fewer
number of charges and anticharges. In this case, we obtain
the standard pattern of the underlying state-space geometry
and constant entropy curve as that of the lower parameter
nonextremal black holes. The local coordinate of the state-
space manifold involves four charges and four anticharges
of the underlying nonextremal black holes. In fact, the
conclusion to be drawn remains the same, as the underlying
state-space geometry remains well-defined as an intrinsic
Riemannian manifold 𝑁 := 𝑀

8
\
̃
𝐵, where ̃𝐵 is the set of

roots of the determinant of the metric tensor. In particular,
the state-space configuration of eight parameter black brane
solutions remains nondegenerate for various domains of
nonzero brane antibrane charges, except for the values, when
the brane charges {𝑛

𝑖
} and antibrane charges {𝑚

𝑖
} belong to

the set

̃
𝐵 := {(𝑛

1
, 𝑛
2
, 𝑛
3
, 𝑛
4
, 𝑚
1
, 𝑚
2
, 𝑚
3
, 𝑚
4
) |

(𝑛
𝑖
, 𝑚
𝑖
) = (0, 0) , (∞,∞)} ,

(65)

for a given brane-antibrane pair, 𝑖 ∈ {1, 2, 3, 4}. Our analysis
indicates that the leading order statistical behavior of the
black brane configurations in string theory remains intact
under the inclusion of the Kaluza-Klein monopoles. In short,
we have considered the eight charged anticharged string
theory black brane configuration and analyzed the state-space
pair correlation functions, relative scaling relations, stability
conditions, and the corresponding global properties. Given
a general nonextremal black brane configuration, we have
exposed (i) for what conditions the considered black hole
configuration is stable, (ii) how its state-space correlations
scale in terms of the numbers of branes and antibranes.

7. Conclusion and Outlook

The Ruppenier geometry of two charge leading order
extremal black holes remains flat or ill-defined. Thus, the
statistical systems are, respectively, noninteracting or require
higher derivative corrections. However, an addition of the
third brane charge and other brane and antibrane charges
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indicates an interacting statistical system. The statistical
fluctuations in the canonical ensemble lead to an interacting
statistical system, as the scalar curvature of the state-space
takes a nonzero value. We have explored the state-space
geometric description of the charged extremal and associated
charged anticharged nonextremal black holes in string the-
ory.

Our analysis illustrates that the stability properties of the
specific state-space hypersurface may exactly be exploited
in general. The definite behavior of the state-space prop-
erties, as accounted in the specific cases, suggests that the
underlying hypersurfaces of the state-space configuration
include the intriguing mathematical feature. Namely, we find
well-defined stability properties for the generic extremal and
nonextremal black brane configurations, except for some
specific values of the charges and anticharges. With and
without the large charge limit, we have provided explicit
forms of the higher principle minors of the state-space
metric tensor for various charged, anticharged, extremal and
nonextremal black holes in string theory. In this concern, the
state-space configurations of the string theory black holes are
generically well-defined and indicate an interacting statistical
basis. Interestingly, we discover the state-space geometric
nature of all possible general black brane configurations.
From the very definition of the intrinsic metric tensor, the
present analysis offers a definite stability character of string
theory vacua.

Significantly, we notice that the related principle minors
and the invariant state-space scalar curvature classify the
underlying statistical fluctuations. The scalar curvature of
a class of extremal black holes and the corresponding
nonextremal black branes is everywhere regular with and
without the stringy 𝛼󸀠-corrections. A nonzero value of
the state-space scalar curvature indicates an interacting
underlying statistical system. We find that the antibrane
corrections modify the state-space curvature, but do not
induce phase transitions. In the limit of an extremal
black hole, we construct the intrinsic geometric realiza-
tion of a possible thermodynamic description at the zero
temperature.

Importantly, the notion of the state-space of the con-
sidered black hole follows from the corresponding Wald
and Cardy entropies. The microscopic and macroscopic
entropies match in the large charge limit. From the
perspective of statistical fluctuations, we anticipate the
intrinsic geometric realization of two point local corre-
lation functions and the corresponding global correlation
length of the underlying conformal field theory config-
urations. In relation to the gauge-gravity correspondence
and extremal black holes, our analysis describes state-space
geometric properties of the corresponding boundary gauge
theory.

