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The Duffin-Kemmer-Petiau (DKP) equation in the presence of a scalar potential is solved in one spatial dimension for the vector
𝑞-parameter Hyperbolic Pöschl-Teller (𝑞HPT) potential. In obtaining complete solutions we used the weak interaction approach
and took the scalar and vector potentials in a correlated form. By looking at the asymptotic behaviors of the solutions, we identify
the bound and scattering states.We calculate transmission (𝑇) and reflection (𝑅) probability densities and analyze their dependence
on the potential shape parameters. Also we investigate the dependence of energy eigenvalues of the bound states on the potential
shape parameters.

1. Introduction

In the early 20th century, many scientific studies have been
done to explain the structure of nuclei, atoms, andmolecules.
In the explanation of these physical systems, particle equa-
tions describing fermions or bosons were solved for the
potentials that vary depending on the physical systems. Also
scattering and bound states were examined. Within this con-
text, some potentials used in the previous studies are Morse
potential [1], Rosen-Morse potential [2], Yukawa potential
[3], Coulomb potential [4], Hylleraas potential [5], Manning-
Rosen potential [6], Woods-Saxon potential [7], Hulthen
potential [8], Eckart potential [9], Trigonometric Pöschl-
Teller potential [10–12], Generalized Pöschl-Teller potential
[13–15], and Hyperbolic Pöschl-Teller potential [10, 16–19].
Recently some of these potentials have been introduced in
terms of hyperbolic functions whose hyperbolic parts have
been extended by a 𝑞 parameter due to the suggestion of
Arai [20]. Of these potentials the one called 𝑞-parameter
Hyperbolic Pöschl-Teller potential (𝑞HPT) is given by the
following form:

𝑉 (𝑥) =
𝜆 (𝜆 − 1)

cosh2
𝑞
(𝛼𝑥)

=
4𝜆 (𝜆 − 1)

(𝑒𝛼𝑥 + 𝑞𝑒−𝛼𝑥)
2
, (1)

where 𝑞 is the deformation parameter and 𝑞 ̸= 0 and 𝜆 is
the height of the potential barrier and not equal to 0 and 1.
Also, 𝛼 is related to the range of the potential barrier. The
graph of the potential against the position is displayed in
Figure 1 for different values of the potential parameters. This
potential has a feature of shape invariant as obtained from
the supersymmetric quantum mechanics. By defining the 𝑞

deformation parameter energy levels and wavefunctions are
altered and, depending on the values that 𝑞 parameter takes
whether 0 < 𝑞 < 1 or 𝑞 > 1, the number of energy levels
varies. Although the usual PT-type potential provides limited
knowledge in describing of atomic interactions, namely,
at most two parameters, addition of the 𝑞 deformation
parameter to the potential extends the applications of such
kind of potential to the other fields of the physics. PT-type
potentials are used for analyzing the bound energies of the
Λ-particle in hypernuclei in nuclear physics. Therefore, the
𝑞HPT type potential can play an important role in describing
the interactions not only inmolecular and atomic physics but
also in nuclear physics. Moreover, the 𝑞-deformed hyperbolic
potential is supposed to be used to characterize the curvature
in spaces of negative constant curvature [16, 21, 22].

The Schrödinger equation has been solved in one dimen-
sion for this potential by using Nikiforov-Uvarov and Path
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Figure 1: The graph of the 𝑞HPT potential versus the position for different values of the potential parameters.

integralmethods and bound energy states have been obtained
[22, 23]. Also the relativistic Klein-Gordon (spin-0) and
Dirac (spin-1/2) equations were examined in the existence
of the position-dependent mass or scalar potential [24–27].
Usually, in one spatial dimension, position-dependent mass
and scalar potential are selected to be equal to the vector
potential (external potential). Therefore, the scalar potential
can be considered as counterpart of the position-dependent
mass which is useful in the cases of quantum dots [28] and
electronic properties of semiconductors [29].

Another relativistic equation that defines massive spin-
0 (scalar bosons) and spin-1 (vector bosons) particles is
called DKP equation. Unlike the Klein-Gordon and Dirac
equations, the DKP equation has much more components
for wavefunction, namely, it has sixteen components, which
makes it difficult to solve exactly. This difficulty makes it
harder to study the DKP equation compared to the other
relativistic equations.

In contrast to the Klein-Gordon and Dirac equations, the
DKP equation has not been studied for the 𝑞HPT potential.
So, it is the goal of this study to obtain the bound and
scattering states of the DKP equation in the presence of a
scalar potential for the 𝑞HPT potential in one dimension and

analyze the transmission (𝑇) and reflection (𝑅) probability
densities numerically.

