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We study the equal area laws of 𝑑-dimensional RN-AdS black hole. We choose two kinds of phase diagrams, 𝑃-𝑉 and 𝑇-𝑆. We
employ the equal area laws to find an isobar which is the real two-phase coexistence line. Our calculation is much simpler to derive
the critical value of the thermodynamic quantities. According to the thermodynamic quantities, we also study the latent heat of the
black hole.

1. Introduction

Like ordinary thermodynamic matter, black holes also have
temperature, entropy, and energy. The laws of black hole
mechanics have similar forms to the laws of thermodynamics
[1]. Therefore, we can treat black holes as thermodynamic
systems. In fact, between black holes and the conventional
thermodynamic systems, there are other similarities, such
as phase transition and critical behaviors. The pioneering
work of Davies [2] and the well-known Hawking-Page phase
transition [3] are both proposed to elaborate these points.
The phase transitions and critical phenomena in anti-de Sitter
(AdS) black holes have been studied extensively [4–10]. Some
interesting works show that there exists phase transition
similar to the Van der Waals liquid/gas phase transition for
some black holes [11–21]. Even for the black holes in dS
space critical behaviors can also be studied by considering
the connections between the black hole horizon and the
cosmological horizon [22, 23].

The studies on the phase transition of black holes
by considering cosmological constant as a variable
have got many attentions [24–28]. For AdS black holes,
the cosmological constant is connected to the pressure in
general thermodynamic system, the relation is

𝑃 = −
1

8𝜋
Λ =

3

8𝜋

1

𝑙2
, (1)

and the corresponding thermodynamic volume is

𝑉 = (
𝜕𝑀

𝜕𝑃
)

𝑆,𝑄𝑖 ,𝐽𝑘

. (2)

Theoretically, if considering black holes in AdS spacetime
as a thermodynamic system, the critical behaviors and phase
transitions should also exist. It has been shown that this
transition is superficially analogous to the phase transition
of Van der Waals (VdM) liquid-gas system. It is well known
that for the VdW system above the critical temperature
𝑇
𝑐
the isothermal curves display similar behavior to the

experimental result. However, below the critical temperature
𝑇
𝑐
, in the coexistence line there will be a regime where

(𝜕𝑝/𝜕𝑉)
𝑇
> 0. Therefore, there, the condition of stability

and equilibrium violate. Experiments show that there should
be a horizontal isobar in the isotherm to represent the
condensation line; here the gas coexists with the liquid. On
crossing the line from the gas side the system begins to form
droplets of liquid on the condensation line, which grow and
coalesce until all the material has passed to the liquid phase.

According toMaxwell’s equal area law, one can replace the
oscillatory part with an isobarwhich represents the liquid-gas
coexistence line. Thus the experimental result is consistent
with the theoretical one. Since the AdS black hole is similar
to the VdW system, in the process of phase transition of
the black holes there should be similar isobar to represent
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the two-phase coexistence line. In [29], the authors have
studied the equal area law in the 𝑇-𝑆 plane for the charged
AdS black hole. In this paper we utilize a different method
to construct the equal area law in the 𝑃-𝑉 plane. Specifically,
our method can supply an efficient way to derive the critical
thermodynamic quantities.

2. 𝑃-𝑉 and 𝑇-𝑆 Phase Diagrams

Reissner-Nordstrom black holes are characterized by their
mass (𝑀) and charge (𝑄). The solution for 𝑑-dimensional
RN-AdS spacetime with a negative cosmological constant
(Λ = −(𝑑 − 1)(𝑑 − 2)/2𝑙2) is defined by the line element [29]

𝑑𝑠
2
= −𝑓𝑑𝑡

2
+ 𝑓
−1
𝑑𝑟
2
+ 𝑟
2
𝑑Ω
𝑑−2
,

𝐹 = 𝑑𝐴,

𝐴 = −√
𝑑 − 2

2 (𝑑 − 3)

