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Spin and pseudospin symmetries of Dirac equation are solved under scalar and vector generalized isotonic oscillators and Cornell
potential as a tensor interaction for arbitrary quantum number via the analytical ansatz approach. The spectrum of the system is
numerically reported for typical values of the potential parameters.

1. Introduction

The solution of the fundamental dynamical equations is
an interesting phenomenon in many fields of physics. The
relativistic Dirac equationwhich describes themotion of spin
1/2 particle [1]. Within the framework of Dirac equation,
pseudospin and spin symmetries are used to study features
of deformed nuclei, superdeformation, and effective shell
model [2]. The concept of SUSYQM provides theoretical
physicists with a powerful tool to deal with nonrelativistic
Schrödinger equation. The pseudospin symmetry is referred
to as a quasidegeneracy of single nucleon doublets with
nonrelativistic quantum number (𝑛, 𝑙, 𝑗 = 𝑙 + 1/2) and
(𝑛 − 1, 𝑙 + 2, 𝑗 = 𝑙 + 3/2), where 𝑛, 𝑙, and 𝑗 are single
nucleon radial, orbital, and total angular quantum numbers
[3] and it was shown that the exact pseudospin symmetry
occurs in the Dirac equation when 𝑑Σ(𝑟)/𝑑𝑟 = 0; that is,
Σ(𝑟) = 𝑉(𝑟) + 𝑆(𝑟) = 𝑐ps = const., where 𝑉(𝑟) and 𝑆(𝑟)
are repulsive vector potential and attractive scalar potential,
respectively. Details of recent review of spin and pseudospin
symmetries are given in [4]. These symmetries, under var-
ious phenomenological potentials, have been investigated
using various methods such as Nikiforov-Uvarov (NU),
supersymmetric quantummechanics (SUSSYQM) and shape

invariance (SI), ansatz approach, and asymptotic iteration
(AIM) [5–15]. In recent years, the Dirac equation with
different potentials in relativistic quantum mechanics with
spin andpseudospin symmetry has been investigated [16–25].
The main aim of the present paper is to obtain approximate
solutions of the Dirac equation with scalar and vector gen-
eralized isotonic oscillators and Cornell tensor interaction
under the above mentioned symmetry limits. The isotonic
oscillator potential consists of the harmonic oscillator plus
centrifugal barrier which is of great interest in the theory
of coherent states [26] and quantum optics [27] and in the
analysis of the isochronous oscillator [28]. This potential
is important because of its relation with supersymmetric
quantummechanics [29].The two-dimensional version of the
isotonic potential is superintegrable and usually is referred
to as the Smorodinsky-Winternitz potential [30]. Here, we
make use of the ansatz approach to deal with this complicated
equation. A survey on the application of this technique to
other wave equations including Dirac, Schrödinger, Klein-
Gordon, spinless-Salpeter, and DKP equations can be found
in [31–39]. The paper is organized as follows. In Section 2,
we give a brief introduction of the supersymmetry quantum
mechanics (SUSYQM). In Section 3, the Dirac equation is
written for spin and pseudospin including the Cornell tensor
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interaction term. We next propose a physical ansatz solution
to the equation and we solve the Dirac equation under these
symmetries in Section 4. Finally, conclusion is presented in
Section 5.

2. Dirac Equation including Tensor Coupling

In spherical coordinates, the Dirac equation with both scalar
potential 𝑆(𝑟) and vector potential 𝑉(𝑟) can be expressed as
[1, 2]

[�⃗� ⋅ �⃗� + 𝛽 (𝑀 + 𝑆 (𝑟)) − 𝑖𝛽�⃗� ⋅ 𝑟𝑈 (𝑟)] 𝜓 ( ⃗𝑟)

