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We present an analysis of proton and charged pion transversemomentum spectra of𝑝+Cu and𝑝+Pb reactions at 3, 8, and 15GeV/c
in the framework of a multisource thermal model. The spectra are compared closely with the experimental data of HARP-CDP at
all angular intervals. The result shows that the widths of the particle distributions in both 𝑝 + Cu and 𝑝 + Pb collisions decrease
with increasing the angle for the same incident momentum.

1. Introduction

The relativistic heavy ion collider (RHIC) [1, 2] in the United
States and the large hadron collider (LHC) [3] in Switzerland
have been built, respectively. Much higher energy collisions
can lead to a new significant extension of the kinematic range
in transverse momentum.The collisions bring valuable infor-
mation of quark gluon plasma (QGP) at high energy due to
high temperature and density [4, 5].The state is a thermalized
system consisting of strong coupled quarks and gluons in a
very small region. This matter is only created for the briefest
of instants, and then the fireball cools down and hadronizes
into hadrons. So, we cannot observe the QGP directly
in the existing laboratory conditions. However, we can
extract a judgment of the creation of the quark matter by
measuring and analyzing the spectra of identified particles
produced after thermal freeze-out in heavy ion collisions.

In a very early stage of the collision, the energy density
is expected to be sufficient to dissolve normal nuclear matter
into a phase of quarkmatter, which exists for only a short time
before the fireball cools down and the process of hadroniza-
tion takes place. High-energy collisions provide an excellent
probe of the quark matter. Properties of QGP will be probed
further in LHC at the European Organization for Nuclear
Research (CERN) [6]. The proton-nucleus collisions are
important in experimental programmes performed in the

LHC [7] because they not only provide baseline measure-
ments for the nucleus-nucleus collisions but also help us
better understand fundamental features of quantum chromo-
dynamics (QCD) [8]. The transverse momentum spectra of
final-state particles can give some important information of
the matter created in high-energy collisions. In this paper, we
use amultisource thermalmodel to study transversemomen-
tum spectra of protons and charged pions produced in 𝑝+Cu
and 𝑝+ Pb collisions at 3, 8, and 15GeV/c, recently measured
in the Hadron Production Experiment (HARP) at the CERN
[9].

2. Distribution of Transverse Momentum

In a framework of the multisource thermal model [10, 11],
identified fragments or particles emit isotropically from
different emission sources in the collisions. In order to deal
conveniently with the relation between the sources and par-
ticles, we split the sources into 𝑘 groups in accordance with
kinetic laws and geometrical positions. For the𝑚th source in
the 𝑛th group, its share of the transverse momentum spec-
trum of the final-state particles is given by

𝑓
𝑚𝑛
(𝑃Tm𝑛) =

1

⟨𝑃Tm𝑛⟩
exp(−

𝑃Tm𝑛
⟨𝑃Tm𝑛⟩
) , (1)
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Table 1: Values of ⟨𝑃Tm1⟩, 𝑐1 taken in the fits of Figures 1 and 2.

Figure 1 ⟨𝑃Tm1⟩ 𝑐
1

𝜒
2

/dof Figure 2 ⟨𝑃Tm1⟩ 𝑐
1

𝜒
2

/dof
(a1) 0.19 1 0.03 (a1) 0.09 1 0.19
(a2) 0.18 1 0.03 (a2) 0.14 1 0.23
(a3) 0.18 1 0.06 (a3) 0.14 1 0.14
(b1) 0.15 1 0.20 (b1) 0.09 1 0.54
(b2) 0.14 1 0.08 (b2) 0.13 1 0.27
(b3) 0.16 1 0.07 (b3) 0.13 1 0.29
(c1) 0.08 1 0.14 (c1) 0.05 1 0.83
(c2) 0.09 1 0.02 (c2) 0.07 1 0.51
(c3) 0.10 1 0.15 (c3) 0.07 1 1.20

Table 2: Values of ⟨𝑃Tm1⟩, 𝑐1 taken in the fits of Figures 3 and 4.