𝑞

𝑟𝑑−3
𝑑𝑡,

(3)

where

𝑓 = 1 −
𝑚

𝑟𝑑−2
+

𝑞
2

𝑟2(𝑑−3)
+
𝑟
2

𝑙2
. (4)

The ADM mass and the electric charge have been identified
as

𝑀 =
(𝑑 − 2) 𝜔

𝑑−2

16𝜋
𝑚,

𝑄 =
√2 (𝑑 − 2) (𝑑 − 3)𝜔

𝑑−2

8𝜋
𝑞,

(5)

where the volume of the unit 𝑑-sphere 𝜔
𝑑
can be expressed as

𝜔
𝑑
=

2𝜋
(𝑑+1)/2

Γ ((𝑑 + 1) /2)
. (6)

The corresponding Hawking temperature, entropy, and elec-
tric potential have been reviewed as

𝑇 =
(𝑑 − 3)

4𝜋
(

4

𝜔
𝑑−2

)

−1/(𝑑−2)

𝑆
1/(𝑑−2)

− 𝑞
2 (𝑑 − 3)

4𝜋
(

4

𝜔
𝑑−2

)

(5−2𝑑)/(𝑑−2)

𝑆
(5−2𝑑)/(𝑑−2)

+
4

(𝑑 − 2)
(

4

𝜔
𝑑−2

)

1/(𝑑−2)

𝑃𝑆
1/(𝑑−2)

,

𝑆 =
𝜔
𝑑−2
𝑟
𝑑−2

+

4
,

Φ = √
𝑑 − 2

2 (𝑑 − 3)

𝑞

𝑟𝑑−3
+

.

(7)

These quantities satisfy the first law of black hole thermody-
namics

𝑑𝑀 = 𝑇𝑑𝑆 + Φ𝑑𝑄 + 𝑉𝑑𝑃, (8)

where the thermodynamic volume 𝑉 = (𝜔
𝑑−2
𝑟
𝑑−1

+
)/(𝑑 − 1)

and the effective pressure 𝑃 = −Λ/(8𝜋𝑙
2
) = ((𝑑 − 1)(𝑑 −

2))/(16𝜋𝑙
2
).

For this black hole there is the equation of state [26]

𝑃 =
𝑇 (𝑑 − 2)

4𝑟
+

−
(𝑑 − 3) (𝑑 − 2)

16𝜋𝑟2
+

+
𝑞
2
(𝑑 − 3) (𝑑 − 2)

16𝜋𝑟
2(𝑑−2)

+

, (9)

from which one can depict 𝑃-𝑉 curves for given temperature
𝑇 at constant 𝑄.

When the number of particles in a system is fixed,
the internal energy 𝑈(𝑉, 𝑇) is a function of state. If the
temperature 𝑇 is given, the internal energy is only dependent
on the volume 𝑉. Thus the energy difference between two
states with volumes 𝑉

1
, 𝑉
2
at the same 𝑇 is

Δ𝑈 = −∫

𝑉2

𝑉1

𝑃 (𝑉) 𝑑𝑉. (10)

Because 𝑈 is a function of state, the result of Δ𝑈 is indepen-
dent of the path of integral.Thus, to find the equal area isobar
𝑃 = 𝑃

0
, one can employ the relation

𝑃
0
(𝑉
2
− 𝑉
1
) = ∫

𝑉1

𝑉2

𝑃 (𝑉) 𝑑𝑉. (11)

Substituting (9) into (11), we can obtain

𝑃
0
𝑟
2(𝑑−2)

2
𝑥
𝑑−3
(1 − 𝑥

𝑑−1
)

𝑑 − 1

=
𝑇

4
𝑟
2𝑑−5

2
𝑥
𝑑−3

(1 − 𝑥
𝑑−2
)

−
(𝑑 − 2)

16𝜋
𝑟
2(𝑑−3)