General Remarks. For distinct {𝑖, 𝑗}, the state-space pair
correlations of an extremal configurations scale as

𝑔
𝑖𝑖

𝑔
𝑗𝑗

= (

𝑋
𝑗

𝑋
𝑖

)

2

,

𝑔
𝑖𝑗

𝑔
𝑖𝑖

= −

𝑋
𝑖

𝑋
𝑗

. (66)

In general, the black brane configurations in string the-
ory can be categorized as per their state-space invariants.
The underlying subconfigurations turn out to be well-
defined over possible domains, whenever there exists a
respective set of nonzero state-space principle minors. The
underlying full configuration turns out to be everywhere
well-defined, whenever there exists a nonzero state-space
determinant. The underlying configuration corresponds to
an interacting statistical system, whenever there exists a
nonzero state-space scalar curvature. The intrinsic state-
space manifold of extremal/nonextremal and supersym-
metric/nonsupersymmetric string theory black holes may
intrinsically be described by an embedding:

(𝑀
(𝑛)
, 𝑔) 󳨅→ (𝑀

(𝑛+1)
, 𝑔) . (67)

The extremal state-space configuration may be examined as
a restriction to the full counting entropy with an intrinsic
state-space metric tensor 𝑔 󳨃→ 𝑔|

𝑟+=𝑟−
. Furthermore, the

state-space configurations of the supersymmetric black holes
may be examined as the BPS restriction of the full space
of the counting entropy with an understanding that the
intrinsic state-space metric tensor is defined as 𝑔 := 𝑔|

𝑀=𝑀0
.

From the perspective of string theory, the restrictions 𝑟
+
=

𝑟
−

and 𝑀 = 𝑀
0
(𝑃
𝑖
, 𝑄
𝑖
) should be understood as the

fact that it has been applied to an assigned entropy of the
nonextremal/nonsupersymmetric (or nearly extremal/nearly
supersymmetric) black brane configuration. This allows one
to compute the fluctuations in ADM mass of the black hole.
In the viewpoint of the present research on the state-space
geometry, it is worth mentioning that the dependence of
the mass to the entropy of a nonextremal black hole comes
from the contribution of the antibranes, see, for instance,
Section 4.5, and so we may examine the corresponding
Weinhold chemical geometry, as mentioned in Section 4.3.

Future Directions and Open Issues. The state-space instabili-
ties and their relation to the dual microscopic conformal field
theories could open up a number of new realizations. The
state-space perspective includes the following issues.

(i) MulticenterGibbons-Hawking solutions [69, 70]with
generalized base space manifolds having a mixing
of positive and negative residues, see [71, 72] for
a perspective development of state-space geometry
by invoking the role of foaming of black holes and
plumbing the Abyss for the microstates counting of
black rings.

(ii) Dual conformal field theories and string duality
symmetries, see [61] for a quantum mechanical per-
spective of superconformal black holes and [73, 74]
for the origin of gravitational thermodynamics and
the role of giant gravitons in conformal field theory.

(iii) Stabilization against local and/or global perturba-
tions, see [75–80] for black brane dynamics, sta-
bility, and critical phenomena. Thus, the consid-
eration of state-space geometry is well-suited for
examining the domain of instability. This includes
Gregory-Laflamme (GL) modes, chemical potential
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fluctuations, electric-magnetic charges and dipole
charges, rotational fluctuations, and the thermody-
namic temperature fluctuations for the near-extremal
and nonextremal black brane solutions. We leave this
perspective of the state-space geometry open for a
future research.

In general, various𝐷dimensional black brane configurations,
see, for instance, [75–80] for black rings in 𝐷 > 5 spacetime
dimensions with 𝑆1 × 𝑆𝐷−3 horizon topology, and the higher
horizon topologies, for example, 𝑆1 × 𝑆1 × 𝑆2, 𝑆3 × 𝑆3, and so
forth offer a platform to extend the consideration of the state-
space geometry.

On the other hand, the bubbling black brane solutions,
namely, Lin, Lunin, and Maldacena (LLM) geometries [81],
are interesting from the perspective of Mathur’s Fuzzball
conjecture(s). From the perspective of the generalized hyper-
Kähler manifolds, Mathur’s conjecture [82–85] reduces to
classifying and counting asymptotically flat four-dimensional
hyper Kähler manifolds [71] which have moduli regions of
uniform signature (+, +, +, +) and (−, −, −, −).