The scheme of this paper is as follows. In Section 2,
we solve the DKP equation for the 𝑞HPT potential. In
Section 3, the transmission (𝑇) and reflection (𝑅) probability
densities are calculated by using the left and right solutions.
In Section 4, the bound energy states are found for the 𝑞HPT
potential well. Finally, in Section 5 we discuss the obtained
results.

2. Solution of DKP Equation For 𝑞HPT
Potential

The DKP equation with a scalar potential [30] describing
massive spin-0 and spin-1 particles is given by (in natural
units ℎ = 𝑐 = 1)

[𝑖𝛽
𝜇
(𝜕
𝜇
+ 𝑖𝑒𝐴

𝜇
) − (𝑚 + 𝑉

𝑠
)]Ψ
𝐾

(𝑡, �⃗�) = 0, (2)

where 𝐴
𝜇
is the four-vector potential, 𝑉

𝑠
is the scalar poten-

tial, and Ψ
𝐾
(𝑡, �⃗�) is the sixteen components wavefunction of
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the DKP equation. 𝛽𝜇 are the Kemmer matrices which obey
the following commutation relation [31, 32]:

𝛽
𝜇
= 𝛾
𝜇
⊗ 𝐼 + 𝐼 ⊗ 𝛾

𝜇
, (3)

where 𝛾
𝜇 are the Dirac matrices. For (1 + 1)-dimensional

case, the Pauli spin matrices 𝜎
𝜇 are used instead of the Dirac

gammamatrices in (3). In this case the beta matrices become
as follows [33]:

𝛽
𝜇
= 𝜎
𝜇
⊗ 𝐼 + 𝐼 ⊗ 𝜎

𝜇
. (4)

With the insertion of 𝛽𝜇 matrices into (2), we obtain

[𝑖 (𝜎
𝜇
⊗ 𝐼 + 𝐼 ⊗ 𝜎

𝜇
) (𝜕
𝜇
+ 𝑖𝑒𝐴

𝜇
) − (𝑚 + 𝑉

𝑠
)]Ψ
𝐾

= 0, (5)

where the wavefunction is given by

Ψ
𝑇

𝐾
= (Ψ1 Ψ

0
Ψ
0̃

Ψ
2) . (6)

Equation (5) reduces to four coupled differential equations
with the choice of 𝜎𝜇 = (𝜎

𝑧, 𝑖𝜎𝑥):

[2 (𝜕
0
+ 𝑖𝑒𝐴

0
) + 𝑖 (𝑚 + 𝑉

𝑠
)] Ψ
1
+ 𝑖 (𝜕
1
+ 𝑖𝑒𝐴

1
) (Ψ
0
+ Ψ
0̃
)

= 0

(𝜕
1
+ 𝑖𝑒𝐴

1
) (Ψ
1
+ Ψ
2
) + (𝑚 + 𝑉

𝑠
) Ψ
0
= 0

(𝜕
1
+ 𝑖𝑒𝐴

1
) (Ψ
1
+ Ψ
2
) + (𝑚 + 𝑉

𝑠
) Ψ
0̃
= 0

[−2 (𝜕
0
+ 𝑖𝑒𝐴

0
) + 𝑖 (𝑚 + 𝑉

𝑠
)] Ψ
2
+ 𝑖 (𝜕
1
+ 𝑖𝑒𝐴

1
) (Ψ
0
+ Ψ
0̃
)

= 0.

(7)

After some simple algebra, we find a second order differential
equation in the form

𝑑
2
(𝜒
1
+ 𝜒
2
)

𝑑𝑥2
−

1

(𝑚 + 𝑉
𝑠
)

𝑑𝑉
𝑠
(𝑥)

𝑑𝑥

𝑑 (𝜒
1
+ 𝜒
2
)

𝑑𝑥

+ [(𝐸 − 𝑉V)
2

− (
𝑚 + 𝑉

𝑠

2
)

2

] (𝜒
1
+ 𝜒
2
) = 0.

(8)

The scalar potential we are dealing with has the form 𝑉
𝑠

=

𝑐𝑓(𝑥), where 𝑐 represents the strength of theweak interaction.
It is very small compared with the mass of the particle.
Considering this effect the term including the first order
derivative can be ignored since

lim
𝑐≪𝑚

𝑐

𝑚 (1 + 𝑐𝑓 (𝑥) /𝑚)

𝑑𝑓 (𝑥)

𝑑𝑥

𝑑 (𝜒
1
+ 𝜒
2
)

𝑑𝑥
→ 0. (9)

Then (8) reduces to

𝑑
2
(𝜒
1
+ 𝜒
2
)

𝑑𝑥2
+ [(𝐸

2
− �̃�
2
) − 2 (𝐸 + �̃�)𝑉V] (𝜒

1
+ 𝜒
2
) = 0,

(10)

where Ψ(𝑡, 𝑥) = 𝑒
−𝑖𝐸𝑡

𝜒(𝑥), 𝜒𝑇 = (𝜒1 𝜒
0

𝜒
0̃

𝜒
2), �̃� = 𝑚/2,

𝑒𝐴
0
= 𝑉V = 𝑉

𝑠
/2, and 𝐴

1
= 0.