= [𝐸 − 𝑉 (𝑟)] 𝜓 ( ⃗𝑟) ,

(1)

where𝐸 is the relativistic energy of the system; 𝛼 and𝛽 are the
4 × 4 Dirac matrices; p is the momentum operator, �⃗� = −𝑖∇⃗.
For a particle in a spherical field, the total angularmomentum
operator 𝐽 and spin-orbit matrix operator 𝐾 = (�⃗� ⋅ �⃗� + 1)

commute with the Dirac Hamiltonian, where 𝜎 and 𝐿 are
the Paulimatrix and orbital angularmomentum, respectively.
The eigenvalues of𝐾 are 𝜅 = −(𝑗 + 1/2) for aligned spin (𝑠

1/2
,

𝑝
3/2

, etc.) and 𝜅 = (𝑗+1/2) for unaligned spin (𝑝
1/2

,𝑑
3/2

, etc.).
The complete set of the conservative quantities can be taken
as (𝐻2, 𝐾, 𝐽2, 𝐽

𝑧
). As shown in [15], by taking the spherically

symmetric Dirac spinor wave functions as

𝜓
𝑛𝑘
( ⃗𝑟) = (

𝑓
𝑛𝑘
( ⃗𝑟)

𝑔
𝑛𝑘
( ⃗𝑟)
) = (

𝐹
𝑛𝑘
( ⃗𝑟)

𝑟
𝑌
ℓ

𝑗𝑚
(𝜃, 𝜑)

𝑖
𝐺
𝑛𝑘
( ⃗𝑟)

𝑟
𝑌
ℓ̃

𝑗𝑚
(𝜃, 𝜑)

) , (2)

where 𝐹
𝑛𝑘
( ⃗𝑟) and 𝐺

𝑛𝑘
( ⃗𝑟) are the radial wave functions of

the upper and lower components, respectively, 𝑌ℓ
𝑗𝑚
(𝜃, 𝜑) and

𝑌
ℓ̃

𝑗𝑚
(𝜃, 𝜑), respectively, stand for spin and pseudospin spher-

ical harmonics that are coupled to the angular momentum 𝑗

and 𝑚 is the projection of the angular momentum on the 𝑧-
axis.The orbital angularmomentumquantumnumbers ℓ and
ℓ̃ refer to the upper and lower components, respectively. The
quasidegenerate doublet structure can be expressed in terms
of pseudospin angularmomentum 𝑠 = 1/2 and pseudoorbital
angularmomentum ℓ̃, which is defined as ℓ̃ = ℓ+1 for aligned
spin 𝑗 = ℓ̃ − 1/2 and ℓ̃ = ℓ − 1 for unaligned spin 𝑗 = ℓ̃ + 1/2.
As shown in [1, 2], substituting (2) into (1) yields two coupled
differential equations as follows:

(
𝑑

𝑑𝑟
+
𝜅

𝑟
− 𝑈 (𝑟))𝐹

𝑛𝑘
(𝑟)

= (𝑀 + 𝐸
𝑛𝑘
− 𝑉 (𝑟) + 𝑆 (𝑟)) 𝐺

𝑛𝑘
(𝑟) ,

(3)

(
𝑑

𝑑𝑟
−
𝜅

𝑟
+ 𝑈 (𝑟))𝐺

𝑛𝑘
(𝑟)

= (𝑀 − 𝐸
𝑛𝑘
+ 𝑉 (𝑟) + 𝑆 (𝑟)) 𝐹

𝑛𝑘
(𝑟) .

(4)

We consider the difference potentialΔ(𝑟) and sum poten-
tial Σ(𝑟) as Δ(𝑟) = 𝑉(𝑟) − 𝑆(𝑟) and Σ(𝑟) = 𝑉(𝑟) + 𝑆(𝑟),
respectively.