Finally, the new physics at the length of the Planck scale
anticipates an analysis of the state-space configurations. In
particular, it materializes that the state-space geometry may
be explored with the parameters of the foam geometries
[71], and the corresponding empty space virtual black holes,
see [81] for the notion of bubbling AdS space and 1/2 BPS
geometries. In such cases, the local and global statistical
correlations, among the parameters of the microstates of the
black hole conformal field theory [60, 61], would involve the
foams of two spheres. From the perspective of the string
theory, the present exploration thus opens up an avenue
for learning new insights into the promising structures of
the black brane space-time configurations at very small
scales.

Appendices

In these appendices, we provide explicit forms of the state-
space correlation arising from the metric tensor of the
charged (non)extremal (non)large black holes in string the-
ory. In fact, our analysis illustrates that the stability prop-
erties of the specific state-space hypersurface may exactly
be exploited in general. The definite behavior of state-space
properties, as accounted in the concerned main sections,
suggests that the various intriguing hypersurfaces of the state-
space configuration include the nice feature that they do have
definite stability properties, except for some specific values of
the charges and anticharges.

As mentioned in the main sections, these configura-
tions are generically well-defined and indicate an interact-
ing statistical basis. Herewith, we discover that the state-
space geometry of the general black brane configurations
in string theory indicates the possible nature of the under-
lying statistical fluctuations. Significantly, we notice from
the very definition of the intrinsic metric tensor that the
related statistical pair correlation functions and relative
statistical correlation functions take the following exact
expressions.

A. Correlations for Three
Charge Configurations

Following the notion of the fluctuations, we see from the
Hessian of the entropy equation (30) that the components of
state-space metric tensor are

𝑔
𝑛1𝑛1

=

𝜋

2𝑛
1

√

𝑛
5
𝑛
𝑝

𝑛
1

, 𝑔
𝑛1𝑛5

= −

𝜋

2

√

𝑛
𝑝

𝑛
1
𝑛
5

,

𝑔
𝑛1𝑛𝑝

= −

𝜋

2

√

𝑛
5

𝑛
1
𝑛
𝑝

, 𝑔
𝑛5𝑛5

=

𝜋

2𝑛
5

√

𝑛
1
𝑛
𝑝

𝑛
5

,

𝑔
𝑛5𝑛𝑝

= −

𝜋

2

√

𝑛
1

𝑛
5
𝑛
𝑝

, 𝑔
𝑛𝑝𝑛𝑝

=

𝜋

2𝑛
𝑝

√

𝑛
1
𝑛
5

𝑛
𝑝

.

(A.1)

For distinct 𝑖, 𝑗 ∈ {1, 5} and 𝑝, the list of relative
correlation functions follows the scaling relations:

𝑔
𝑖𝑖

𝑔
𝑗𝑗

= (

𝑛
𝑗

𝑛
𝑖

)

2

,

𝑔
𝑖𝑖

𝑔
𝑝𝑝

= (

𝑛
𝑝

𝑛
𝑖

)

2

,

𝑔
𝑖𝑖

𝑔
𝑖𝑗

= −(

𝑛
𝑗

𝑛
𝑖

) ,

𝑔
𝑖𝑖

𝑔
𝑖𝑝

= −(

𝑛
𝑝

𝑛
𝑖

) ,

𝑔
𝑖𝑝

𝑔
𝑗𝑝

=(

𝑛
𝑗

𝑛
𝑖

) ,

𝑔
𝑖𝑖

𝑔
𝑗𝑝

=−(

𝑛
𝑗
𝑛
𝑝

𝑛

2

𝑖

) ,

𝑔
𝑖𝑝

𝑔
𝑝𝑝

=−(

𝑛
𝑝

𝑛
𝑖

) ,

𝑔
𝑖𝑗

𝑔
𝑖𝑝

=(

𝑛
𝑝

𝑛
𝑗

) ,

𝑔
𝑖𝑗

𝑔
𝑝𝑝

=−(

𝑛

2

𝑝

𝑛
𝑖
𝑛
𝑗

) .