2
𝑥
𝑑−3

(1 − 𝑥
𝑑−3
)

+
𝑞
2
(𝑑 − 2)

16𝜋
(1 − 𝑥

𝑑−3
) ,

(12)

where 𝑟
1
, 𝑟
2
are the intersection points of the isobar with the

isothermal curves and we set 𝑥 = 𝑟
1
/𝑟
2
; thus 0 ≤ 𝑥 ≤ 1. The

points 𝑟
1
, 𝑟
2
in the isothermal curves should satisfy

𝑃
0
=
𝑇 (𝑑 − 2)

4𝑟
2

−
(𝑑 − 3) (𝑑 − 2)

16𝜋𝑟2
2

+
𝑞
2
(𝑑 − 3) (𝑑 − 2)

16𝜋𝑟
2(𝑑−2)

2

, (13)

𝑃
0
=
𝑇 (𝑑 − 2)

4𝑟
1

−
(𝑑 − 3) (𝑑 − 2)

16𝜋𝑟2
1

+
𝑞
2
(𝑑 − 3) (𝑑 − 2)

16𝜋𝑟
2(𝑑−2)

1

. (14)

Adding the two equations above, we can derive

2𝑃
0
𝑟
2(𝑑−2)

2
𝑥
2(𝑑−2)

=
𝑇 (𝑑 − 2)

4
𝑟
2𝑑−5

2
𝑥
2𝑑−5

(1 + 𝑥)

−
(𝑑 − 3) (𝑑 − 2)

16𝜋
𝑟
2(𝑑−3)

2
𝑥
2(𝑑−3)

(1 + 𝑥
2
)

+
𝑞
2
(𝑑 − 3) (𝑑 − 2)

16𝜋
(1 + 𝑥

2(𝑑−2)
) .

(15)
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Subtracting (14) from (13), one can obtain

𝑇𝑟
2𝑑−5

2
𝑥
2𝑑−5

=
(𝑑 − 3)

4𝜋
𝑟
2(𝑑−3)

2
𝑥
2(𝑑−3)

(1 + 𝑥)

−
𝑞
2
(𝑑 − 3)

4𝜋

(1 − 𝑥
2(𝑑−2)

)

1 − 𝑥
.

(16)

From (12), (15), we derive

𝑇

2
𝑟
2𝑑−5

2
𝑥
2(𝑑−2)

(1 − 𝑥
𝑑−2
)

(1 − 𝑥𝑑−1)

−
(𝑑 − 2)

8𝜋
𝑟
2(𝑑−3)

2
𝑥
2(𝑑−2)

(1 − 𝑥
𝑑−3
)

(1 − 𝑥𝑑−1)

+
𝑞
2
(𝑑 − 2)

8𝜋
𝑥
𝑑−1
(1 − 𝑥

𝑑−3
)

(1 − 𝑥𝑑−1)

=
𝑇 (𝑑 − 2)

4 (𝑑 − 1)
𝑟
2𝑑−5

2
𝑥
2𝑑−5

(1 + 𝑥)

−
(𝑑 − 3) (𝑑 − 2)

16𝜋 (𝑑 − 1)
𝑟
2(𝑑−3)

2
𝑥
2(𝑑−3)

(1 + 𝑥
2
)

+
𝑞
2
(𝑑 − 3) (𝑑 − 2)

16𝜋 (𝑑 − 1)
(1 + 𝑥

2(𝑑−2)
) .