Figure 3 ⟨𝑃Tm1⟩ 𝑐
1

𝜒
2

/dof Figure 4 ⟨𝑃Tm1⟩ 𝑐
1

𝜒
2

/dof
(a1) 0.11 1 0.20 (a1) 0.17 1 0.05
(a2) 0.16 1 0.05 (a2) 0.16 1 0.13
(a3) 0.16 1 0.09 (a3) 0.17 1 0.13
(b1) 0.11 1 1.00 (b1) 0.14 1 0.16
(b2) 0.13 1 0.19 (b2) 0.13 1 0.52
(b3) 0.13 1 0.49 (b3) 0.15 1 0.03
(c1) 0.05 1 1.49 (c1) 0.08 1 0.12
(c2) 0.08 1 0.85 (c2) 0.09 1 —
(c3) 0.08 1 0.66 (c3) 0.10 1 —

where

⟨𝑃Tm𝑛⟩ = ∫𝑃Tm𝑛𝑓𝑚𝑛 (𝑃Tm𝑛) 𝑑𝑃Tm𝑛 (2)

is the mean value of the transverse momentum which comes
from the𝑚th source in the 𝑛th group. According to statistical
properties of the model, we have

⟨𝑃
𝑇1𝑛
⟩ = ⟨𝑃

𝑇2𝑛
⟩ = ⋅ ⋅ ⋅ = ⟨𝑃

𝑇𝑙
𝑛
𝑛
⟩ . (3)

𝑙
𝑛
indicates the source number in the 𝑛th group. By comput-

ing convolution of the 𝑙
𝑛
exponential functions equation (1),

the total share of the 𝑛th group for the transverse momentum
𝑃
𝑇
distribution is obtained as

𝑓
𝑛
(𝑃
𝑇
) =

𝑃
𝑇

𝑙
𝑛
−1

(𝑙
𝑛
− 1)!⟨𝑃Tm𝑛⟩

𝑙
𝑛

exp(− 𝑃𝑇
⟨𝑃Tm𝑛⟩
) . (4)

It is an Erlang distribution. Then, the transverse momentum
distribution from the 𝑘 groups is given by

𝑓 (𝑃
𝑇
) =

𝑘

∑

𝑛=1

𝑐
𝑛
𝑓
𝑛
(𝑃
𝑇
) , (5)

where 𝑐
𝑛
characterizes how large the contribution of the

sources in the 𝑛th group is. Equation (5) is known as a mul-
ticomponent Erlang distribution. To simplify the calculation,
the Monte Carlo method is used to calculate the transverse

momentum spectra.With (1) and (4), the transverse momen-
tum distribution is

𝑃Tm𝑛 = − ⟨𝑃Tm𝑛⟩ ln𝑅𝑚𝑛, (6)

𝑃
𝑇
= −

𝑙
𝑛

∑

𝑚=1

⟨𝑃Tm𝑛⟩ ln𝑅𝑚𝑛, (7)

where 𝑅
𝑚𝑛

is a random number in [0, 1].

3. Comparison with HARP Results

Figures 1, 2, and 3 present the transverse momentum spectra
of 𝑝, 𝜋−, and 𝜋+ in 𝑝 + Cu collisions at 3, 8, and 15GeV/c
at different angular intervals, respectively. From the first
column to the third column in the figures, the momenta of
incident protons are 3, 8, and 15GeV/c, respectively. And
from the first row to the third row in the figures, the angular
intervals are 30∘–40∘, 60∘–75∘, and 105∘–125∘, separately. The
symbols indicate the experimental data [9] in the HARP
experiment at the CERN. The solid lines are the results of
the multisource thermal model. The parameters and 𝜒2 per
degree of freedom (dof) are given in Tables 1 and 2. In
the 30∘–40∘ angular interval, the value of ⟨𝑃Tm1⟩ for the 𝑝
production at 8GeV/c incident momentum is equal to that
at the 15GeV/c. Moreover, for 𝜋−, the ⟨𝑃Tm1⟩ at 8GeV/c and
15GeV/c are the same in the three angular intervals. So is
it for 𝜋+. In the calculation, one group with two sources
is selected. We see that the model can successfully describe
the experimental data. From the figures and the tables, it is
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Figure 1: Transverse momentum of protons produced in 𝑝 + Cu collisions at 3, 8, and 15GeV/c. The angular bins are 30∘–40∘, 60∘–75∘, and
105∘–125∘, respectively. The circles indicate the experimental data [9] and the curves indicate the results of the model.
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Figure 2: The same as Figure 1, but for 𝜋−.
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Figure 3: The same as Figure 1, but for 𝜋+.
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Figure 4: Transverse momentum of protons produced in 𝑝 + Pb collisions at 3, 8, and 15GeV/c. The angular bins are 30∘–40∘, 60∘–75∘, and
105∘–125∘, respectively. The circles indicate the experimental data [9] and the curves indicate the results of the model.
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Figure 5: The same as Figure 4, but for 𝜋−.
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Figure 6: The same as Figure 4, but for 𝜋+.
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Table 3: Values of ⟨𝑃Tm1⟩, 𝑐1 taken in the fits of Figures 5 and 6.