There are two reasons for choosing the scalar and vector
potentials in a correlated form; they are as follows.

(i) Mathematically, with this choice, (8) reduces to a
solvable form. In the original form the second order
differential equation has a fourth order singular point
caused by the external vector 𝑞HPT potential. Taking
the vector and scalar potential in similar forms
removes this difficulty and the resulting equation
given in (10) is a solvable form.

(ii) Another reason is that we have no information about
the form of potential describing the weak interac-
tions. Our approach to the problem is to take the
scalar and vector potentials in a correlated form and
to investigate whether we are able to get reasonable
quantum mechanical parameters like 𝑇 and 𝑅.

We solve (10) by defining different variables for 𝑥 < 0 and
𝑥 > 0 cases.

For 𝑥 < 0 case, by substituting the 𝑞HPT potential given
by (1) into (10) and defining the variable

𝑦 = (1 + 𝑞𝑒
−2𝛼𝑥

)
−1

, (11)

we obtain the following equation:

𝑦 (1 − 𝑦)
𝑑
2
(𝜒
1
+ 𝜒
2
)

𝑑𝑦2
+ (1 − 2𝑦)

𝑑 (𝜒
1
+ 𝜒
2
)

𝑑𝑦

+
[𝜀
2
− 𝜏𝑦 (1 − 𝑦)]

𝑦 (1 − 𝑦)
(𝜒
1
+ 𝜒
2
) = 0,

(12)

where 𝜀
2
= (𝐸
2
− �̃�
2
)/4𝛼
2 and 𝜏 = 2𝜆(𝜆 − 1)(𝐸 + �̃�)/𝑞𝛼

2.
Equation (12) has singularities at 𝑦 = 0 and 𝑦 = 1.

Therefore we may suggest the wavefunction in the following
form to find the exact solution:

(𝜒
1
+ 𝜒
2
) (𝑦) = 𝑦

𝜂
(1 − 𝑦)

𝜂

𝑈(𝑦) . (13)

By using this definition we obtain the following differential
equation:

𝑦 (1 − 𝑦)
𝑑
2
𝑈

𝑑𝑦2
+ [(2𝜂 + 1) − (2𝜂 + 2𝜂 + 2) 𝑦]

𝑑𝑈

𝑑𝑦

− (𝜂 + 𝜂 + 𝜎 +
1

2
) (𝜂 + 𝜂 − 𝜎 +

1

2
)𝑈 = 0,

(14)

where 𝜂 = 𝜂 = 𝑖𝜀 and 𝜎 = √1/4 − 𝜏. This is the
hypergeometric differential equation and its solution is given
by [34]

𝑈 (𝑦) = 𝐴
2𝐹1 (2𝜂 + 𝜎 +

1

2
, 2𝜂 − 𝜎 +

1

2
; 1 + 2𝜂; 𝑦)

+ 𝐵𝑦
−2𝜂

2𝐹1 (𝜎 +
1

2
, −𝜎 +

1

2
; 1 − 2𝜂; 𝑦) .

(15)
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In this case the left (𝑥 < 0) side solutions are obtained in the
following form:

(𝜒
1
+ 𝜒
2
)
𝐿
(𝑦)

= 𝐴𝑦
𝜂
(1 − 𝑦)

𝜂

2𝐹1 (2𝜂 + 𝜎 +
1

2
, 2𝜂 − 𝜎 +

1

2
; 1 + 2𝜂; 𝑦)

+ 𝐵𝑦
−𝜂

(1 − 𝑦)
𝜂

2𝐹1 (𝜎 +
1

2
, −𝜎 +

1

2
; 1 − 2𝜂; 𝑦) .

(16)

For 𝑥 > 0 case, we define the variable as follows:

𝑧 = 𝑞(𝑞 + 𝑒
2𝛼𝑥

)
−1

. (17)

In this case (10) becomes

𝑧 (1 − 𝑧)
𝑑
2
(𝜒
1
+ 𝜒
2
)

𝑑𝑧2
+ (1 − 2𝑧)

𝑑 (𝜒
1
+ 𝜒
2
)

𝑑𝑧

+
[𝜀
2
− 𝜏𝑧 (1 − 𝑧)]

𝑧 (1 − 𝑧)
(𝜒
1
+ 𝜒
2
) = 0.