(A.2)

B. Correlations for Four
Charge Configurations

For the given entropy as in (36), we find that the components
of the metric tensor are

𝑔
𝑛1𝑛1

=

𝜋

2

√

𝑛
5

𝑛

3

1

(
√
𝑛
𝑝
+ √𝑛
𝑝
) ,

𝑔
𝑛1𝑛5

= −

𝜋

2√𝑛1
𝑛
5

(
√
𝑛
𝑝
+ √𝑛
𝑝
) ,

𝑔
𝑛1𝑛𝑝

= −

𝜋

2

√

𝑛
5

𝑛
1
𝑛
𝑝

, 𝑔
𝑛1𝑛𝑝

= −

𝜋

2

√

𝑛
5

𝑛
1
𝑛
𝑝

,

𝑔
𝑛5𝑛5

=

𝜋

2

√

𝑛
1

𝑛

3

5

(
√
𝑛
𝑝
+ √𝑛
𝑝
) , 𝑔

𝑛5𝑛𝑝
= −

𝜋

2

√

𝑛
1

𝑛
5
𝑛
𝑝

,

𝑔
𝑛5𝑛𝑝

= −

𝜋

2

√

𝑛
1

𝑛
5
𝑛
𝑝

, 𝑔
𝑛𝑝𝑛𝑝

=

𝜋

2

√

𝑛
1
𝑛
5

𝑛

3

𝑝

,

𝑔
𝑛𝑝𝑛𝑝

= 0, 𝑔
𝑛𝑝𝑛𝑝

=

𝜋

2

√

𝑛
1
𝑛
5

𝑛
𝑝

3
.

(B.1)
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For distinct 𝑖, 𝑗 ∈ {1, 5}, and 𝑘, 𝑙 ∈ {𝑝, 𝑝} describing four
charge nonextremal 𝐷

1
–𝐷
5
-𝑃-𝑃 black holes, the statistical

pair correlations consist of the following scaling relations:

𝑔
𝑖𝑖

𝑔
𝑗𝑗

= (

𝑛
𝑗

𝑛
𝑖

)

2

,

𝑔
𝑖𝑖

𝑔
𝑘𝑘

=

𝑛
𝑘

𝑛

2

𝑖

√𝑛𝑘
(
√
𝑛
𝑝
+ √𝑛
𝑝
) ,

𝑔
𝑖𝑖

𝑔
𝑖𝑗

= −

𝑛
𝑗

𝑛
𝑖

,

𝑔
𝑖𝑖

𝑔
𝑖𝑘

= −

√𝑛𝑘

𝑛
𝑖

(
√
𝑛
𝑝
+ √𝑛
𝑝
) ,

𝑔
𝑖𝑘

𝑔
𝑗𝑘

=

𝑛
𝑗

𝑛
𝑖

,

𝑔
𝑖𝑖

𝑔
𝑗𝑘
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𝑛
𝑗

𝑛

2

𝑖

√𝑛𝑘
(
√
𝑛
𝑝
+ √𝑛
𝑝
) ,

𝑔
𝑖𝑘

𝑔
𝑘𝑘

= −

𝑛
𝑘

𝑛
𝑖

,

𝑔
𝑖𝑗

𝑔
𝑖𝑘

=

√𝑛𝑘

𝑛
𝑗

(
√
𝑛
𝑝
+ √𝑛
𝑝
) ,

𝑔
𝑖𝑗

𝑔
𝑘𝑘
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𝑛
𝑘

𝑛
𝑖
𝑛
𝑗

√𝑛𝑘
(
√
𝑛
𝑝
+ √𝑛
𝑝
) .

(B.2)

Notice that the list of other mixed relative correlation func-
tions concerning the nonextremal 𝐷

1
–𝐷
5
-𝑃-𝑃 black holes

read as

𝑔
𝑖𝑘

𝑔
𝑖𝑙

= √

𝑛
𝑙

𝑛
𝑘

,

𝑔
𝑖𝑘

𝑔
𝑗𝑙

=

𝑛
𝑗

𝑛
𝑖

√

𝑛
𝑙

𝑛
𝑘

,

𝑔
𝑘𝑙

𝑔
𝑖𝑗

= 0,

𝑔
𝑘𝑙

𝑔
𝑖𝑖

= 0,

𝑔
𝑘𝑘

𝑔
𝑙𝑙

= (

𝑛
𝑙

𝑛
𝑘

)

3/2

,

𝑔
𝑘𝑙

𝑔
𝑘𝑘

= 0.

