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We consider simple models of Bose-Einstein condensates to study analog pair-creation effects, namely, the Hawking effect from
acoustic black holes and the dynamical Casimir effect in rapidly time-dependent backgrounds. We also focus on a proposal
by Cornell to amplify the Hawking signal in density-density correlators by reducing the atoms’ interactions shortly before
measurements are made.

1. Introduction

Analogue models in condensedmatter systems are nowadays
an active field of investigation, not only on the theoretical
side but, more importantly, also on the experimental one.
The underlying idea is to reproduce in a condensed matter
context peculiar and interesting quantum effects predicted
by Quantum Field Theory in curved space, whose experi-
mental verification in the gravitational context appears at the
moment by far out of reach.

Many efforts are devoted to find the most famous of these
effects, namely, the thermal emission by black holes predicted
byHawking in 1974 [1]. Among the condensedmatter systems
under examination, Bose-Einstein condensates appear as
the most promising setting to achieve this goal [2–13]. The
major problem one has to face experimentally is the correct
identification of the signal corresponding to the analogue of
Hawking radiation, namely, a thermal emission of phonons
as a consequence of a sonic horizon formation, since it can
be covered by other competing effects, like large thermal
fluctuations.

A major breakthrough to overcome this problem came
in 2008, when it was predicted that, as a consequence of
Hawking radiation being a genuine pair creation process,
a characteristic peak in the density correlation function of

the condensate should appear for points situated on opposite
sides with respect to the horizon [14]. This is the “smoking
gun” of the Hawking effect. Soon after this proposal, Eric
Cornell at the first meeting on “experimental Hawking radia-
tion” held in Valencia in 2009 suggested that one can amplify
this characteristic signal by reducing the interaction coupling
among the atoms of the BEC shortly before measuring the
density correlations [15].

Here we review in a simple pedagogical way, using toy
models, how the analogous of Hawking radiation occurs in
a supersonic flowing BEC and how the corresponding char-
acteristic peak in the correlation function can be amplified
according to Cornell’s suggestion. It should be stressed that
nowadays correlation functions measurements are becoming
the basic experimental tool to investigate Hawking-like radi-
ation in condensed matter systems.

2. BECs: The Gravitational Analogy
and Hawking Radiation

A Bose gas in the dilute gas approximation is described by a
field operator ̂Ψ with equal-time commutator (see, e.g., [16])

[

̂

Ψ (𝑡, 𝑥⃗) ,

̂

Ψ

†
(𝑡, 𝑥⃗

󸀠
)] = 𝛿

3
(𝑥⃗ − 𝑥⃗

󸀠
) (1)
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satisfying the time-dependent Schrödinger equation

𝑖ℏ𝜕𝑡
̂

Ψ = (−

ℏ

2

2𝑚

⃗

∇

2
+ 𝑉ext + 𝑔̂Ψ

†
̂

Ψ)

̂

Ψ, (2)

where 𝑚 is the mass of the atoms, 𝑉ext is the external
potential, and 𝑔 is the nonlinear atom-atom interaction
coupling constant. At sufficiently low temperatures a large
fraction of the atoms condense into a common ground state
which is described, in themean field approach, by a 𝑐-number
field Ψ0(𝑡, 𝑥⃗).

To consider linear fluctuations around this classical mac-
roscopic condensate, one writes the bosonic field operator ̂Ψ
as

̂

Ψ ∼ Ψ0 (1 +
̂

𝜙) , (3)

where ̂

𝜙 is a small (quantum) perturbation. Ψ0 and ̂

𝜙 satisfy,
respectively, Gross-Pitaevski

𝑖ℏ𝜕𝑡Ψ0 = (−

ℏ

2

2𝑚

⃗

∇

2
+ 𝑉ext + 𝑔𝑛0)Ψ0, (4)

where 𝑛0 = |Ψ0|
2 is the number density, and Bogoliubov-de

Gennes equations

𝑖ℏ𝜕𝑡
̂

𝜙 = −(

ℏ

2

2𝑚

⃗

∇

2
+

ℏ

2

𝑚

⃗

∇Ψ0

Ψ0

⃗

∇)

̂

𝜙 + 𝑚𝑐

2
(

̂

𝜙 +

̂

𝜙

†
) , (5)

with 𝑐 = √𝑔𝑛0/𝑚 being the speed of sound.
Contact with the gravitational analogy (see, e.g., [13]) is

achieved in the (long wavelength) hydrodynamic approxima-
tion, more easily realised by considering the density-phase
representation for the Bose operator ̂Ψ =

√
𝑛𝑒

𝑖𝜃 and the
splitting 𝑛 = 𝑛0 + 𝑛1,

̂

𝜃 = 𝜃0 +
̂

𝜃1 in which 𝑛1, ̂𝜃1 represent the
linear (quantum) density and phase fluctuations, respectively.
In terms of ̂𝜙 and ̂

𝜙

† we have

𝑛1 = 𝑛0 (
̂

𝜙 +

̂

𝜙

†
) ,

̂

𝜃1 = −

𝑖

2

(

̂

𝜙 − 𝜙

†
) . (6)