(18)

By setting

(𝜒
1
+ 𝜒
2
) (𝑧) = 𝑧

𝜌
(1 − 𝑧)

𝜌
𝑓 (𝑧) (19)

we obtain in the following differential equation:

𝑧 (1 − 𝑧)
𝑑
2
𝑓

𝑑𝑧2
+ [(2𝜌 + 1) − (2𝜌 + 2𝜌 + 2) 𝑧]

𝑑𝑓

𝑑𝑧

− (𝜌 + 𝜌 + 𝜎 +
1

2
) (𝜌 + 𝜌 − 𝜎 +

1

2
)𝑓 = 0,

(20)

where 𝜌 = 𝜌 = 𝑖𝜀 and 𝜎 = √1/4 − 𝜏. In this case 𝜌 = 𝜂. The
solution of this differential equation is

𝑓 (𝑧) = 𝐷
2𝐹1 (2𝜂 + 𝜎 +

1

2
, 2𝜂 − 𝜎 +

1

2
; 1 + 2𝜂; 𝑧)

+ 𝐺𝑧
−2𝜂

2𝐹1 (𝜎 +
1

2
, −𝜎 +

1

2
; 1 − 2𝜂; 𝑧)

(21)

and the right (𝑥 > 0) side solutions are obtained in the
following form:

(𝜒
1
+ 𝜒
2
)
𝑅
(𝑧)

= 𝐷𝑧
𝜂
(1 − 𝑧)

𝜂

2𝐹1 (2𝜂 + 𝜎 +
1

2
, 2𝜂 − 𝜎 +

1

2
; 1 + 2𝜂; 𝑧)

+ 𝐺𝑧
−𝜂

(1 − 𝑧)
𝜂

2𝐹1 (𝜎 +
1

2
, −𝜎 +

1

2
; 1 − 2𝜂; 𝑧) .

(22)

The other components of the Ψ
𝐾

wavefunction can be
obtained by using (7) and the recurrence formula of the
hypergeometric functions [34]:

𝑑
2
𝐹
1
(𝑎, 𝑏; 𝑐; 𝑥)

𝑑𝑥
=

𝑎𝑏

𝑐
2𝐹1 (𝑎 + 1, 𝑏 + 1; 𝑐 + 1; 𝑥) . (23)

3. Calculation of Transmission and Reflection
Probability Densities

Transmission (𝑇) and Reflection (𝑅) probability densities are
defined, respectively, in the following form:

𝑇 =



𝑗trans .
𝑗inc.


,

𝑅 =



𝑗ref.
𝑗inc.


,

(24)

where 𝑗trans ., 𝑗ref., and 𝑗inc. are transmitted, reflected, and inci-
dent probability current densities, respectively. Probability of
the current density for the DKP equation is given by

𝑗
𝜇
= Ψ𝛽
𝜇
Ψ, (25)

where Ψ = Ψ
†
(𝛾
0
⊗ 𝛾
0
). Its explicit form is

𝑗 = 𝑖 [(𝜒
1
+ 𝜒
2
)
∗

(𝜒
0
+ 𝜒
0̃
) − (𝜒

0
+ 𝜒
0̃
)
∗

(𝜒
1
+ 𝜒
2
)] . (26)

In order to calculate the transmission (𝑇) and reflection (𝑅)
probability densities, we use asymptotic expressions of the
wavefunctions.

The incoming wavefunction and its asymptotic behavior
as 𝑥 → −∞, 𝑦 → 0,

2
𝐹
1
(𝑎, 𝑏; 𝑐; 𝑦) → 1 are defined as

follows, respectively:

𝜒inc.

= 𝐴𝑦
𝜂
(1 − 𝑦)

𝜂

×

[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

1

2
[
𝑚 + 2𝐸

𝑚 + 𝑉
𝑠

]𝐹
1

(
−2𝛼

𝑚 + 𝑉
𝑠

) [(𝜂 (1 − 𝑦) − 𝜂𝑦) 𝐹
1
+ 𝑦 (1 − 𝑦) 𝐹

2
]

(
−2𝛼

𝑚 + 𝑉
𝑠

) [(𝜂 (1 − 𝑦) − 𝜂𝑦) 𝐹
1
+ 𝑦 (1 − 𝑦) 𝐹

2
]

1

2
[
𝑚 − 2𝐸 + 2𝑉

𝑠

𝑚 + 𝑉
𝑠

]𝐹
1

]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

𝜒inc. → 𝐴𝑞
−𝑖𝜀

𝑒
2𝑖𝛼𝜀𝑥

×

[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

1

2
[
𝑚 + 2𝐸

𝑚 + 𝑉
𝑠

]