(B.3)

C. Correlations for Six Charge Configurations

Over generic nonlarge charge domains, we find from the
entropy equation (46) that the components of the covariant
state-space metric tensor are given by the following expres-
sions:

𝑔
𝑛1𝑛1

=

𝜋

2𝑛

3/2

1

(√𝑛2
+ √𝑚2
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𝑔
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𝜋
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𝑔
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𝑛
3
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𝑔
𝑚1𝑚3

= −

𝜋
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𝑚
3

(√𝑛2
+ √𝑚2

) ,

𝑔
𝑛2𝑛2

=

𝜋

2𝑛
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2
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+ √𝑚1

) (√𝑛3
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𝑛
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𝑛2𝑚3

= −

𝜋

2√𝑛2
𝑚
3

(√𝑛1
+ √𝑚1

) ,

𝑔
𝑚2𝑚2

=

𝜋

2𝑚

3/2

2

(√𝑛1
+ √𝑚1

) (√𝑛3
+ √𝑚3

) ,

𝑔
𝑚2𝑛3

= −

𝜋

2√𝑚2
𝑛
3

(√𝑛1
+ √𝑚1

) ,

𝑔
𝑚2𝑚3

= −

𝜋

2√𝑚2
𝑚
3

(√𝑛1
+ √𝑚1

) ,

𝑔
𝑛3𝑛3

=

𝜋

2𝑛

3/2

3

(√𝑛1
+ √𝑚1

) (√𝑛2
+ √𝑚2

) , 𝑔
𝑛3𝑚3

= 0,

𝑔
𝑚3𝑚3

=

𝜋

2𝑚

3/2

3

(√𝑛1
+ √𝑚1

) (√𝑛2
+ √𝑚2

) .

(C.1)

In this case, from the definition of the relative statistical
correlation functions, for 𝑖, 𝑗 ∈ {𝑛

1
, 𝑚
1
}, and 𝑘, 𝑙 ∈ {𝑛

2
, 𝑚
2
},

the relative correlation functions satisfy the following scaling
relations:

𝑔
𝑖𝑖

𝑔
𝑗𝑗
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𝑗

𝑖

)
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𝑔
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√
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𝑔
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+ √𝑚2
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= 0,

𝑔
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= 0.

(C.2)
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The other concerned relative correlation functions are

𝑔
𝑖𝑘

𝑔
𝑖𝑙

=
√

𝑙

𝑘

,

𝑔
𝑖𝑘

𝑔
𝑗𝑙

=
√
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𝑖𝑘
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𝑖𝑗
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𝑘𝑙
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𝑖𝑖
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𝑙𝑙
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𝑘
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𝑘𝑘
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(C.3)

For 𝑘, 𝑙 ∈ {𝑛
2
, 𝑚
2
}, and𝑚, 𝑛 ∈ {𝑛

3
, 𝑚
3
}, we have

𝑔
𝑘𝑘
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(C.4)

The other concerned relative correlation functions are

𝑔
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𝑔
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𝑔
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)
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= 0.

(C.5)

However, for 𝑖, 𝑗 ∈ {𝑛
1
, 𝑚
1
}, and𝑚, 𝑛 ∈ {𝑛

3
, 𝑚
3
}, we have

𝑔
𝑖𝑖

𝑔
𝑚𝑚

= (

𝑚

𝑖

)
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) ,
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𝑖𝑖
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𝑔
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𝑖𝑚

= −

√𝑚

𝑖

(√𝑛3
+ √𝑚3
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𝑔
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√
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= √
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𝑔
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= 0.

(C.6)

D. Principle Minors for Eight
Charge Configurations

For the entropy equation (58) of the most general nonex-
tremal nonlarge charged anticharged black hole in string

involving finitelymany nontrivially circularly fibered Kaluza-
Klein monopoles, the principle minors take the following
expressions:

𝑝
1
=

𝜋

2𝑛

3/2

1

(√𝑛2
+ √𝑚2

) (√𝑛3
+ √𝑚3

) (√𝑛4
+ √𝑚4

) ,

𝑝
2
=

𝜋

2

4(𝑛
1
𝑚
1
)

3/2
(√𝑛2

+ √𝑚2
)

2
(√𝑛3

+ √𝑚3
)

2

× (√𝑛4
+ √𝑚4

)

2
,

𝑝
3
=

𝜋

3

8(𝑛
1
𝑚
1
𝑛
2
)

3/2
(√𝑛3

+ √𝑚3
)

3
(√𝑛4

+ √𝑚4
)

3
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+ √𝑚2

)√𝑚2
(√𝑛1

+ √𝑚1
) ,

𝑝
4
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𝑝
5
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𝜋

5

8(𝑛
1
𝑛
2
𝑚
2
𝑚
1
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𝑛
3
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+ √𝑚2

)

3
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+ √𝑚3

)
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+ √𝑚1
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3
,

𝑝
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6
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2
𝑚
1
𝑚
2
𝑛
3
𝑚
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)
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)
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4
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[22] J. E. Åman and N. Pidokrajt, “Geometry of higher-dimensional
black hole thermodynamics,” Physical Review D, vol. 73, no. 2,
Article ID 024017, 2006.