The spin-orbit quantum number 𝜅 is related to the orbital
angular momentum quantum number ℓ. By eliminating
𝐺
𝑛𝑘
( ⃗𝑟) in (3) and 𝐹

𝑛𝑘
( ⃗𝑟) in (4), we obtain the following two

second-order differential equations for the upper and lower
components:

{
𝑑
2

𝑑𝑟
2
−
𝜅 (𝜅 + 1)

𝑟
2

+
2𝜅

𝑟
𝑈 (𝑟) −

𝑑𝑈 (𝑟)

𝑑𝑟
− 𝑈
2
(𝑟)

+
𝑑Δ (𝑟) /𝑑𝑟

𝑀 + 𝐸
𝑛𝜅
− Δ (𝑟)

(
𝑑

𝑑𝑟
+
𝜅

𝑟
− 𝑈 (𝑟))}𝐹

𝑛𝜅
(𝑟)

= (𝑀 + 𝐸
𝑛𝜅
− Δ (𝑟)) (𝑀 − 𝐸

𝑛𝜅
+ Σ (𝑟)) 𝐹

𝑛𝜅
(𝑟) ,

(5)

{
𝑑
2

𝑑𝑟
2
−
𝜅 (𝜅 − 1)

𝑟
2

+
2𝜅

𝑟
𝑈 (𝑟) +

𝑑𝑈 (𝑟)

𝑑𝑟
− 𝑈
2
(𝑟)

+
𝑑Σ (𝑟) /𝑑𝑟

𝑀 − 𝐸
𝑛𝜅
+ Σ (𝑟)

(
𝑑

𝑑𝑟
−
𝜅

𝑟
+ 𝑈 (𝑟))}𝐺

𝑛𝜅
(𝑟)

= (𝑀 + 𝐸
𝑛𝜅
− Δ (𝑟)) (𝑀 − 𝐸

𝑛𝜅
+ Σ (𝑟)) 𝐺

𝑛𝜅
(𝑟) .

(6)

We have 𝜅(𝜅 − 1) = ℓ̃(ℓ̃ + 1) and 𝜅(𝜅 + 1) = ℓ(ℓ + 1).

3. Pseudospin and Spin Symmetric Solutions

3.1. Pseudospin Symmetry Limit. The pseudospin symmetry
occurs when 𝑑Σ(𝑟)/𝑑𝑟 = 0 or equivalently Σ(𝑟) = 𝐶ps =

Const. [1, 2]. Here, we work on

Δ (𝑟) = 𝐴𝑟
2
− 2𝑔

2𝑟
2
− 1

(2𝑟
2
+ 1)
2
. (7)

For the tensor term, we consider the Cornell potential

𝑈 (𝑟) = 𝑎ps𝑟 +
𝑏ps

𝑟
. (8)

Substitution of these two terms into (6) gives

{
𝑑
2

𝑑𝑟
2
+
1

𝑟
2
(−𝜅 (𝜅 − 1) + 2𝜅𝑏ps − 𝑏ps − 𝑏

2

ps)

− 𝐴ps (𝐸
ps
𝑛𝜅
−𝑀 − 𝐶ps) 𝑟

2
− 𝑎
2

ps𝑟
2

− 2𝑔ps
2𝑟
2
− 1

(2𝑟
2
+ 1)
2
(𝐸

ps
𝑛𝜅
−𝑀 − 𝐶ps)

+ (𝐸
ps
𝑛𝜅
+𝑀) (𝐸

ps
𝑛𝜅
−𝑀 − 𝐶ps) − 2𝜅𝑎ps

+ 𝑎ps − 2𝑎ps𝑏ps}𝐺
ps
𝑛𝜅
(𝑟) = 0,

(9)

where 𝜅 = −ℓ̃ and 𝜅 = ℓ̃ + 1 for 𝜅 < 0 and 𝜅 > 0, respectively.
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3.2. Spin Symmetry Limit. In the spin symmetry limit 𝑑Δ(𝑟)/
𝑑𝑟 = 0 or Δ(𝑟) = 𝐶

𝑠
= Const. [15], we consider

Σ (𝑟) = 𝐴𝑟
2
− 2𝑔

2𝑟
2
− 1

(2𝑟
2
+ 1)
2
, (10a)

𝑈 (𝑟) = 𝑎
𝑠
𝑟 +

𝑏
𝑠

𝑟
. (10b)