(
−2𝛼

𝑚 + 𝑉
𝑠

) 𝑖𝜀

(
−2𝛼

𝑚 + 𝑉
𝑠

) 𝑖𝜀

1

2
[
𝑚 − 2𝐸 + 2𝑉

𝑠

𝑚 + 𝑉
𝑠

]

]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

,

(27)
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where we used

𝐹
1
=
2𝐹1 (2𝜂 + 𝜎 +

1

2
, 2𝜂 − 𝜎 +

1

2
; 1 + 2𝜂; 𝑦)

𝐹
2
=

(2𝜂 + 𝜎 + 1/2) (2𝜂 − 𝜎 + 1/2)

1 + 2𝜂

×
2𝐹1 (2𝜂 + 𝜎 +

3

2
, 2𝜂 − 𝜎 +

3

2
; 2 + 2𝜂; 𝑦) .

(28)

The reflected wavefunction and its asymptotic behavior as
𝑥 → −∞,𝑦 → 0,

2𝐹1(𝑎, 𝑏; 𝑐; 𝑦) → 1 are defined as follows,
respectively:

𝜒ref.

= 𝐵𝑦
−𝜂

(1 − 𝑦)
𝜂

×

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

1

2
[
𝑚 + 2𝐸

𝑚 + 𝑉
𝑠

]𝐹
3

(
−2𝛼

𝑚 + 𝑉
𝑠

) [(−𝜂 (1 − 𝑦) − 𝜂𝑦) 𝐹
3
+ 𝑦 (1 − 𝑦) 𝐹

4
]

(
−2𝛼

𝑚 + 𝑉
𝑠

) [(−𝜂 (1 − 𝑦) − 𝜂𝑦) 𝐹
3
+ 𝑦 (1 − 𝑦) 𝐹

4
]

1

2
[
𝑚 − 2𝐸 + 2𝑉

𝑠

𝑚 + 𝑉
𝑠

]𝐹
3

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

𝜒ref. → 𝐵𝑞
𝑖𝜀
𝑒
−2𝑖𝛼𝜀𝑥

×

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

1

2
[
𝑚 + 2𝐸

𝑚 + 𝑉
𝑠

]

(
2𝛼

𝑚 + 𝑉
𝑠

) 𝑖𝜀

(
2𝛼

𝑚 + 𝑉
𝑠

) 𝑖𝜀

1

2
[
𝑚 − 2𝐸 + 2𝑉

𝑠

𝑚 + 𝑉
𝑠

]

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

,

(29)

where we used

𝐹
3
=
2𝐹1 (𝜎 +

1

2
, −𝜎 +

1

2
; 1 − 2𝜂; 𝑦)

𝐹
4
=

(𝜎 + 1/2) (−𝜎 + 1/2)

1 − 2𝜂
2𝐹1 (𝜎 +

3

2
, −𝜎 +

3

2
; 2 − 2𝜂; 𝑦) .

(30)

The transmitted wavefunction and its asymptotic behavior as
𝑥 → ∞, 𝑧 → 0,

2𝐹1(𝑎, 𝑏; 𝑐; 𝑧) → 1 are defined as follows,
respectively:

𝜒trans .

= 𝐺𝑧
−𝜂

(1 − 𝑧)
𝜂

×

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

1

2
[
𝑚 + 2𝐸

𝑚 + 𝑉
𝑠

]𝐹
5

(
2𝛼

𝑚 + 𝑉
𝑠

) [(−𝜂 (1 − 𝑧) − 𝜂𝑧) 𝐹
5
+ 𝑧 (1 − 𝑧) 𝐹

6
]

(
2𝛼

𝑚 + 𝑉
𝑠

) [(−𝜂 (1 − 𝑧) − 𝜂𝑧) 𝐹
5
+ 𝑧 (1 − 𝑧) 𝐹

6
]

1

2
[
𝑚 − 2𝐸 + 2𝑉

𝑠

𝑚 + 𝑉
𝑠

]𝐹
5

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

(31)

𝜒trans . → 𝐺𝑞
−𝑖𝜀

𝑒
2𝑖𝛼𝜀𝑥

×

[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

1

2
[
𝑚 + 2𝐸

𝑚 + 𝑉
𝑠

]

(
−2𝛼

𝑚 + 𝑉
𝑠

) 𝑖𝜀

(
−2𝛼

𝑚 + 𝑉
𝑠

) 𝑖𝜀

1

2
[
𝑚 − 2𝐸 + 2𝑉

𝑠

𝑚 + 𝑉
𝑠

]

]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

, (32)

where we take 𝐷 = 0 to obtain (31) because there is no the
reflected wavefunction in the region of the potential and

𝐹
5
=
2𝐹1 (𝜎 +

1

2
, −𝜎 +

1

2
; 1 − 2𝜂; 𝑧)

𝐹
6
=

(𝜎 + 1/2) (−𝜎 + 1/2)

1 − 2𝜂
2𝐹1 (𝜎 +

3

2
, −𝜎 +

3

2
; 2 − 2𝜂; 𝑧) .