[23] J. E. Aman, J. Bedford, D. Grumiller, N. Pidokrajt, and J. Ward,
“Ruppeiner theory of black hole thermodynamics,” Journal of
Physics: Conference Series, vol. 66, no. 10, Article ID 012007,
2003.

[24] G. Arcioni and E. Lozano-Tellechea, “Stability and critical
phenomena of black holes and black rings,” Physical Review D,
vol. 72, no. 10, Article ID 104021, 2005.

[25] J. Y. Shen, R. G. Cai, B. Wang, and R. K. Su, “Thermodynamic
geometry and critical behavior of black holes,” International
Journal of Modern Physics A, vol. 22, no. 11, 2007.

[26] M. Santoro and A. S. Benight, “On the geometrical thermo-
dynamics of chemical reactions,” http://arxiv.org/abs/math-ph/
0507026.

[27] B. N. Tiwari, “New Paths Towards Quantum Gravity,” Holbaek,
Denmark, 2008.

[28] S. Bellucci, V. Chandra, and B. N. Tiwari, “On the thermody-
namic geometry of hot QCD,” International Journal of Modern
Physics A, vol. 26, no. 43, 2011.

[29] S. Bellucci, V. Chandra, and B. N. Tiwari, “Thermodynamic
geometric stability of Quarkonia states,” International Journal
of Modern Physics A, vol. 26, no. 2665, 2011.

[30] E. Witten, “String theory dynamics in various dimensions,”
Nuclear Physics B, vol. 443, no. 1-2, pp. 85–126, 1995.

[31] S. Ferrara, R. Kallosh, andA. Strominger, “𝑁 = 2 extremal black
holes,” Physical Review D, vol. 52, no. 10, pp. R5412–R5416, 1995.

[32] A. Strominger, “Macroscopic entropy of 𝑁 = 2 extremal black
holes,” Physics Letters B, vol. 383, no. 1, pp. 39–43, 1996.

[33] S. Ferrara and R. Kallosh, “Supersymmetry and attractors,”
Physical Review D, vol. 54, no. 2, pp. 1514–1524, 1996.

[34] S. Ferrara, G. W. Gibbons, and R. Kallosh, “Black holes and
critical points in moduli space,” Nuclear Physics B, vol. 500, no.
1–3, pp. 75–93, 1997.

[35] S. Bellucci, S. Ferrara, and A. Marrani, “On some properties of
the attractor equations,” Physics Letters B, vol. 635, no. 2-3, pp.
172–179, 2006.

[36] S. Bellucci, S. Ferrara, andA.Marrani, SupersymmetricMechan-
ics: The Attractor Mechanism and Space-Time Singularities, vol.
2 of Lecture Notes in Physics, Springer, Heidelberg, Germany,
2006.

[37] S. Bellucci, S. Ferrara, M. Günaydin, and A. Marrani, “Charge
orbits of symmetric special geometries and attractors,” Interna-
tional Journal of Modern Physics A, vol. 21, no. 25, Article ID
5043, 2006.

[38] S. Bellucci, S. Ferrara, A. Marrani, and A. Yeranyan, “Mirror
Fermat Calabi-Yau threefolds and Landau-Ginzburg black-hole
attractors,” Rivista del Nuovo Cimento, vol. 29, no. 5, pp. 1–88,
2006.



16 Advances in High Energy Physics

[39] S. Bellucci, S. Ferrara, and A. Marrani, Contribution to the
Proceedings of the XVII SIGRAV Conference, Turin, Italy,
September 2006.

[40] S. Bellucci, S. Ferrara, R. Kallosh, and A. Marrani, “Extremal
black hole and flux vacua attractors,” in Supersymmetric
Mechanics, vol. 755 of Lecture Notes in Physics, pp. 115–191,
Springer, Heidelberg, Germany, 2008.

[41] S. Bellucci, S. Ferrara, and A. Marrani, “Attractors in black,”
Fortschritte der Physik, vol. 56, no. 7–9, pp. 761–785, 2008.