(17)

Substituting (16) into (17), we have

𝑟
2(𝑑−3)

2
𝑥
2𝑑−5

(𝑑 − 3)
(1 + 𝑥) (1 − 𝑥

𝑑−2
)

1 − 𝑥𝑑−1

− 𝑞
2
(𝑑 − 3)

𝑥 (1 − 𝑥
𝑑−2
) (1 − 𝑥

2(𝑑−2)
)

(1 − 𝑥𝑑−1) (1 − 𝑥)

− 𝑟
2(𝑑−3)

2
𝑥
2(𝑑−2)

(𝑑 − 2)
(1 − 𝑥

𝑑−3
)

(1 − 𝑥𝑑−1)

+ 𝑞
2
𝑥
𝑑−1

(𝑑 − 2)
(1 − 𝑥

𝑑−3
)

(1 − 𝑥𝑑−1)

=
(𝑑 − 3) (𝑑 − 2)

2 (𝑑 − 1)
𝑟
2(𝑑−3)

2
𝑥
2(𝑑−3)

(1 + 𝑥)
2

−
𝑞
2
(𝑑 − 3) (𝑑 − 2)

2 (𝑑 − 1)

(1 + 𝑥) (1 − 𝑥
2(𝑑−2)

)

1 − 𝑥

−
(𝑑 − 3) (𝑑 − 2)

2 (𝑑 − 1)
𝑟
2(𝑑−3)

2
𝑥
2(𝑑−3)

(1 + 𝑥
2
)

+
𝑞
2
(𝑑 − 3) (𝑑 − 2)

2 (𝑑 − 1)
(1 + 𝑥

2(𝑑−2)
) .

(18)

We can simplify (18) and write it in the form

𝑟
2(𝑑−3)

2
= 𝑞
2𝑦1 (𝑥)

𝑦
2
(𝑥)

, (19)

with

𝑦
2
(𝑥) = 𝑥

2𝑑−5
(1 − 𝑥)

⋅ [(𝑑 − 3) (1 + 𝑥) (1 − 𝑥
𝑑−2
)

− 𝑥 (𝑑 − 2) (1 − 𝑥
𝑑−3
)

−
(𝑑 − 3) (𝑑 − 2)

(𝑑 − 1)
(1 − 𝑥

𝑑−1
)] ,

𝑦
1
(𝑥) = −

(𝑑 − 3) (𝑑 − 2)

(𝑑 − 1)

⋅ 𝑥 (1 − 𝑥
2𝑑−5

) (1 − 𝑥
𝑑−1
)

+ (𝑑 − 3) 𝑥 (1 − 𝑥
𝑑−2
) (1 − 𝑥

2(𝑑−2)
)

− (𝑑 − 2) 𝑥
𝑑−1

(1 − 𝑥
𝑑−3
) (1 − 𝑥) .

(20)

Substituting (19) into (16), we can obtain

𝑇(𝑞
2𝑦1 (𝑥)

𝑦
2
(𝑥)

)

(2𝑑−5)/(2𝑑−6)

𝑥
2𝑑−5

= 𝑞
2 (𝑑 − 3)

4𝜋
𝑥
2(𝑑−3)

(1 + 𝑥)
𝑦
1
(𝑥)

𝑦
2
(𝑥)

−
𝑞
2
(𝑑 − 3)

4𝜋

(1 − 𝑥
2(𝑑−2)

)

1 − 𝑥
.

(21)

When 𝑥 = 1, there is 𝑟
1
= 𝑟
2
= 𝑟
𝑐
, which is the critical

point. In this case, we can obtain from (19)

𝑟
2(𝑑−3)

𝑐
= 𝑞
2
(𝑑 − 2) (2𝑑 − 5) . (22)

According to (21), when 𝑥 = 1,

𝑇
𝑐
=

(𝑑 − 3)
2

𝜋 (2𝑑 − 5) 𝑟
𝑐

. (23)

We set

𝑇 = 𝜒𝑇
𝑐
. (24)

Equation (21) becomes

𝜒
(𝑑 − 3)

2

𝜋 (2𝑑 − 5) [(𝑑 − 2) (2𝑑 − 5)]
1/(2𝑑−6)

⋅ (
𝑦
1
(𝑥)

𝑦
2
(𝑥)

)

(2𝑑−5)/(2𝑑−6)

𝑥
2𝑑−5

= 𝑞
2 (𝑑 − 3)

4𝜋
𝑥
2(𝑑−3)

(1 + 𝑥)
𝑦
1
(𝑥)

𝑦
2
(𝑥)

−
𝑞
2
(𝑑 − 3)

4𝜋

(1 − 𝑥
2(𝑑−2)

)

1 − 𝑥
.