(33)

Transmission (𝑇) and reflection (𝑅) probability densities are
found by substituting the obtained asymptotic expressions of
wavefunctions into (26):

𝑇 =



𝑗trans .
𝑗inc.


=



𝐺

𝐴



2

𝑅 =



𝑗ref.
𝑗inc.


=



𝐵

𝐴



2

.

(34)

In order to correlate the coefficients in (34), we use the
continuity condition for the DKP equation that is given by

Ψinc. (𝑥 = 0) + Ψref. (𝑥 = 0) = Ψtrans . (𝑥 = 0) . (35)

By using (35), we obtain

𝐺

𝐴
= 𝑞
2𝜂
(1 + 𝑞)

−2𝜂

× {
(𝑆
3
𝐹
3
+ 𝑆
2
𝐹
4
) 𝐹
1
− (𝑆
1
𝐹
1
+ 𝑆
2
𝐹
2
) 𝐹
3

(𝑆
3
𝐹
3
+ 𝑆
2
𝐹
4
) 𝐹
5
+ (𝑆
3
𝐹
5
+ 𝑆
2
𝐹
6
) 𝐹
3

}
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𝐵

𝐴
= − (1 + 𝑞)

−2𝜂

× {
(𝑆
3
𝐹
5
+ 𝑆
2
𝐹
6
) 𝐹
1
+ (𝑆
1
𝐹
1
+ 𝑆
2
𝐹
2
) 𝐹
5

(𝑆
3
𝐹
3
+ 𝑆
2
𝐹
4
) 𝐹
5
+ (𝑆
3
𝐹
5
+ 𝑆
2
𝐹
6
) 𝐹
3

} ,

(36)

where the constants are given in Table 1.

4. Bound Energy States

To discuss the bound states, the potential must be in the
well form. Also, energy values must be smaller than the mass
(|𝐸| < 𝑚). Therefore, the 𝑞HPT potential given in (1) is
rewritten in the following form:

𝑉 (𝑥) = −
𝜆 (𝜆 − 1)

cosh2
𝑞
(𝛼𝑥)

. (37)

Accordingly, 𝜏 becomes

𝜏 = −2
𝜆 (𝜆 − 1) (𝐸 + �̃�)

𝑞𝛼2
, (38)

where 𝜆 > 1. In that case the solutions will be in the same
form of the once obtained in Section 1, except the above
definitions. We will apply the boundary conditions to the
solution given in (16) as follows.

(i) First boundary condition: as 𝑥 → −∞(𝑦 → 0), the
wavefunction must be equal to zero:

(𝜒
1
+ 𝜒
2
) (𝑥) = 𝐴𝑞

−𝜀
𝑒
2𝛼𝜀𝑥

+ 𝐵𝑞
𝜀
𝑒
−2𝛼𝜀𝑥

. (39)

In order to satisfy the wavefunction to be continuous, 𝐵

should be zero. In this case (16) becomes
(𝜒
1
+ 𝜒
2
) (𝑦)

= 𝐴𝑦
𝜂
(1 − 𝑦)

𝜂

2𝐹1 (2𝜂 + 𝜎 +
1

2
, 2𝜂 − 𝜎 +

1

2
; 1 + 2𝜂; 𝑦) ,

(40)

where 𝜂 = 𝜀 = √(�̃�2 − 𝐸2)/4𝛼2.
(ii) Second boundary condition: as 𝑥 → ∞(𝑦 → 1), the

wavefunction must vanish.
As 𝑥 → ∞(𝑦 → 1), the hypergeometric functions are

defined as follows [34]:

2𝐹1 (𝑎, 𝑏; 𝑐; 𝑦)

=
Γ (𝑐) Γ (𝑐 − 𝑎 − 𝑏)

Γ (𝑐 − 𝑎) Γ (𝑐 − 𝑏)
+

Γ (𝑐) Γ (−𝑐 + 𝑎 + 𝑏)

Γ (𝑎) Γ (𝑏)
(1 − 𝑦)

𝑐−𝑎−𝑏

.