Provided that the condensate density 𝑛0 and velocity V⃗0 =
ℏ∇𝜃0/𝑚 vary on length scales much bigger than the healing
length 𝜉 = ℏ/𝑚𝑐 (the fundamental length scale of the
condensate), the BdG equation reduces to the continuity and
Euler equations for 𝑛1 and ̂

𝜃1 and these can be combined
to give a second-order differential equation for ̂𝜃1 which is
mathematically equivalent to a Klein-Gordon (KG) equation

◻

̂

𝜃1 = 0, (7)

where◻ is the covariantKGoperator from the acousticmetric

𝑑𝑠

2
=

𝑛0

𝑚𝑐

[− (𝑐

2
− V⃗2
0
) 𝑑𝑡

2
− 2V⃗0𝑑𝑡𝑑𝑥⃗ + 𝑑𝑥⃗

2
] . (8)

For a flow which presents a transition from a subsonic
(|V0| < 𝑐) flow to a supersonic one (|V⃗0| > 𝑐 in some
region) the metric (8) describes an acoustic black hole, with

horizon located at the surface where |V0| = 𝑐. The same
analysis performed by Hawking in the gravitational case can
be repeated step by step, leading to the prediction [17] that
acoustic black holes will emit a thermal flux of phonons at
the temperature

𝑇𝐻 =
𝜅

2𝜋

, (9)

where 𝜅 = (1/2𝑐)(𝑑(𝑐

2
− V⃗2)/𝑑𝑛)|hor, with 𝑛 being the normal

to the horizon, is the horizon’s surface gravity.

3. The Model

To simplify the mathematics involved in the process, we will
consider a 1D configuration (in 1D one shouldmore correctly
speak of quasi-condensation [18, 19]) in which 𝑛0 and V0 are
constant and where the only nontrivial quantity is the speed
of sound 𝑐. As explained in [20], this can be achieved by
varying the coupling constant 𝑔 (and therefore 𝑐) and the
external potential but keeping the sum 𝑔𝑛0 + 𝑉ext constant.
In this way, the plane-wave function Ψ0 =

√
𝑛0𝑒
𝑖𝑘0𝑥−𝑖𝑤0𝑡,

where V0 = ℏ𝑘0/𝑚 is the condensate velocity and ℏ𝑤0 =

ℏ

2
𝑘

2

0
/2𝑚 + 𝑉ext + 𝑔𝑛0, where ℏ𝑤0 is the chemical potential

of the gas, is a solution of (4) everywhere. Note that such a
stationary configuration is difficult to reach experimentally;
nevertheless it gives results similar to those obtained by more
realistic configurations [21].

The fluctuation operator ̂𝜙 is expanded in the usual form
in terms of positive and negative norm modes as

̂

𝜙 (𝑡, 𝑥) = ∑

𝑗

[𝑎𝑗𝜙𝑗 (𝑡, 𝑥) + 𝑎
†

𝑗
𝜑

∗

𝑗
(𝑡, 𝑥)] , (10)

where 𝑎𝑗 and 𝑎
†

𝑗
are quasi-particle’s annihilation and creation

operators. From (5) and its Hermitean conjugate, we see that
the modes 𝜙𝑗(𝑡, 𝑥) and 𝜑𝑗(𝑡, 𝑥) satisfy the coupled differential
equations

[𝑖 (𝜕𝑡 + V0𝜕𝑥) +
𝜉𝑐

2

𝜕

2

𝑥
−

𝑐

𝜉

] 𝜙𝑗 =
𝑐

𝜉

𝜑𝑗,

[−𝑖 (𝜕𝑡 + V0𝜕𝑥) +
𝜉𝑐

2

𝜕

2

𝑥
−

𝑐

𝜉

] 𝜑𝑗 =
𝑐

𝜉

𝜙𝑗.

(11)

Thenormalizations are fixed, via integration of the equal-time
commutator obtained from (1), namely,

[

̂

𝜙 (𝑡, 𝑥) ,

̂

𝜙

†
(𝑡, 𝑥

󸀠
)] =

1

𝑛0

𝛿 (𝑥 − 𝑥

󸀠
) , (12)

by

∫𝑑𝑥 [𝜙𝑗𝜙
∗

𝑗󸀠
− 𝜑

∗

𝑗
𝜑𝑗󸀠] =

𝛿𝑗𝑗󸀠

𝑛0

. (13)

In order to get simple analytical expressions, in the
following we will consider simple models with step-like
discontinuities in the speed of sound 𝑐 and impose the
appropriate boundary conditions for the modes that are
solutions to (11). For more general profiles a numerical
analysis can be performed; see, for example, [22–25].
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3.1. Acoustic Black Holes and the Hawking Effect. A simple
analytical model of an acoustic black hole [26] can be
obtained by gluing two semi-infinite stationary and homo-
geneous 1D condensates, one subsonic (𝑥 < 0) and the
other supersonic (𝑥 > 0), along a spatial discontinuity
at 𝑥 = 0 (see [27], to which we refer for more detailed
explanations throughout this paragraph, and the references
therein): 𝑐(𝑥) = 𝑐𝑙𝜃(−𝑥) + 𝑐𝑟𝜃(𝑥). We take V0 < 0; that
is, the flow is from right to left, and 𝑐𝑙 < |V0| < 𝑐𝑟. We
denote the modes solutions in each homogeneous region and
corresponding to the fields 𝜙 and 𝜑 as