(25)
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Because the coexisting phases have the same free energy,
one can derive an equal area relation

𝑇
0
(𝑆
2
− 𝑆
1
) = ∫

𝑆2

𝑆1

𝑇𝑑𝑆. (26)

The equation of state (9) can be changed into

𝑇 = 4𝑃
𝑟
+

(𝑑 − 2)
+
(𝑑 − 3)

4𝜋𝑟
+

−
𝑞
2
(𝑑 − 3)

4𝜋𝑟2𝑑−5
+

. (27)

Substituting (27) into (26), we obtain

𝑇
0
𝑟
2𝑑−5

2
𝑥
𝑑−3

(1 − 𝑥
𝑑−2
)

=
4𝑃

𝑑 − 1
𝑟
2𝑑−4

2
𝑥
𝑑−3

(1 − 𝑥
𝑑−1
)

+
(𝑑 − 2)

4𝜋
𝑟
2𝑑−6

2
𝑥
𝑑−3

(1 − 𝑥
𝑑−3
)

−
𝑞
2
(𝑑 − 2)

4𝜋
(1 − 𝑥

𝑑−3
) .

(28)

For the two points 𝑟
1
, 𝑟
2
, there are, respectively,

𝑇
0
= 4𝑃

𝑟
2

(𝑑 − 2)
+
(𝑑 − 3)

4𝜋𝑟
2

−
𝑞
2
(𝑑 − 3)

4𝜋𝑟
2𝑑−5

2

,

𝑇
0
= 4𝑃

𝑟
1

(𝑑 − 2)
+
(𝑑 − 3)

4𝜋𝑟
1

−
𝑞
2
(𝑑 − 3)

4𝜋𝑟
2𝑑−5

1

.

(29)

Combining (29) can give

4𝑃
𝑟
2𝑑−4

2
𝑥
2𝑑−5

(𝑑 − 2)
=
(𝑑 − 3)

4𝜋
𝑟
2𝑑−6

2
𝑥
2𝑑−6

−
𝑞
2
(𝑑 − 3)

4𝜋

(1 − 𝑥
2𝑑−5

)

1 − 𝑥
,

(30)

2𝑇
0
𝑟
2𝑑−5

2
𝑥
2𝑑−5

= 4𝑃𝑟
2𝑑−4

2
𝑥
2𝑑−5 1 + 𝑥

(𝑑 − 2)

+
(𝑑 − 3)

4𝜋
𝑟
2𝑑−6

2
𝑥
2𝑑−6

(1 + 𝑥)

−
𝑞
2
(𝑑 − 3)

4𝜋
(1 + 𝑥

2𝑑−5
) .

(31)

From (28) and (31), we can obtain

4𝑃𝑟
2𝑑−4

2
𝑥
2𝑑−5

(𝑑 − 2) (𝑑 − 1)
[(𝑑 − 1) (1 + 𝑥) (1 − 𝑥

𝑑−2
)

− 2 (𝑑 − 2) (1 − 𝑥
𝑑−1
)]

+
𝑟
2𝑑−6

2
𝑥
2𝑑−6

4𝜋
[(𝑑 − 3) (1 + 𝑥) (1 − 𝑥

𝑑−2
)

− 2 (𝑑 − 2) 𝑥 (1 − 𝑥
𝑑−3
)]

−
𝑞
2

4𝜋
[(𝑑 − 3) (1 + 𝑥

2𝑑−5
) (1 − 𝑥

𝑑−2
)

− 2 (𝑑 − 2) 𝑥
𝑑−2

(1 − 𝑥
𝑑−3
)] = 0.