(41)

By using (40) and (41), we obtain the following one:

(𝜒
1
+ 𝜒
2
) (𝑥)

= 𝐴𝑞
𝜀
𝑒
−2𝛼𝜀𝑥 Γ (1 + 2𝜀) Γ (−2𝜀)

Γ (1/2 − 𝜎) Γ (1/2 + 𝜎)

+ 𝐴𝑞
−𝜀

𝑒
2𝛼𝜀𝑥 Γ (1 + 2𝜀) Γ (2𝜀)

Γ (1/2 + 2𝜀 + 𝜎) Γ (1/2 + 2𝜀 − 𝜎)
,

(42)

where the factor depending on the variable of the second
term of the right side goes to the infinity. Therefore, in order
to satisfy this boundary condition, the argument of gamma
functions in the denominator of second term should be equal
to negative integers:

(
1

2
+ 2𝜀 + 𝜎) = −𝑛 or (

1

2
+ 2𝜀 − 𝜎) = −𝑛, (43)

where 𝑛 is finite and positive integer. By using one of these
equations, the energy relation for bound states is obtained in
the following form:

𝐸
2
− �̃�
2
= −𝛼
2
[𝑛 +

1

2
− √

1

4
+

2𝜆 (𝜆 − 1) (�̃� + 𝐸)

𝑞𝛼2
]

2

. (44)

We give Table 2 in order to evaluate numbers of the energy
eigenvalues of the bound states for the 𝑞HPT potential
against several values of 𝛼, 𝑞, and 𝜆. From Table 2 we see
that numbers of energy eigenvalues depend on the 𝑞HPT
potential parameters which are 𝛼, 𝑞, and 𝜆.

5. Conclusion

The main purpose of this study is to determine the solutions
of the DKP equation and to obtain the bound and scattering
states of the DKP particles for the 𝑞HPT potential which have
not been done in previous studies.TheDKP equation written
for the 𝑞HPT potential has fourth order singular points.
Therefore the equation can not be solved. In order to solve
it we make the weak interaction approach and take the scalar
and vector potentials in a correlated form.Then, by using the
condition that the wavefunction obtained as a solution must
be finite as 𝑥 → ∓∞ and by analyzing the gamma functions,
we find the relation which gives energy eigenvalues for the
bound states. As it is seen in Table 2, the number of the bound
states (𝑛) depends on the 𝑞HPT potential parameters. For
example, when evaluating variation of the energy against 𝛼

for 𝑞 = 0.4, 𝜆 = 2, 𝑚 = 1 it can be seen that the number
of the bound states equals 3 for 𝛼 = 1.2. Similarly, when one
evaluates variation of the energy according to 𝑞 for 𝛼 = 0.8,
𝜆 = 2,𝑚 = 1 one can see that the number of the bound states
equals 3 for 𝑞 = 1.2. If one analyzes variation of the energy
versus 𝜆 which determines depth of the 𝑞HPT potential for
𝛼 = 0.5, 𝑞 = 0.5, 𝑚 = 1, one can find that the number of the
bound states equals 2 for 𝜆 = 1.1. By adjusting the values of
𝛼, 𝑞, and 𝜆 the number of bound states can be increased or
decreased.

The transmission and reflection probability densities are
calculated by using asymptotic behavior of the wavefunction
and their dependence on the potential shape parameters is
analyzed numerically. The plot of energy against the trans-
mission (𝑇) and reflection (𝑅) probability densities is given
in Figure 2. We see from this plot that the unitarity condition
(𝑇 + 𝑅 = 1) is satisfied. The effect of 𝜆, 𝑞, and 𝛼 parameters
on the transmission probability density is represented in
Figures 3, 4, and 5, respectively. From these figures, it is
seen that the transmission probability density decreases as 𝜆

increases and it increases with raising 𝑞 and 𝛼 parameters.
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Figure 2: Unitarity condition, 𝑅 + 𝑇 = 1.
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Figure 3: Transmission probability density versus 𝜆 parameter.

Table 1: Table for some definitions used in calculations of 𝑇 and 𝑅.

𝑆
1
=

−(1 + 𝑞)
2
(2𝛼𝜂)

[𝑚(1 + 𝑞)
2
+ 8𝜆(𝜆 − 1)]

(
𝑞 − 1

1 + 𝑞
)

𝑆
2
=

−(1 + 𝑞)
2
(2𝛼)

[𝑚(1 + 𝑞)
2
+ 8𝜆(𝜆 − 1)]

𝑞

(1 + 𝑞)
2

𝑆
3
=

(1 + 𝑞)
2
(2𝛼𝜂)

[𝑚(1 + 𝑞)
2
+ 8𝜆(𝜆 − 1)]

𝐹
1
=
2
𝐹
1
(2𝜂 + 𝜎 +

1

2
, 2𝜂 − 𝜎 +

1

2
; 1 + 2𝜂;

1

1 + 𝑞
)