𝜙𝜔 = 𝐷 (𝜔) 𝑒

−𝑖𝑤𝑡+𝑖𝑘(𝜔)𝑥
, 𝜑𝜔 = 𝐸 (𝜔) 𝑒

−𝑖𝑤𝑡+𝑖𝑘(𝜔)𝑥
, (14)

so that (11) become

[(𝜔 − V0𝑘) −
𝜉𝑐𝑘

2

2

−

𝑐

𝜉

]𝐷 (𝜔) =

𝑐

𝜉

𝐸 (𝜔) ,

[− (𝜔 − V0𝑘) −
𝜉𝑐𝑘

2

2

−

𝑐

𝜉

]𝐸 (𝜔) =

𝑐

𝜉

𝐷 (𝜔) ,

(15)

while the normalization condition (13) gives

|𝐷 (𝜔)|

2
− |𝐸 (𝜔)|

2
=

1

2𝜋𝑛0

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝑑𝑘

𝑑𝑤

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

. (16)

The combination of the two equations (15) gives the Bogoli-
ubov dispersion relation for a one-dimensional Bose liquid
flowing at constant velocity

(𝜔 − V0𝑘)
2
= 𝑐

2
(𝑘

2
+

𝜉

2
𝑘

4

4

) (17)

containing the positive and negative normbranches𝑤−V0𝑘 =
±𝑐
√
𝑘

2
+ (𝜉

2
𝑘

4
/4) ≡ ±Ω(𝑘) which, for the subsonic and

supersonic regions, are given, respectively, in Figures 1 and 2.
Moreover, inserting the relation between 𝐷 and 𝐸 from (15)
into (16) we find the mode normalizations

𝐷 (𝜔) =

𝜔 − V𝑘 + (𝑐𝜉𝑘2/2)

√4𝜋𝑛0𝑐𝜉𝑘
2
󵄨

󵄨

󵄨

󵄨

󵄨

(𝜔 − V𝑘) (𝑑𝑘/𝑑𝜔)−1
󵄨

󵄨

󵄨

󵄨

󵄨

,

𝐸 (𝜔) = −

𝜔 − V𝑘 − (𝑐𝜉𝑘2/2)

√4𝜋𝑛0𝑐𝜉𝑘
2
󵄨

󵄨

󵄨

󵄨

󵄨

(𝜔 − V𝑘) (𝑑𝑘/𝑑𝜔)−1
󵄨

󵄨

󵄨

󵄨

󵄨

,

(18)

where 𝑘 = 𝑘(𝜔) are the roots of the quartic equation (17) at
fixed 𝜔.

In the subsonic case (17) admits two real and two complex
solutions. Regarding the real solutions, Figure 1, we call 𝑘V(∼
𝜔/(V0−𝑐)+𝑂(𝜉

2
)) and 𝑘𝑢(∼ 𝜔/(V0+𝑐)+𝑂(𝜉

2
)) the ones corre-

sponding to, respectively, negative and positive group velocity
V𝑔 = 𝑑𝜔/𝑑𝑘 (the other two complex conjugated solutions
correspond to, respectively, spatially decaying 𝑘𝑑 and growing
𝑘𝑔 modes). In the supersonic case (see Figure 2) we see that,
for the most interesting regime (𝜔 < 𝜔max ∼ 1/𝜉), there are
now four real solutions, corresponding to four propagating
modes: 𝑘V, 𝑘𝑢 (present also in the hydrodynamical limit 𝜉 = 0)

1.0

0.5

0.0

−0.5

−1.0

−2 −1 0 1 2

k

𝜔

Figure 1: Dispersion relation in the subsonic region (𝜔 is given in
units of the chemical potential and 𝑘 in units of the healing length).
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Figure 2: Dispersion relation in the supersonic region (again, 𝜔 is
given in units of the chemical potential and 𝑘 in units of the healing
length).

and 𝑘3, 𝑘4(∼ 1/𝜉), two of which (𝑘𝑢 and 𝑘4) belong to the
negative norm branch.

To findmodes evolution for all 𝑥 one needs to write down
the general solutions for𝜙 (𝜑) in the left supersonic (𝑙) and the
right subsonic (𝑟) regions (we restrict to the most interesting
case 𝜔 < 𝜔max)

𝜙

𝑙

𝜔
= 𝑒

−𝑖𝜔𝑡

× [𝐷

𝑙

V𝐴
𝑙

V𝑒
𝑖𝑘
𝑙

V𝑥
+ 𝐷

𝑙

𝑢
𝐴

𝑙

𝑢
𝑒

𝑖𝑘
𝑙

𝑢
𝑥
+ 𝐷

𝑙

3
𝐴

𝑙

3
𝑒

𝑖𝑘
𝑙

3
𝑥
+ 𝐷

𝑙

4
𝐴

𝑙

4
𝑒

𝑖𝑘
𝑙

4
𝑥
] ,

𝜙

𝑟

𝜔
= 𝑒

−𝑖𝜔𝑡

× [𝐷

𝑟

V𝐴
𝑟

V𝑒
𝑖𝑘
𝑟

V𝑥
+ 𝐷

𝑟

𝑢
𝐴

𝑟

𝑢
𝑒

𝑖𝑘
𝑟

𝑢
𝑥
+ 𝑑𝜙𝐴

𝑟

𝑑
𝑒

𝑖𝑘
3

𝑑
𝑥
+ 𝐺𝜙𝐴

𝑟

𝑔
𝑒

𝑖𝑘
𝑟

𝑔
𝑥
]