Substitution of the later into (5) gives

{
𝑑
2

𝑑𝑟
2
+
1

𝑟
2
(−𝜅 (𝜅 + 1) + 2𝜅𝑏

𝑠
+ 𝑏
𝑠
− 𝑏
2

𝑠
)

− 𝐴
𝑠
(𝑀 + 𝐸

𝑠

𝑛𝜅
− 𝐶
𝑠
) 𝑟
2
− 𝑎
2

𝑠
𝑟
2

+ 2𝑔
𝑠

2𝑟
2
− 1

(2𝑟
2
+ 1)
2
(𝑀 + 𝐸

𝑠

𝑛𝜅
− 𝐶
𝑠
)

+ (𝐸
𝑠

𝑛𝜅
−𝑀) (𝑀 + 𝐸

𝑠

𝑛𝜅
− 𝐶
𝑠
) + 2𝜅𝑎

𝑠

− 𝑎
𝑠
− 2𝑎
𝑠
𝑏
𝑠
}𝐹
𝑠

𝑛𝜅
(𝑟) = 0,

(11)

where 𝜅 = ℓ and 𝜅 = −ℓ − 1 for 𝜅 < 0 and 𝜅 > 0, respectively.

4. The Ansatz Solution

4.1. Solution of the Pseudospin Symmetry Limit. In the previ-
ous section, we obtained a Schrodinger-like equation of the
form
𝑑
2
𝐺
ps
𝑛𝜅
(𝑟)

𝑑𝑟
2

+ [𝜀
ps
+
𝜆
ps

𝑟
2
+ 𝜒

ps
𝑟
2
+ 𝛿

ps 2𝑟
2
− 1

(2𝑟
2
+ 1)
2
]𝐺

ps
𝑛𝜅
(𝑟) = 0,

(12)

where
𝜀
ps
= (𝐸

ps
𝑛𝜅
+𝑀) (𝐸

ps
𝑛𝜅
−𝑀 − 𝐶ps) − 2𝜅𝑎ps + 𝑎ps − 2𝑎ps𝑏ps,

𝜆
ps
= − 𝜅 (𝜅 − 1) + 2𝜅𝑏ps − 𝑏ps − 𝑏

2

ps,

𝜒
ps
= − 𝐴ps (𝐸

ps
𝑛𝜅
−𝑀 − 𝐶ps) − 𝑎

2

ps,

𝛿
ps
= − 2𝑔ps (𝐸

ps
𝑛𝜅
−𝑀 − 𝐶ps) .

(13)

The latter fails to admit exact analytical solutions. There-
fore, we follow the ansatz approach with the starting square

𝐺
ps
𝑛𝜅
(𝑟) = 𝑓

ps
𝑛
(𝑟) exp (𝑔ps

𝜅
(𝑟)) , (14)

where

𝑓
ps
𝑛
(𝑟) =

{{

{{

{

1, if 𝑛 = 0,
𝑛

∏

𝑖=1

(𝑟 − 𝛼
𝑛

𝑖
) , if 𝑛 ≥ 1, (15)

𝑔
ps
𝜅
(𝑟) = −𝛼

ps
𝑟
2
+ 𝛽

ps ln 𝑟 + 𝛾ps ln (2𝑟2 + 1) , 𝛼
ps
> 0.

(16)

By substitution of 𝑓
𝑛
(𝑟) and 𝑔

𝜅
(𝑟) into (14) and then

taking the second-order derivative of the obtained equation,
we can get

𝐺
ps
𝑛𝜅



(𝑟) = [𝑔
ps
𝜅



(𝑟) + 𝑔
ps
𝜅

2

(𝑟)

+
𝑓
ps
𝑛


(𝑟) + 2𝑔

ps
𝜅


(𝑟) 𝑓

ps
𝑛


(𝑟)

𝑓
ps
𝑛 (𝑟)

]𝐺
ps
𝑛𝜅
(𝑟) .