(32)

Substituting (30) into (32), one can derive

𝑟
2(𝑑−3)

2
= 𝑞
2𝑦1 (𝑥)

𝑦
2
(𝑥)

, (33)

with

𝑦
2
(𝑥) = 2𝑥

2𝑑−6

⋅ [(𝑑 − 3) (1 + 𝑥) (1 − 𝑥
𝑑−2
)

−
(𝑑 − 2) (𝑑 − 3)

(𝑑 − 1)
(1 − 𝑥

𝑑−1
)

− (𝑑 − 2) 𝑥 (1 − 𝑥
𝑑−3
)] ,

𝑦
1
(𝑥) = (𝑑 − 3) (1 + 𝑥) (1 − 𝑥

𝑑−2
)
(1 − 𝑥

2𝑑−5
)

1 − 𝑥

− 2
(𝑑 − 2) (𝑑 − 3)

(𝑑 − 1)
(1 − 𝑥

𝑑−1
)
(1 − 𝑥

2𝑑−5
)

1 − 𝑥

+ (𝑑 − 3) (1 + 𝑥
2𝑑−5

) (1 − 𝑥
𝑑−2
)

− 2 (𝑑 − 2) 𝑥
𝑑−2

(1 − 𝑥
𝑑−3
) .

(34)

Substituting (33) into (30), we have

4𝑃
𝑥
2𝑑−5

(𝑑 − 2)
(𝑞
2𝑦1 (𝑥)

𝑦
2
(𝑥)

)

(𝑑−2)/(𝑑−3)

= 𝑞
2 (𝑑 − 3)

4𝜋
[
𝑦
1
(𝑥)

𝑦
2
(𝑥)

𝑥
2𝑑−6

−
(1 − 𝑥

2𝑑−5
)

1 − 𝑥
] .

(35)

According to (33), when 𝑥 = 1,

𝑟
2(𝑑−3)

𝑐
= 𝑞
2 lim
𝑥→1

𝑦
1
(𝑥)

𝑦
2
(𝑥)

. (36)

According to 𝑟
𝑐
, we can derive from (30) the critical pressure

𝑃
𝑐
=
(𝑑 − 3)

16𝜋𝑟2
𝑐

. (37)

Setting 𝑃 = 𝜒𝑃
𝑐
with 𝜒 ≤ 1, (35) turns into

𝜒
(𝑑 − 3) 𝑥

2𝑑−5

(𝑑 − 2) 𝑟2
𝑐

(𝑞
2𝑦1 (𝑥)

𝑦
2
(𝑥)

)

(𝑑−2)/(𝑑−3)

= 𝑞
2
(𝑑 − 3) [

𝑦
1
(𝑥)

𝑦
2
(𝑥)

𝑥
2𝑑−6

−
(1 − 𝑥

2𝑑−5
)

1 − 𝑥
] .

(38)

In Table 2, we give the numerical values of 𝑥, 𝑟
1
, 𝑟
2
and 𝑇

0

at different pressures and different spacetime dimensions.

3. Latent Heat

As is known, for RN-AdS black hole there is similar 𝑃-𝑉
criticality to the Van der Waals liquid/gas system. This kind
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Table 1: Numerical solutions for 𝑥, 𝑟
1
, 𝑟
2
, and 𝑃

0
and the latent heat 𝐿 at different temperatures and different spacetime dimensions with

𝑞 = 1.

𝑑 𝜒 𝑥 𝑟
1

𝑟
2

𝑃
0

𝐿

4
1 1 2.44949 2.44949 0.00331573 0
0.8 0.272204 1.47068 5.40288 0.00189057 2.94246
0.7 0.195886 1.34978 6.89065 0.00137985 4.34939

5
1 1 1.96799 1.96799 0.0205468 0
0.8 0.361841 1.33342 3.68509 0.0123256 24.3525
0.7 0.277861 1.25038 4.50001 0.00921581 39.8572

6
1 1 1.74258 1.74258 0.0589640 0
0.8 0.420776 1.26150 2.99802 0.0361453 96.7400
0.7 0.334087 1.19735 3.58395 0.0272937 176.243

Table 2: Numerical solutions for 𝑥, 𝑟
1
, 𝑟
2
, and 𝑇

0
at different pressures and different spacetime dimensions with 𝑞 = 1.