(19)

(the expansions for 𝜑 are the same up to the replacement
𝐷 → 𝐸) and impose, from (11), the matching conditions

[𝜙] = 0, [𝜙

󸀠
] = 0, [𝜑] = 0, [𝜑

󸀠
] = 0, (20)
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where [ ] indicates the variation across the jump at 𝑥 = 0,
allowing us to write down the relations between left and right
amplitudes 𝐴 through a scattering matrix𝑀scatt in the form

(

𝐴

𝑙

V

𝐴

𝑙

𝑢

𝐴

𝑙

3

𝐴

𝑙

4

) = 𝑀scatt(

𝐴

𝑟

V

𝐴

𝑟

𝑢

𝐴

𝑟

𝑑

𝐴

𝑟

𝑔

). (21)

This allows us to construct explicitly the decomposition of
the field operator ̂𝜙 in terms of the “in” and “out” bases. The
“in” basis is constructed with 𝜙in modes propagating from the
asymptotic regions (𝑥 → ±∞) towards the discontinuity
(𝑥 = 0), while the “out” basis is constructed with modes
𝜙

out propagating away from the discontinuity to 𝑥 = ±∞.
Looking at Figures 1 and 2, we see that unit amplitude modes
defined on the left moving 𝑘

𝑟

V and right moving 𝑘

𝑙

3
, 𝑘

𝑙

4
(∼

1/𝜉)momenta define the ingoing scattering states, while unit
amplitude modes defined on the right moving 𝑘

𝑟

𝑢
and left

moving 𝑘𝑙V, 𝑘
𝑙

𝑢
momenta define the outgoing scattering states.

One can then write down the “in” decomposition in terms of
the “in” scattering states

̂

𝜙 = ∫

𝜔max

0

𝑑𝜔 [𝑎

V,in
𝜔

𝜙

V,in
𝜔

+ 𝑎

3,in
𝜔

𝜙

3,in
𝜔

+ 𝑎

4,in†
𝜔

𝜙

4,in
𝜔

+ ℎ.𝑐.]

(22)

or, equivalently, on the basis of the “out” scattering ones. Note
that since 𝑘𝑙

4
belongs to the negative norm branch the corre-

sponding “in” mode 𝜙in
4,𝑙

is multiplied by a creation operator
𝑎

4,in†
𝜔

(the same thing happens, in the “out” decomposition,
for 𝜙out
𝑢,𝑙

). Using (21) one can construct the 3 × 3 S-matrix
relating 𝜙in and 𝜙out modes

𝜙

V,in
𝜔

= 𝑆V𝑙,V𝑟𝜙
V,out
𝜔

+ 𝑆𝑢𝑟,V𝑟𝜙
𝑢𝑟,out
𝜔

+ 𝑆𝑢𝑙,V𝑙𝜙
𝑢𝑙,out
𝜔

,

𝜙

3,in
𝜔

= 𝑆V𝑙,3𝑙𝜙
V,out
𝜔

+ 𝑆𝑢𝑟,3𝑙𝜙
𝑢𝑟,out
𝜔

+ 𝑆𝑢𝑙,3𝑙𝜙
𝑢𝑙,out
𝜔

,

𝜙

4,in
𝜔

= 𝑆V𝑙,4𝑙𝜙
V,out
𝜔

+ 𝑆𝑢𝑟,4𝑙𝜙
𝑢𝑟,out
𝜔

+ 𝑆𝑢𝑙,4𝑙𝜙
𝑢𝑙,out
𝜔

,

(23)

which is not trivial since it mixes positive and negative norm
modes. As a consequence, the Bogoliubov transformation
between “in” and “out” creation and annihilation operators
is also not trivial because it mixes creation and annihilation
operators. This has the crucial consequence that the “in” and
“out” Hilbert spaces are not unitary related; in particular the
corresponding vacua are different; that is, |0, in⟩ ̸= |0, out⟩.
The physical consequence is that if we prepare the system
in the |0, in⟩ vacuum state, so that there are no incoming
phonons at 𝑡 = −∞, we will have, at late times, outgoing
quanta on both sides of the horizon: the vacuum has sponta-
neously emitted phonons,mainly in the 𝑘𝑟

𝑢
channel (Hawking

quanta) and 𝑘

𝑙

𝑢
(partners). The analytical calculations show

that the number of emitted Hawking quanta [26]