(17)

By considering the case 𝑛 = 0, from (14)–(16), we find

𝐺
ps
0𝜅



(𝑟) = {
1

𝑟
2
[−𝛽

ps
+ 𝛽

ps2
] +

1

(2𝑟
2
+ 1)
2

× [16𝛾
ps2
𝑟
2
+ 16𝛼

ps
𝛾
ps
𝑟
2
+ 16𝛽

ps
𝛾
ps
𝑟
2

− 8𝛾
ps
𝑟
2
+ 4𝛾

ps
+ 8𝛼

ps
𝛾 + 8𝛽

ps
𝛾
ps
]

+ 4𝛼
ps2
𝑟
2
− 2𝛼

ps

− 4𝛼
ps
𝛽
ps
− 8𝛼

ps
𝛾
ps
}𝐺

ps
0𝜅
(𝑟) .

(18)

By comparing the corresponding powers of (12) and (18), we
have

−𝜆
ps
= 𝛽

ps
(𝛽

ps
− 1) ,

−𝜒
ps
= 4𝛼

ps2
,

−2𝛿
ps
= 16𝛾

ps2
+ 16𝛼

ps
𝛾
ps
+ 16𝛽

ps
𝛾
ps
− 8𝛾

ps
,

𝛿
ps
= 4𝛾

ps
+ 8𝛼

ps
𝛾 + 8𝛽

ps
𝛾
ps
,

−𝜀
ps
= − 2𝛼

ps
− 4𝛼

ps
𝛽
ps
− 8𝛼

ps
𝛾
ps
.

(19)

Equation (19) gives

𝛽
ps
=
1

2
(1 + √1 − 4𝜆

ps
)

𝛼
ps
=
1

2
√−𝜒

ps

𝛾
ps
= − 2 (𝛼

ps
+ 𝛽

ps
) .

(20)

Actually, to havewell-behaved solutions of the radial wave
function at boundaries, namely, the origin and the infinity, we
need to take 𝛿ps from (19) as

𝛿
ps
= 4𝛾

ps
+ 8𝛼

ps
𝛾 + 8𝛽

ps
𝛾
ps
. (21)

Form (13), (19), and (20), the ground-state energy satisfies

𝜀
ps
− √−𝜒

ps
− √−𝜒

ps
(1 + √1 − 4𝜆

ps
)

+ 4√−𝜒
ps
(√−𝜒

ps
+ (1 + √1 − 4𝜆

ps
)) = 0.

(22)
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Table 1: Bound state for the pseudospin symmetry 𝑎ps = −0.02, 𝑏ps = 0.01, 𝑀 = 0.5 fm−1, and 𝐶ps = −1 fm
−1.

ℓ̃ 𝜅 (ℓ, 𝑗)
𝐸
ps
0𝜅
(fm−1)

𝐴 = −0.05 𝐴 = − 0.5

1 −1 0𝑆
1/2

−0.492577461 −0.499257852
2 −2 0𝑃

3/2
−0.492679105 −0.499267983

3 −3 0𝑑
5/2

−0.492730875 −0.499273142
4 −4 0𝑓

7/2
−0.492762185 −0.499276263

Table 2: Bound state for the spin symmetry 𝑎
𝑠
= 0.02, 𝑏

𝑠
= 0.01, 𝑀 = 0.5 fm−1, and 𝐶

𝑠
= 1 fm−1.

ℓ 𝜅 (ℓ, 𝑗)
𝐸
𝑠

0𝜅
(fm−1)

𝐴 = −0.05 𝐴 = −0.5

1 −2 0𝑝
3/2

0.506363937 0.500636263
2 −3 0𝑑

5/2
0.506651467 0.500665063

3 −4 0𝑓
7/2

0.506779923 0.500677931
4 −5 0𝑔

9/2
0.50685245 0.500685197

Table 3: Energies in the pseudospin symmetry limit for 𝐴ps = −0.5, 𝑎ps = −0.02, 𝑏ps = 0.01, and𝑀 = 0.5 fm−1.