𝑑 𝜒 𝑥 𝑟
1

𝑟
2

𝑇
0

4
1 1 2.44949 2.44949 0.0433136
0.8 0.441089 1.72015 3.89978 0.0397529
0.6 0.289296 1.49696 5.17448 0.0353931

5
1 1 1.96799 1.96799 0.102438
0.8 0.253434 1.22649 4.83950 0.0858594
0.6 0.204914 1.17961 5.75663 0.0749342

6
1 1 1.74258 1.74258 0.166356
0.8 0.230015 1.12609 4.89572 0.125739
0.6 0.193251 1.10279 5.70652 0.109130

of phase transition from liquid phase to gas phase is the first-
order phase transition. Therefore, in the process, there exists
latent heat. The latent heat 𝐿 between the two phases 𝛼 and 𝛽
is the difference between their molar enthalpies:

𝐿 = 𝐻
𝛽
− 𝐻
𝛼
= 𝑇 (𝑆

𝛽
− 𝑆
𝛼
) . (39)

Here enthalpy is a thermodynamic function of temperature
and pressure.The latent heatwill changewith the temperature

𝑑𝐿

𝑑𝑇
= (

𝜕𝐻
𝛽

𝜕𝑇
)

𝑃

+ (
𝜕𝐻
𝛽

𝜕𝑃
)

𝑇

𝑑𝑃

𝑑𝑇
− (

𝜕𝐻
𝛼

𝜕𝑇
)

𝑃

− (
𝜕𝐻
𝛼

𝜕𝑃
)

𝑇

𝑑𝑃

𝑑𝑇
.

(40)

Due to 𝐶
𝑃
= (𝜕𝐻/𝜕𝑇)

𝑃
and (𝜕𝐻/𝜕𝑃)

𝑇
= 𝑉 − 𝑇(𝜕𝑉/𝜕𝑇)

𝑃
,

(40) becomes

𝑑𝐿

𝑑𝑇
= 𝐶
𝛽

𝑃
− 𝐶
𝛼

𝑃
+
𝐿

𝑇

− [(
𝜕𝑉
𝛽

𝜕𝑇
)

𝑃

− (
𝜕𝑉
𝛼

𝜕𝑇
)

𝑃

]
𝐿

𝑉𝛽 − 𝑉𝛼
.

(41)

The Clausius-Clapeyron equation is

𝑑𝑃

𝑑𝑇

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨coexistence
=
𝑠
𝛽
− 𝑠
𝛼

V𝛽 − V𝛼
=
𝑆
𝛽
− 𝑆
𝛼

𝑉𝛽 − 𝑉𝛼
, (42)

where 𝑠𝛽, 𝑠𝛼 and V𝛽, V𝛼 stand for the specific entropy and
specific volume of the 𝛽, 𝛼 phase, respectively. For the RN-
AdS black hole, from the equation of state we can calculate

𝐶
𝑃
= (

𝜕𝑆

𝜕𝑇
)

𝑃

= 𝑇(
𝜕𝑆

𝜕𝑟
+

)

𝑃

(
𝜕𝑟
+

𝜕𝑇
)

𝑃

= (𝑑 − 2) 𝑆

⋅ ((16𝜋𝑃𝑟
2𝑑−4

+
+ (𝑑 − 2) (𝑑 − 3) 𝑟

2𝑑−6

+

− 𝑞
2
(𝑑 − 2) (𝑑 − 3))