𝐹
2
=

(2𝜂 + 𝜎 + 1/2)(2𝜂 − 𝜎 + 1/2)

1 + 2𝜂
2
𝐹
1
(2𝜂 + 𝜎 +

3

2
, 2𝜂 − 𝜎 +

3

2
; 2 + 2𝜂;

1

1 + 𝑞
)

𝐹
3
=
2
𝐹
1
(𝜎 +

1

2
, −𝜎 +

1

2
; 1 − 2𝜂;

1

1 + 𝑞
)

𝐹
4
=

(𝜎 + 1/2)(−𝜎 + 1/2)

1 − 2𝜂
2
𝐹
1
(𝜎 +

3

2
, −𝜎 +

3

2
; 2 − 2𝜂;

1

1 + 𝑞
)

𝐹
5
=
2
𝐹
1
(𝜎 +

1

2
, −𝜎 +

1

2
; 1 − 2𝜂;

𝑞

1 + 𝑞
)

𝐹
6
=

(𝜎 + 1/2)(−𝜎 + 1/2)

1 − 2𝜂
2
𝐹
1
(𝜎 +

3

2
, −𝜎 +

3

2
; 2 − 2𝜂;

𝑞

1 + 𝑞
)
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Table 2: Evaluation of numbers of the bound states for the 𝑞HPT potential against several values of 𝛼, 𝑞, and 𝜆.

𝑛 𝑞
𝛼 = 0.8, 𝜆 = 2,𝑚 = 1

𝐸
𝛼

𝑞 = 0.4, 𝜆 = 2,𝑚 = 1

𝐸
𝜆

𝛼 = 0.5, 𝑞 = 0.5, 𝑚 = 1

𝐸

1

0.7 −0.916201 0.7 −0.955329 1.1 −0.904418

0.8 −0.909189 0.8 −0.941517 1.2 −0.924119

0.9 −0.902695 0.9 −0.925783 1.3 −0.937065

1.0 −0.896644 1.0 −0.908094 1.4 −0.946449

1.1 −0.890978 1.1 −0.888413 1.5 −0.953629

1.2 −0.885648 1.2 −0.866697 1.6 −0.959318

1.3 −0.880618 1.3 −0.842897 1.7 −0.963941

2

0.7 −0.726421 0.7 −0.858986 1.1 −0.630982

0.8 −0.700873 0.8 −0.814433 1.2 −0.730331

0.9 −0.676677 0.9 −0.76307 1.3 −0.785115

1.0 −0.653625 1.0 −0.704488 1.4 −0.821553

1.1 −0.631553 1.1 −0.638169 1.5 −0.848018

1.2 −0.610328 1.2 −0.563441 1.6 −0.868265

1.3 −0.589845 1.3 −0.479416 1.7 −0.884302

3

0.7 −0.405568 0.7 −0.708126 1.1 0.226483

0.8 −0.340312 0.8 −0.612255 1.2 −0.365843

0.9 −0.275352 0.9 −0.498889 1.3 −0.523306

1.0 −0.209839 1.0 −0.365023 1.4 −0.615126

1.1 −0.142822 1.1 −0.205758 1.5 −0.677672

1.2 −0.0731078 1.2 −0.0119543 1.6 −0.723722

1.3 0.00100059 1.3 0.238587 1.7 −0.759281
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0

0.2

0.4

0.6

0.8

1

q

T

𝛼 = 1, 𝜆 = 2,m = 1, E = 1

Figure 4: Transmission probability density versus 𝑞 parameter.

These findings are the expected results, since the increase in
the 𝜆 also supports the height of the potential, which is shown
in Figure 1. Therefore, the transmission probability density
decreases. As it can be seen from Figure 1, unlike 𝜆, the height
of the 𝑞HPT potential decreases due to the increase of 𝑞 and 𝛼

parameters. In this case, the transmission probability density
increases.

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

T

𝛼

q = 1, 𝜆 = 2,m = 1, E = 1

Figure 5: Transmission probability density versus 𝛼 parameter.
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International Journal of Theoretical Physics, vol. 49, no. 2, pp.
343–348, 2010.

[12] B. J. Falaye and S. M. Ikhdair, “Relativistic symmetries with
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deformed hyperbolic modified Pöschl-Teller potential,” Journal
of Vectorial Relativity, vol. 5, pp. 19–26, 2010.

[25] A. Arda, R. Sever, and C. Tezcan, “Analytical solutions to the
Klein-Gordon equation with position-dependent mass for q-
parameter poschl-teller potential,” Chinese Physics Letters, vol.
27, Article ID 010306, 2010.

[26] M. Eshghi and H. Mehraban, “Solution of the Dirac equa-
tion with position-dependent mass for q-parameter modified
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