⟨0, in 󵄨󵄨󵄨
󵄨

󵄨

𝑎

𝑢𝑟,out†
𝜔

𝑎

𝑢𝑟,out
𝜔

󵄨

󵄨

󵄨

󵄨

󵄨

0, in⟩ = 󵄨

󵄨

󵄨

󵄨

𝑆𝑢𝑟,4𝑙

󵄨

󵄨

󵄨

󵄨

2
∼

1

𝜔

(24)

and partners

⟨0, in 󵄨󵄨󵄨
󵄨

󵄨

𝑎

𝑢𝑙,out†
𝜔

𝑎

𝑢𝑙,out
𝜔

󵄨

󵄨

󵄨

󵄨

󵄨

0, in⟩ = 󵄨

󵄨

󵄨

󵄨

𝑆𝑢𝑙,4𝑙

󵄨

󵄨

󵄨

󵄨

2
∼

1

𝜔

(25)

follow an approximate (low-frequency) thermal (1/𝑤) spec-
trum [21], the proportionality factor allowing the identifica-
tion of a Hawking temperature (∼ 1/𝜉) in this idealised set-
ting. We can understand the mechanism by which Hawking
radiation is emitted by looking, using (6), at the equal-time
density-density correlator

𝐺

(2)
(𝑡; 𝑥, 𝑥

󸀠
) ≡

1

𝑛

2
0

lim
𝑡→ 𝑡󸀠

⟨0, in 󵄨󵄨󵄨
󵄨

󵄨

𝑛

1
(𝑡, 𝑥) , 𝑛

1
(𝑡

󸀠
, 𝑥

󸀠
)

󵄨

󵄨

󵄨

󵄨

󵄨

0, in⟩ ,

(26)

whose main contribution in the 𝑥 < 0 and 𝑥

󸀠
> 0 sector

comes from the 𝑢𝑙-𝑢𝑟 term

1

𝑛

2
0

⟨𝑛1𝑛1⟩

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨Hawking

∼ Re∫
𝑤max

0

𝑑𝑤𝑆𝑢𝑙,4𝑙𝑆
∗

𝑢𝑟,4𝑙
(𝜙

𝑤,out
𝑢,𝑙

+ 𝜑

𝑤,out
𝑢,𝑙

)

× (𝜙

𝑤,out∗
𝑢,𝑟

+ 𝜑

𝑤,out∗
𝑢,𝑟

)

∼

sin [𝜔max (𝑥
󸀠
/ (V0 + 𝑐𝑟) − 𝑥/ (V0 + 𝑐𝑙))]

𝑥

󸀠
/ (V0 + 𝑐𝑟) − 𝑥/ (V0 + 𝑐𝑙)

.

(27)

The existence of the peak at

𝑥

󸀠

V0 + 𝑐𝑟
=

𝑥

V0 + 𝑐𝑙
(28)

was first pointed out in [14] in the hydrodynamical approxi-
mation using QFT in curved space techniques. The physical
picture that emerges is that Hawking quanta and partners are
continuously created in pairs from the horizon at each time
𝑡, propagate on opposite directions at speeds V0 + 𝑐𝑙 < 0 and
V0 + 𝑐𝑟 > 0, and after time Δ𝑡 are located at 𝑥 and 𝑥󸀠 related
as in (28). The existence of the Hawking peak was nicely
confirmed by numerical “ab initio” simulations with more
realistic configurations performed in [20]. How correlation
measurements can reveal the quantum nature of Hawking
radiation is discussed in [28–30].

3.2. Analog Dynamical Casimir Effect. Adistinct type of pair-
creation takes place in time-dependent backgrounds, with
one important example being quantum particle creation in
cosmology. We will study the analogue of these phenomena
in BECs with another simple model in which the speed of
sound has a step-like discontinuity in time at 𝑡 = 0 separating
two “initial” and “final” infinite homogeneous condensates:
𝑐(𝑡) = 𝑐in𝜃(−𝑡) + 𝑐fin𝜃(𝑡); see for more details [31, 32]. The
modes solutions in the initial (𝑡 < 0) and final (𝑡 > 0) regions
are now of the type

𝜙𝑘 = 𝐷 (𝑘) 𝑒

−𝑖𝑤(𝑘)𝑡+𝑖𝑘𝑥
, 𝜑𝑘 = 𝐸 (𝑘) 𝑒

−𝑖𝑤(𝑘)𝑡+𝑖𝑘𝑥
, (29)
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for which (11) become

[− (𝜔 − V𝑘) +
𝑐𝜉𝑘

2

2

+

𝑐

𝜉

]𝐷 (𝑘) = −

𝑐

𝜉

𝐸 (𝑘) ,

[(𝜔 − V𝑘) +
𝑐𝜉𝑘

2

2

+

𝑐

𝜉

]𝐸 (𝑘) = −

𝑐

𝜉

𝐷 (𝑘) ,

(30)

while the normalization condition (13) yields

|𝐷 (𝑘)|

2
− |𝐸 (𝑘)|

2
=

1

2𝜋𝑛0

(31)

giving

𝐷 (𝑘) =

𝜔 − V𝑘 + (𝑐𝜉𝑘2/2)

√4𝜋𝑛0𝑐𝜉𝑘
2
|(𝜔 − V𝑘)|

,

𝐸 (𝑘) = −

𝜔 − V𝑘 − (𝑐𝜉𝑘2/2)

√4𝜋𝑛0𝑐𝜉𝑘
2
|(𝜔 − V𝑘)|

.