𝐶ps
𝐸
ps
0𝜅
(fm−1)

0𝑆
1/2

0𝑃
3/2

0𝑑
5/2

0𝑓
7/2

−5 −4.499263699 −4.49927201 −4.499276204 −4.49927873
−4 −3.499262219 −3.499270997 −3.499275435 −3.499278111
−3 −2.499260752 −2.499269988 −2.499274669 −2.499277494
−2 −1.499259296 −1.499268983 −1.499273904 −1.499276877
−1 −0.499257852 −0.499267983 −0.499273142 −0.499276263
0 0.50074358 0.500733013 0.500727617 0.500724351

From (14), (16), and (20), we simply have the upper and
lower components of the wave function as

𝑔
ps
𝜅
(𝑟) = −

1

2
√−𝜒

ps
𝑟
2
+
1

2
(1 + √1 − 4𝜆

ps
)

× ln 𝑟 − 2 (𝛼ps + 𝛽ps) ln (2𝑟2 + 1) ,
(23a)

𝐺
ps
0𝜅
(𝑟) = 𝑁

0𝜅
𝑟
(1/2)(1+√1−4𝜆

ps
)
(2𝑟
2
+ 1)
−2(𝛼

ps
+𝛽

ps
)

× exp(−1
2
√−𝜒

ps
𝑟
2
) ,

(23b)

𝐹
ps
0𝜅
(𝑟) =

1

𝑀 − 𝐸
ps
0𝜅
+ 𝐶ps

(
𝑑

𝑑𝑟
−
𝜅

𝑟
+ 𝑈 (𝑟))𝐺

ps
0𝜅
(𝑟) . (23c)

4.2. Solution of the Spin Symmetry Limit. In this case, our
ordinary differential equation is

𝑑
2
𝐹
𝑠

𝑛𝜅
(𝑟)

𝑑𝑟
2

+ [𝜀
𝑠
+
𝜆
𝑠

𝑟
2
+ 𝜒
𝑠
𝑟
2
+ 𝛿
𝑠 2𝑟
2
− 1

(2𝑟
2
+ 1)
2
]𝐹
𝑠

𝑛𝜅
(𝑟) = 0,

(24)

where

𝜀
𝑠
= (𝐸
𝑠

𝑛𝜅
−𝑀) (𝑀 + 𝐸

𝑠

𝑛𝜅
− 𝐶
𝑠
) + 2𝜅𝑎

𝑠
− 𝑎
𝑠
− 2𝑎
𝑠
𝑏
𝑠
,

𝜆
𝑠
= − 𝜅 (𝜅 + 1) + 2𝜅𝑏

𝑠
+ 𝑏
𝑠
− 𝑏
2

𝑠
,

𝜒
𝑠
= − 𝐴

𝑠
(𝑀 + 𝐸

𝑠

𝑛𝜅
− 𝐶
𝑠
) − 𝑎
2

𝑠
,

𝛿
𝑠
= 2𝑔
𝑠
(𝑀 + 𝐸

𝑠

𝑛𝜅
− 𝐶
𝑠
) .

(25)

In this case, we introduce the ansatz

𝐹
𝑠

𝑛𝜅
(𝑟) = 𝑓

𝑠

𝑛
(𝑟) exp (𝑔𝑠

𝜅
(𝑟)) , (26)

where

𝑓
𝑠

𝑛
(𝑟) =

{{

{{

{

1, if 𝑛 = 0,
𝑛

∏

𝑖=1

(𝑟 − 𝛼
𝑛

𝑖
) , if 𝑛 ≥ 1, (27)

𝑔
𝑠

𝜅
(𝑟) = −𝛼

𝑠
𝑟
2
+ 𝛽
𝑠 ln 𝑟 + 𝛾𝑠 ln (2𝑟2 + 1) , 𝛼

𝑠
> 0, (28)

substitution of the proposed ansatz gives

𝐹
𝑠

𝑛𝜅
(𝑟)

= [𝑔
𝑠

𝜅



(𝑟) + 𝑔
𝑠

𝜅

2

(𝑟) +
𝑓
𝑠

𝑛


(𝑟) + 2𝑔

𝑠

𝜅


(𝑟) 𝑓
𝑠

𝑛


(𝑟)

𝑓
𝑠

𝑛
(𝑟)

] 𝐹
𝑠

𝑛𝜅
(𝑟) .