Figure 5 ⟨𝑃Tm1⟩ 𝑐
1

𝜒
2

/dof Figure 6 ⟨𝑃Tm1⟩ 𝑐
1

𝜒
2

/dof
(a1) 0.09 1 0.18 (a1) 0.12 1 0.56
(a2) 0.13 1 0.31 (a2) 0.16 1 0.22
(a3) 0.14 1 0.20 (a3) 0.17 1 0.11
(b1) 0.10 1 0.62 (b1) 0.11 1 0.55
(b2) 0.12 1 0.75 (b2) 0.14 1 0.35
(b3) 0.13 1 1.26 (b3) 0.14 1 0.15
(c1) 0.06 1 1.12 (c1) 0.05 1 1.73
(c2) 0.07 1 1.33 (c2) 0.09 1 0.95
(c3) 0.08 1 1.63 (c3) 0.09 1 0.45

also found that the width or the mean contribution ⟨𝑃Tm1⟩
of the distribution decreases with increasing the angular
intervals for the same incident momentum.

Figures 4, 5, and 6 show the transverse momentum
spectra of 𝑝, 𝜋−, and 𝜋+in 𝑝 + Pb interactions at 3, 8, and
15GeV/cwith different angular bins.The symbols indicate the
HARP-CDP experimental data [9] and the solid lines indicate
the results of the multisource thermal model. The results
of (7) are in agreement with the experimental data. The
corresponding parameters and 𝜒2/dof are listed in Tables 2
and 3. At forward angles 𝜃 = 30∘–40∘, the values of ⟨𝑃Tm1⟩ are
the same for proton production at 3GeV/c incident momen-
tum and for the 15GeV/c. For 𝜋+ production, the ⟨𝑃Tm1⟩ at
8GeV/c and 15GeV/c are the same at the angles of 60∘–75∘
and 105∘–125∘. Like the case of 𝑝+Cu collisions, we still use a
single group with two sources and the results agree well with
the experimental data. At the same incident momentum, the
⟨𝑃Tm1⟩ decreases with the increase of the forward angles.

4. Discussion and Conclusion

In themultisource thermalmodel, the transversemomentum
spectra of protons and charged pions produced in protons on
Cu and Pb collisions at 3, 8, and 15GeV/c in fixed angles of
30∘–40∘, 60∘–75∘, and 105∘–125∘ are discussed. The spectra of
the model are in agreement with the HARP-CDP data. The
maximum value of 𝜒2/dof is 1.73, and the minimum value is
0.02. From the above discussions, it is seen that the distribu-
tion widths of the concerned particles in both 𝑝 + Cu and
𝑝+Pb reactions decreasewith increasing the angular intervals
for the same incident momentum.

In the work, two sources in one group are used to study
the experimental data. It implies that the final-state particles
emit from two sources.Themodel can provide an explanation
not only for one group but also for more groups. In the previ-
ous work, the model was used to investigateelliptic flows [10],
particle production [11, 12], longitudinal shift in (pseudo)
rapidity distributions [13, 14], and so forth. For various types
of collision systems, the multicomponent Erlang distribu-
tion can fit the transverse momentum spectra. The work
reveals a multisource production phenomenon in the heavy
ion collisions.
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dependence of the charged-particle multiplicity density at
midrapidity in Pb-Pb collisions at √𝑠𝑁𝑁 = 2.76TeV,” Physical
Review Letters, vol. 106, Article ID 032301, 2011.

[4] P. Romatschke andU.Romatschke, “Viscosity information from
relativistic nuclear collisions: how perfect is the fluid observed
at RHIC?” Physical Review Letters, vol. 99, Article ID 172301,
2007.

[5] B. B. Abelev, J. Adam,D.Adamova (ALICECollaboration) et al.,
“K0S andΛ Production in Pb-Pb Collisions at√sNN = 2.76TeV,”
Physical Review Letters, vol. 111, Article ID 222301, 2013.

[6] K. Aamodtet, B. Abelev, and A. Quintana (ALICE Collabo-
ration), “Higher harmonic anisotropic flow measurements of
charged particles in Pb-Pb collisions at √sNN = 2.76TeV,”
Physical Review Letters, vol. 107, Article ID 032301, 2011.

[7] A. Bzdak and V. Skokov, “Decisive test of color coherence in
rroton-nucleus vollisions at the LHC,” Physical Review Letters,
vol. 111, Article ID 182301, 2013.
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