(32)

Here, 𝜔 = 𝜔(𝑘) corresponds to the two real solutions to (17),
which is quadratic in 𝜔 at fixed 𝑘. These read

𝜔+ (𝑘) = V𝑘 + √𝑐2𝑘2 +
𝑐

2
𝑘

4
𝜉

2

4

≡ V𝑘 − Ω (𝑘) ,

𝜔− (𝑘) = V𝑘 − √𝑐2𝑘2 +
𝑐

2
𝑘

4
𝜉

2

4

≡ V𝑘 − Ω (𝑘) ,

(33)

where 𝜔+(𝑘) corresponds to the positive norm branch and
𝜔−(𝑘) corresponds to the negative norm one. To find modes
evolution for all 𝑡 one first writes down the general solutions
in the initial and final regions for 𝜙 (𝜑)

𝜙

fin(in)
𝑘

= 𝑒

𝑖𝑘𝑥

× [𝐷

+

fin(in) (𝑘) 𝐴fin(in)𝑒
−𝑖𝜔

fin(in)
+
(𝑘)𝑡

+𝐷

−

fin(in) (𝑘) 𝐵fin(in)𝑒
−𝑖𝜔

fin(in)
−
(𝑘)𝑡

]

(34)

(for 𝜑we have the same expansion with𝐷 replaced by 𝐸) and
impose the matching conditions, from (11),

[𝜙] = 0, [𝜑] = 0, (35)

where [ ] now indicates the variation across the discontinuity
at 𝑡 = 0. They allow the final amplitudes 𝐴fin to be related to
the initial ones 𝐴in through the matrix𝑀Bog:

(

𝐴fin
𝐵fin

) = 𝑀bog (
𝐴 in
𝐵in

) , (36)

where

𝑀bog =
1

2√ΩinΩout
(

Ωin + Ωfin Ωfin − Ωin

Ωfin − Ωin Ωin + Ωfin
) . (37)

One can easily construct “in” and “fin” decompositions for the
field ̂

𝜙 by considering initial (final) unit amplitude positive
norm modes (𝐴 in(fin) = 1, 𝐵in = 0) 𝜙in(fin)

𝑘
(𝜑in(fin)
𝑘

) modes for
all 𝑡 using (36):

̂

𝜙(𝑡, 𝑥)

in(fin)
= ∫

∞

−∞

𝑑𝑘 [𝑎

in(fin)
𝑘

𝜙

in(fin)
𝑘

+ 𝑎

in(out)†
𝑘

𝜑

in(fin)∗
𝑘

] .

(38)

The modes are related through a nontrivial Bogoliubov
transformation mixing positive and negative norm modes

𝜙

in
𝑘
= 𝛼𝑘𝜙

fin
+ 𝛽𝑘𝜙

out∗
−𝑘

, (39)

where

𝛼𝑘 =

Ωin + Ωfin

2√ΩinΩfin
, 𝛽𝑘 =

Ωfin − Ωin

2√ΩinΩfin
, (40)

and, consequently, also the relation between “in” and “fin”
annihilation and creation operators will mix annihilation and
creation operators, implying again that the two decomposi-
tions are inequivalent and in particular the two vacuum states
|0, in⟩ and |0, fin⟩ are different. The physical consequence is
that the step-like discontinuity at 𝑡 = 0 will induce particle
creation, the features of which can be understood by looking
at the time-dependent terms of the one-time density-density
correlator which in the hydrodynamical limit reads

𝐺

(2)
(𝑡, 𝑥, 𝑥

󸀠
)

󵄨

󵄨

󵄨

󵄨

󵄨dyncas

∼

1

(2𝑐fin𝑡 − (𝑥 − 𝑥
󸀠
))

2
+

1

(2𝑐fin𝑡 − (𝑥
󸀠
− 𝑥))

2
.

(41)

At 𝑡 = 0 and everywhere in space correlated pairs of particles
with opposite momentum are created out of the vacuum
state, with velocities V − 𝑐fin (left moving) and V + 𝑐fin (right
moving). At time 𝑡 such particles are separated by a distance

󵄨

󵄨

󵄨

󵄨

󵄨

𝑥 − 𝑥

󸀠󵄨
󵄨

󵄨

󵄨

󵄨

= 2𝑐fin𝑡, (42)

which is indeed the correlation displayed in (41). This effect
was recently observed in [33] by considering homogeneous
condensates with trapping potential 𝑉ext rapidly varying in
time, where correlation functions in velocity/momentum
space were measured.

3.3. Amplification of the Hawking Signal in Density Corre-
lators. It has been argued by Cornell [15] that a way to
amplify the Hawking signal in density-density correlators
is to reduce the interactions shortly before measuring the
density correlations. Since 𝑐 = √𝑔𝑛0/𝑚, reducing 𝑔 means
that the speed of sound is also reduced. We will model
this situation by matching our idealised acoustic black hole
configuration of Section 3.1 with a final infinite homogeneous
condensate characterised by a small sound velocity 𝑐fin (< 𝑐𝑙 <

𝑐𝑟); see Figure 3. To study this situation, in which a spatial
step-like discontinuity in 𝑐 at 𝑥 = 0 is combined with a
temporal step-like discontinuity at some 𝑡 = 𝑡0, we will use



6 Advances in High Energy Physics

the tools introduced in the previous two subsections. We will
calculate the density-density correlator in the “in” vacuum by
expanding the density operator in the “in” decomposition

𝑛

1
(𝑡, 𝑥)

≃ 𝑛0 ∫

𝜔max

0

𝑑𝑤 [𝑎

V,in
𝜔

(𝜙

in
V,𝑟 + 𝜑

V,in
V,𝑟 ) + 𝑎

3,in
𝜔

(𝜙

in
3,𝑙
+ 𝜑

in
3,𝑙
)

+ 𝑎

4,in†
𝜔

(𝜙

in
4,𝑙
+ 𝜑

in
4,𝑙
) + ℎ.𝑐.]