(29)
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Table 4: Energies in the spin symmetry limit for 𝐴
𝑠
= −0.5, 𝑎

𝑠
= 0.02, 𝑏

𝑠
= 0.01, and𝑀 = 0.5 fm−1.

𝐶
𝑠

𝐸
𝑠

0𝜅
(fm−1)

0𝑝
3/2

0𝑑
5/2

0𝑓
7/2

0𝑔
9/2

0 −0.499365805 −0.499336214 −0.499322986 −0.499315517
1 0.500636263 0.500665063 0.500677931 0.500685197
2 1.500638332 1.500666338 1.500678847 1.500685909
3 2.500640401 2.500667612 2.500679761 2.500686621
4 3.50064247 3.500668885 3.500680675 3.500687332
5 4.500644539 4.500670157 4.500681588 4.500688043

Table 5: Energies in the pseudospin symmetry limit for 𝐴ps = −0.5, 𝑎ps = −0.02, 𝑏ps = 0.01, and 𝐶ps = −1 fm
−1.

𝑀(fm−1) 𝐸
ps
0𝜅
(fm−1)

0𝑆
1/2

0𝑃
3/2

0𝑑
5/2

0𝑓
7/2

0 −0.999259296 −0.999268983 −0.999273904 −0.999276877
0.2 −0.799258717 −0.799268582 −0.799273599 −0.799276631
0.4 −0.59925814 −0.599268183 −0.599273295 −0.599276385
0.6 −0.399257564 −0.399267783 −0.39927299 −0.39927614
0.8 −0.199256991 −0.199267385 −0.199272686 −0.199275894

Table 6: Energies in the spin symmetry limit for 𝐴
𝑠
= −0.5, 𝑎

𝑠
= 0.02, 𝑏

𝑠
= 0.01, and 𝐶

𝑠
= 1 fm−1.

𝑀(fm−1) 𝐸
𝑠
+

𝑛𝜅
(fm−1)

0𝑝
3/2

0𝑑
5/2

0𝑓
7/2

0𝑔
9/2

0 1.000638332 1.000666338 1.000678847 1.000685909
0.2 0.800637505 0.800665828 0.80067848 0.800685624
0.4 0.600636677 0.600665318 0.600678114 0.600685339
0.6 0.40063585 0.400664807 0.400677748 0.400685054
0.8 0.200635022 0.200664297 0.200677381 0.200684769
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Figure 1: PSS: wavefunction for pseudospin symmetry limit for 𝐴ps = −0.5, 𝑎ps = −0.02, 𝑏ps = 0.01, 𝑀 = 0.5 fm−1, and 𝐶ps = −1 fm
−1. SS:

wavefunction for spin symmetry limit for 𝐴
𝑠
= −0.5, 𝑎

𝑠
= 0.02, 𝑏

𝑠
= 0.01,𝑀 = 0.5 fm−1, and 𝐶

𝑠
= 1 fm−1.
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For 𝑛 = 0, we have

𝐹
𝑠

0𝜅
(𝑟)

= {
1

𝑟
2
[−𝛽
𝑠
+ 𝛽
𝑠2
] +

1

(2𝑟
2
+ 1)
2

× [16𝛾
𝑠2
𝑟
2
+ 16𝛼

𝑠
𝛾
𝑠
𝑟
2
+ 16𝛽

𝑠
𝛾
𝑠
𝑟
2

− 8𝛾
𝑠
𝑟
2
+ 4𝛾
𝑠
+ 8𝛼
𝑠
𝛾
𝑠
+ 8𝛽
𝑠
𝛾
𝑠
]

+ 4𝛼
𝑠2
𝑟
2
− 2𝛼
𝑠
− 4𝛼
𝑠
𝛽
𝑠
− 8𝛼
𝑠
𝛾
𝑠
}𝐹
𝑠

0𝜅
(𝑟) .