⋅ (16𝜋𝑃𝑟
2𝑑−4

+
− (𝑑 − 2) (𝑑 − 3) 𝑟

2𝑑−6

+

+ 𝑞
2
(𝑑 − 2) (𝑑 − 3) (2𝑑 − 5))

−1

)

= 𝑇𝑆 ((4𝜋 (𝑑 − 2)
2
𝑟
2𝑑−5

+
)

⋅ (16𝜋𝑃𝑟
2𝑑−4

+
− (𝑑 − 2) (𝑑 − 3) 𝑟

2𝑑−6

+

+ 𝑞
2
(𝑑 − 2) (𝑑 − 3) (2𝑑 − 5))

−1

) ,

(
𝜕𝑉

𝜕𝑇
)

𝑃

= 𝑉((4𝜋 (𝑑 − 2) (𝑑 − 1) 𝑟
2𝑑−5

+
)

⋅ (16𝜋𝑃𝑟
2𝑑−4

+
− (𝑑 − 2) (𝑑 − 3) 𝑟
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+

+ 𝑞
2
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) .

(43)



6 Advances in High Energy Physics

0.2 0.4 0.6 0.8 1.0

−2000

−4000

−6000

−8000

−10000

−12000

X

d
L
/d
T

Figure 1: Plots of 𝑑𝐿/𝑑𝑇 versus the parameter 𝜒 for the RN-AdS
black hole. We have set 𝑞 = 1 and 𝑑 = 4.

Taking different temperatures, we can obtain different 𝑥, thus
corresponding 𝑟

1
, 𝑟
2
. Set 𝑟

1
to be the 𝛼 phase and 𝑟

2
to be

the 𝛽 phase. We can calculate the latent heat 𝐿 at different
temperatures and different spacetime dimensions. The result
is shown in Table 1.

We can also depict the 𝑑𝐿/𝑑𝑇-𝜒 curve which is shown in
Figure 1 and can describe how the latent heat changes with
the temperature.

4. Conclusion

We studied the thermodynamic behavior of 𝑑-dimensional
RN-AdS black hole in the extended phase space. If the black
holes really express themselves like Van der Waals liquid-
gas system, in the isotherms of the AdS black holes there
must be regimes where the condition of stable equilibrium
is violated. Analogous to the VdW system the unphysical
oscillating part in the isotherm should be replaced with an
isobar, which represents a coexistence line. According to the
equal area law, we find out the position of the isobars in
the 𝑃-𝑉 plane at different temperatures 𝑇 < 𝑇

𝑐
and the

isobars in the𝑇-𝑆 plane at different pressures. It is shown that
the length of the isobar indeed depends on the temperature
and pressure. In the 𝑃-𝑉 plane, the higher the temperature
is, the shorter the isobar will be. The same case happens
in the 𝑇-𝑆 plane. If the phase diagrams of the black holes
are indeed the case, the evolution of black holes will be
very different from the usual Hawking behavior during the
coexistence regime, where the temperature and the pressure
are both constant. Although the equal area law has been used
to construct the phase diagram of the charged AdS black hole
in the 𝑇-𝑆 plane in [29], the method we used is different.
We start from the chemical potential or the Gibbs potential
to obtain the equal area law. We derive the position of the
coexistence isobar by introducing two functions 𝑦

1
(𝑥), 𝑦
2
(𝑥).

Taking the limit, 𝑥 → 1, one can easily obtain the critical
position according to 𝑦

1
(𝑥), 𝑦

2
(𝑥). Thus the other critical

thermodynamic quantities can be calculated easily. For some
complicated black holes, such as Gauss-Bonnet-AdS one, the
method will be more effective to obtain the critical value of
the thermodynamic quantities. In addition, we also discussed
the latent heat 𝐿 for the RN-AdS black hole. It can be shown

that 𝐿 will increase as the temperature decreases. Figure 1
shows the relation between 𝑑𝐿/𝑑𝑇 and temperatures.
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