[42] S. Bellucci, S. Ferrara, M. Günaydin, and A. Marrani, “SAM
lectures on extremal black holes in d=4 extended supergravity,”
http://arxiv.org/abs/0905.3739.

[43] A. Sen, “Stretching the horizon of a higher dimensional small
black hole,” Journal of High Energy Physics, no. 7, article 073,
2005.

[44] A. Sen, “How does a fundamental string stretch its horizon?”
Journal of High Energy Physics, no. 5, article 059, 2005.

[45] A. Dabholkar, “Exact counting of supersymmetric black hole
microstates,” Physical Review Letters, vol. 94, no. 24, Article ID
241301, 2005.

[46] A. Dabholkar, F. Denef, G. W. Moore, and B. Pioline, “Precision
counting of small black holes,” Journal of High Energy Physics,
no. 10, article 096, 2005.

[47] A. Dabholkar, F. Denef, G.W.Moore, and B. Pioline, “Exact and
asymptotic degeneracies of small black holes,” Journal of High
Energy Physics, no. 8, article 021, 2005.

[48] A. Sen, “Black holes and the spectrum of half-BPS states in
𝑁 = 4 supersymmetric string theory,” Advances in Theoretical
and Mathematical Physics, vol. 9, no. 4, pp. 527–558, 2005.

[49] B. D. Chowdhury and S. D. Mathur, “Fractional brane state in
the early universe,” 2006, http://arxiv.org/abs/hep-th/0611330.

[50] A. Ghodsi and M. R. Garousi, “Entropy function for non-
extremal D1D5 and D2D6NS5-branes,” Journal of High Energy
Physics, no. 10, article 036, 2007.

[51] R.-G. Cai and D.-W. Pang, “Entropy function for non-extremal
black holes in string theory,” Journal of High Energy Physics, no.
5, article 023, 2007.

[52] M. R. Garousi and A. Ghodsi, “On attractor mechanism and
entropy function for non-extremal black holes/branes,” Journal
of High Energy Physics, no. 5, article 043, 2007.

[53] A. Strominger and C. Vafa, “Microscopic origin of the
Bekenstein-Hawking entropy,” Physics Letters B, vol. 379, no. 1–
4, pp. 99–104, 1996.

[54] C. Vafa, “Instantons on 𝐷-branes,” Nuclear Physics B, vol. 463,
no. 2-3, pp. 435–442, 1996.

[55] J. Maldacena, A. Strominger, and E.Witten, “Black hole entropy
in M-theory,” Journal of High Energy Physics, vol. 1997, no. 12,
1997.

[56] C. G. Callan, Jr. and J. M. Maldacena, “D-brane approach to
black hole quantummechanics,”Nuclear Physics B, vol. 472, no.
3, pp. 591–608, 1996.

[57] G. T. Horowitz, J. M. Maldacena, and A. Strominger, “Nonex-
tremal black hole microstates and 𝑈-duality,” Physics Letters B,
vol. 383, no. 2, pp. 151–159, 1996.

[58] G. T. Horowitz, D. A. Lowe, and J. M. Maldacena, “Statistical
entropy of nonextremal four-dimensional black holes and U
duality,” Physical Review Letters, vol. 77, no. 3, pp. 430–433, 1996.

[59] C. V. Johnson, R. R. Khuri, and R. C. Myers, “Entropy of 𝑝D
extremal black holes,” Physics Letters B, vol. 378, no. 1–4, pp. 78–
86, 1996.

[60] J. Maldacena, “The large 𝑁 limit of superconformal field
theories and supergravity,” Advances in Theoretical and Math-
ematical Physics, vol. 2, no. 2, pp. 231–252, 1998.

[61] D. Gaiotto, A. Strominger, and X. Yin, “Superconformal black
hole quantum mechanics,” Journal of High Energy Physics, no.
11, article 017, 2005.

[62] A. Castro, A. Maloney, and A. Strominger, “Hawking radiation
by Kerr black holes and conformal symmetry,” http://arxiv
.org/abs/1004.0996.

[63] T. Hartman, K. Murata, T. Nishioka, and A. Strominger, “CFT
duals for extreme black holes,” Journal of High Energy Physics,
no. 4, article 019, 2009.

[64] R.M.Wald, “Black hole entropy is the Noether charge,” Physical
Review D, vol. 48, Article ID R3427, 1993.