(43)

to get

1

𝑛

2
0

⟨0, in 󵄨󵄨󵄨
󵄨

𝑛1𝑛1

󵄨

󵄨

󵄨

󵄨

0, in⟩

= ∫

𝑤max

0

𝑑𝑤 [(𝜙

in
V,𝑟 + 𝜑

V,in
V,𝑟 ) (𝜙

in∗
V,𝑟 + 𝜑

V,in∗
V,𝑟 )

+ (𝜙

in
3,𝑙
+ 𝜑

in
3,𝑙
) (𝜙

in∗
3,𝑙

+ 𝜑

in∗
3,𝑙
)

+ (𝜙

in∗
4,𝑙

+ 𝜑

in∗
4,𝑙
) (𝜙

in
4,𝑙
+ 𝜑

in
4,𝑙
)] .

(44)

By expressing the “in” modes in terms of the “out” modes
and in the absence of the temporal step-like discontinuity (say
𝑡0 → +∞) the Hawking signal is given by

1

𝑛

2
0

⟨0, in 󵄨󵄨󵄨
󵄨

𝑛1𝑛1

󵄨

󵄨

󵄨

󵄨

0, in⟩
󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨Hawking

∼ Re∫
𝑤max

0

𝑑𝑤𝑆𝑢𝑙,4𝑙𝑆
∗

𝑢𝑟,4𝑙
(𝜙

𝑤,out
𝑢,𝑙

+ 𝜑

𝑤,out
𝑢,𝑙

)

× (𝜙

𝑤,out∗
𝑢,𝑟

+ 𝜑

𝑤,out∗
𝑢,𝑟

) .

(45)

In the presence of the temporal step-like discontinuity we
need to evolve the relevantmodes𝜙out

𝑢,𝑙
(𝜑out
𝑢,𝑙

) and𝜙out
𝑢,𝑟

(𝜑out
𝑢,𝑟

), at
the same value of 𝑤, across the discontinuity at 𝑡 = 𝑡0. Going
to the 𝑘 basis and considering 𝑘, 𝑘󸀠 small (𝑤 ∼ (V + 𝑐𝑙)𝑘 ∼

(V + 𝑐𝑟)𝑘
󸀠) we have

𝜙

𝑘,out
𝑢,𝑙

+ 𝜑

𝑘,out
𝑢,𝑙

∼ √

|𝑘|

𝑐𝑙

𝑒

−𝑖(V+𝑐𝑙)𝑘𝑡+𝑖𝑘𝑥

󳨀→ √

|𝑘|

𝑐fin
𝑒

𝑖𝑘𝑥
(𝛼𝑒

−𝑖(V+𝑐fin)𝑘𝑡
+ 𝛽𝑒

−𝑖(V−𝑐fin)𝑘𝑡
) ,

(46)

where 𝛼 = ((𝑐𝑙 + 𝑐fin)/2√𝑐𝑙𝑐fin)𝑒
𝑖(𝑐fin−𝑐𝑙)𝑘𝑡0 , 𝛽 = ((𝑐fin − 𝑐𝑙)/

2
√
𝑐𝑙𝑐fin)𝑒

−𝑖(𝑐fin+𝑐𝑙)𝑘𝑡0 , and

𝜙

𝑘
󸀠
,out
𝑢,𝑟

+ 𝜑

𝑘
󸀠
,out
𝑢,𝑟

∼
√

𝑘

󸀠

𝑐𝑟

𝑒

−𝑖(V+𝑐𝑟)𝑘
󸀠
𝑡+𝑖𝑘
󸀠
𝑥
󸀠

󳨀→
√

𝑘

󸀠

𝑐fin
𝑒

𝑖𝑘
󸀠
𝑥
󸀠

(𝛼

󸀠
𝑒

−𝑖(V+𝑐fin)𝑘
󸀠
𝑡
+ 𝛽

󸀠
𝑒

−𝑖(V−𝑐fin)𝑘
󸀠
𝑡
) ,

(47)

cfin

c1 cr

Figure 3: Spacetime diagram sketch of a spatial step-like disconti-
nuity (acoustic black hole-like) followed by a temporal one leading
to a final homogeneous configuration.

with 𝛼

󸀠
= ((𝑐𝑟 + 𝑐fin)/2√𝑐𝑟𝑐fin)𝑒

𝑖(𝑐fin−𝑐𝑟)𝑘
󸀠
𝑡0 , 𝛽󸀠 = ((𝑐fin −

𝑐𝑟)/2√𝑐𝑟𝑐fin)𝑒
−𝑖(𝑐fin+𝑐𝑟)𝑘

󸀠
𝑡0 .