(30)

By comparing the corresponding powers of (24) and (30),
we have

𝛽
𝑠
=
1

2
(1 + √1 − 4𝜆

𝑠
) ,

𝛼
𝑠
=
1

2
√−𝜒
𝑠
,

𝛾
𝑠
= −2 (𝛼

𝑠
+ 𝛽
𝑠
) ,

𝜀
𝑠
− 2𝛼
𝑠
− 4𝛼
𝑠
𝛽
𝑠
− 8𝛼
𝑠
𝛾
𝑠
= 0.

(31)

To have physically acceptable solutions, we pick up the
value by considering the above equation; the first node
eigenvalue satisfies

𝜀
𝑠
− √−𝜒

𝑠
− √−𝜒

𝑠
(1 + √1 − 4𝜆

𝑠
)

+ 4√−𝜒
𝑠
(√−𝜒

𝑠
+ (1 + √1 − 4𝜆

𝑠
)) = 0.

(32)

From (26), (28), and (31), the upper component of the wave
function is

𝑔
𝑠

𝜅
(𝑟) = −

1

2
√−𝜒
𝑠
𝑟
2

+
1

2
(1 + √1 − 4𝜆

𝑠
) ln 𝑟 − 2 (𝛼𝑠 + 𝛽𝑠) ln (2𝑟2 + 1) ,

(33a)

𝐹
𝑠

0𝜅
(𝑟) = 𝑁

0𝜅
𝑟
(1/2)(1+√1−4𝜆

𝑠
)

× (2𝑟
2
+ 1)
−2(𝛼
𝑠
+𝛽
𝑠
)

exp(−1
2
√−𝜒
𝑠
𝑟
2
) ,

(33b)

and for the lower component of the wave function, we have

𝐺
𝑠

0𝜅
(𝑟) =

1

𝑀 + 𝐸
𝑠

0𝜅
− 𝐶
𝑠

(
𝑑

𝑑𝑟
+
𝜅

𝑟
− 𝑈 (𝑟))𝐹

𝑠

0𝜅
(𝑟) . (34)

Wehave given somenumerical values of the energy eigen-
values in Tables 1–6 for various states. We have investigated
the dependence of the bound-state energy levels 𝑛 = 0 on
potential parameter 𝐴. The results in Tables 1 and 2 have
found that case 𝐴 = −0.05 is contrary to case 𝐴 = −0.5

under the condition of the pseudospin and spin symmetries,

respectively. Tables 3 and 4 present the dependence of the
bound-state energy levels on parameters𝐶ps and𝐶𝑠 in view of
the pseudospin and spin symmetry limits. It is seen in Tables
3 and 4 that although bound states obtained in view of spin
symmetry become more bounded with increasing 𝐶

𝑠
, they

become less bounded in the pseudospin symmetry limit with
increasing 𝐶ps. We show the effects of the 𝑀-parameter on
the bound states under the conditions of the pseudospin and
spin symmetry limits. The results are given in Tables 5 and 6.
It is seen that if the𝑀-parameter increases, the bound states
become less bounded for both the pseudospin and the spin
symmetry limits. In Figure 1, the wave functions are plotted
for spin and pseudospin symmetry limits.

5. Conclusion

In this paper, we have obtained the approximate solutions
of the Dirac equation for the isotonic oscillator potential
including the Cornell tensor interaction within the frame-
work of pseudospin and spin symmetry limits using the
ansatz approach which stands as a strong tool of mathemat-
ical physics. We have obtained the energy eigenvalues and
corresponding lower and upper wave functions.
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