[65] T. Jacobson, G. Kang, and R. C. Myers, “Black hole entropy
in higher curvature gravity,” McGill/95-04; UMDGR-95-092,
1995.

[66] R. M. Wald, “The thermodynamics of black holes,” Living
Reviews in Relativity, vol. 4, no. 6, 2001.

[67] T. Jacobson and R. C. Myers, “Black hole entropy and higher-
curvature interactions,” Physical Review Letters, vol. 70, no. 24,
pp. 3684–3687, 1993.

[68] J. de Boer and M. Shigemori, “Exotic branes and nongeometric
backgrounds,” Physical Review Letters, vol. 104, no. 25, Article
ID 251603, 2010.

[69] F. Denef and G. W. Moore, “How many black holes fit on the
head of a pin?” General Relativity and Gravitation, vol. 39, no.
10, pp. 1539–1544, 2007.

[70] F. Denef and G. W. Moore, “Split states, entropy enigmas, holes
and halos,” http://arxiv.org/pdf/hep-th/0702146.pdf.

[71] I. Bena, C. W. Wang, and N. P. Warner, “Foaming three-charge
black holes,” Physical Review D, vol. 75, Article ID 124026, 2007.

[72] I. Bena, C.-W. Wang, and N. P. Warner, “Plumbing the abyss:
black ring microstates,” Journal of High Energy Physics, no. 7,
article 019, 2008.

[73] V. Balasubramanian, V. Jejjala, and J. Simón, “The library of
Babel: on the origin of gravitational thermodynamics,” Journal
of High Energy Physics, vol. 14, no. 12, pp. 2181–2186, 2005.

[74] V. Balasubramanian, M. Berkooz, A. Naqvi, and M. J. Strassler,
“Giant gravitons in conformal field theory,” Journal of High
Energy Physics, no. 4, article 034, 2002.

[75] R. Emparan andH. S. Reall, “The end of black hole uniqueness,”
General Relativity and Gravitation, vol. 34, no. 12, pp. 2057–
2062, 2002.

[76] J. L. Hovdebo and R. C. Myers, “Black rings, boosted strings,
and Gregory-Laflamme instability,” Physical Review D, vol. 73,
no. 8, Article ID 084013, 2006.

[77] H. Elvang, R. Emparan, and A. Virmani, “Dynamics and
stability of black rings,” Journal of High Energy Physics, vol. 12,
p. 74, 2006.

[78] R. Gregory and R. Laflamme, “Black strings and 𝜌-branes are
unstable,” Physical Review Letters, vol. 70, no. 19, pp. 2837–2840,
1993.

[79] G. Arcioni and E. Lozano-Tellechea, “Stability and critical
phenomena of black holes and black rings,” Physical Review D,
vol. 72, no. 10, Article ID 104021, 2005.

[80] O. J. C. Dias, “Superradiant instability of large radius doubly
spinning black rings,” Physical Review D, vol. 73, Article ID
124035, 2006.



Advances in High Energy Physics 17

[81] H. Lin,O. Lunin, and J.Maldacena, “BubblingAdS space and 1/2
BPS geometries,” Journal of High Energy Physics, no. 10, article
025, 2004.

[82] O. Lunin and S. D.Mathur, “AdS/CFT duality and the black hole
information paradox,” Nuclear Physics B, vol. 623, no. 1-2, pp.
342–394, 2002.

[83] O. Lunin and S. D. Mathur, “Statistical interpretation of the
Bekenstein entropy for systems with a stretched horizon,”
Physical Review Letters, vol. 88, no. 21, Article ID 211303, 2002.

[84] S. D. Mathur, “Black hole size and phase space volumes,”
http://arxiv.org/abs/0706.3884.

[85] K. Skenderis and M. Taylor, “The fuzzball proposal for black
holes,” Physics Reports, vol. 467, no. 4-5, pp. 117–171, 2008.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

High Energy Physics
Advances in

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Fluids
Journal of

 Atomic and  
Molecular Physics

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in  
Condensed Matter Physics

Optics
International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Astronomy
Advances in

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Superconductivity

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Statistical Mechanics
International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Gravity
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Astrophysics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Physics 
Research International

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Solid State Physics
Journal of

 Computational 
 Methods in Physics

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Soft Matter
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Aerodynamics
Journal of

Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Photonics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Biophysics

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Thermodynamics
Journal of