It is useful to rewrite (46) and (47) in terms of 𝑤 to
compare with the standard result without the temporal step-
like discontinuity

𝜙

𝑤,out
𝑢,𝑙

+ 𝜑

𝑤,out
𝑢,𝑙

∼
√

𝑤

𝑐𝑙

𝑒

−𝑖𝑤𝑡+𝑖(𝑤𝑥/(V+𝑐𝑙))
󳨀→

√

𝑤

𝑐fin
𝑒

𝑖(𝑤𝑥/(V+𝑐𝑙))

× (𝛼𝑒

−𝑖((V+𝑐fin)/(V+𝑐𝑙))𝑤𝑡
+ 𝛽𝑒

−𝑖((V−𝑐fin)/(V+𝑐𝑙))𝑤𝑡
) ,

𝜙

𝑤,out
𝑢,𝑟

+ 𝜑

𝑤,out
𝑢,𝑟

∼
√

𝑤

𝑐𝑟

𝑒

−𝑖𝑤𝑡+𝑖(𝑤𝑥
󸀠
/(V+𝑐𝑟))

󳨀→
√

𝑤

𝑐fin
𝑒

𝑖(𝑤𝑥
󸀠
/(V+𝑐𝑟))

× (𝛼

󸀠
𝑒

−𝑖((V+𝑐fin)/(V+𝑐𝑟))𝑤𝑡
+ 𝛽

󸀠
𝑒

−𝑖((V−𝑐fin)/(V+𝑐𝑟))𝑤𝑡
) .

(48)

The standard result is, from (45), a stationary peak at

𝑥

V + 𝑐𝑙
−

𝑥

󸀠

V + 𝑐𝑟
= 0 (49)

weighted by the 𝑤-independent factor (see (24) and (25))

𝑤

√
𝑐𝑙𝑐𝑟

𝑆𝑢𝑙,4𝑙𝑆
∗

𝑢𝑟,4𝑙
. (50)

The effect of the temporal step-like discontinuity at 𝑡 = 𝑡0 (see
(48)) is to modify this signal into a main signal located at

𝑥

V + 𝑐𝑙
−

𝑥

󸀠

V + 𝑐𝑟
= (

(V + 𝑐fin)
V + 𝑐𝑙

−

(V + 𝑐fin)
V + 𝑐𝑟

) (𝑡 − 𝑡0) (51)

with strength

𝑤𝛼𝛼

󸀠

𝑐fin
𝑆𝑢𝑙,4𝑙𝑆

∗

𝑢𝑟,4𝑙
(52)

and three smaller signals located at 𝑥/(V + 𝑐𝑙) − 𝑥
󸀠
/(V + 𝑐𝑟) =

((V+𝑐fin)/(V+𝑐𝑙)−(V−𝑐fin)/(V+𝑐𝑟))(𝑡−𝑡0),𝑥/(V+𝑐𝑙)−𝑥
󸀠
/(V+𝑐𝑟)=
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((V−𝑐fin)/(V+𝑐𝑙)−(V+𝑐fin)/(V+𝑐𝑟))(𝑡−𝑡0), and𝑥/(V+𝑐𝑙)−𝑥
󸀠
/(V+

𝑐𝑟) = ((V−𝑐fin)/(V+𝑐𝑙)−(V−𝑐fin)/(V+𝑐𝑟))(𝑡−𝑡0)with strengths
given by (52) in which 𝛼𝛼󸀠 is substituted, respectively, by 𝛼𝛽󸀠,
𝛼

󸀠
𝛽, and 𝛽𝛽󸀠.
We see immediately that we loose the stationarity of the

Hawking signal (49) and that the main signal is multiplied by

𝜂 =

√
𝑐𝑟𝑐𝑙

𝑐fin
𝛼𝛼

󸀠
=

(𝑐fin + 𝑐𝑙) (𝑐fin + 𝑐𝑟)

4𝑐

2

fin
(53)

with respect to the standard result. This results indeed in an
amplification (i.e., the above term is >1) when 𝑐fin < 𝑐𝑙, 𝑐𝑟.
Being the Hawking peak expected to be of order 5 × 10

−3

for realistic experimental settings [20] (where 𝑐𝑟 = 2𝑐𝑙 was
considered), we obtain an amplification factor 𝜂 = 15/4 for
𝑐𝑟 = 2𝑐𝑙 = 4𝑐fin.

4. Conclusions

In this paper we have briefly reviewed the analysis of
the analog Hawking effect and of the analog dynamical
Casimir effect by considering simple analytical models of
Bose-Einstein condensates in which the speed of sound has
step-like discontinuities. We focussed on the study of the
density-density correlators which show, in the former case,
the existence of a characteristic stationary Hawking quanta-
partner peak located at (28) and, in the latter, that of a time-
dependent feature (42). Following a suggestion byCornell, we
combined these two analyses to construct a model in which
the atoms’ interactions are rapidly lowered (and so the speed
of sound) before the correlations are measured. This results
in an amplification of the main Hawking peak, now time-
dependent and located at (51), by the factor (53) that could
be useful in the experimental search.
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