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In a multisource thermal model, we detailedly show dihadron azimuthal correlations for 20–40% and 50–80% in Au-Au collisions
at √𝑠NN = 200GeV and over a centrality range from 10–15% to 70–80% in Pb-Pb collisions at √𝑠NN = 2.76TeV. The model can
approximately describe the azimuthal correlations of particles produced in the collisions. The 𝑝

𝑥
amplitude of the corresponding

source is magnified, and the source translates along the direction. The factor 𝛼
𝑥
, in most cases, increases with the increase of the

centrality in Pb-Pb collisions at√𝑠NN = 2.76TeV.

1. Introduction

An important subject of high energy physics is to discuss
the strongly interacting matter and nuclear matter at high
temperature and high density by heavy-ion collisions at
ultrarelativistic energies [1, 2]. In the initial stage of the
collision, tremendous amounts of energy are accumulated
at a finite zone in a short time. Then, they result in the
creation of a nearly perfect quark-gluon plasma (QGP),
which will undergo the hadronization and freeze-out and
will finally produce lots of observed particles [3]. As we
know, a description of strong nuclear interactions is quantum
chromodynamics (QCD). Studying QCD phase transition
and properties of quark matter is a main target of heavy-ion
collisions at relativistic heavy ion collider (RHIC) and large
hadron collider (LHC) [4]. But the evolution of the heavy-ion
collisions and the production of hadrons are very complicated
for us. In general, we can extract the evolution informa-
tion of the colliding system by analyzing the properties of
observable quantities, which contain multiplicity, transverse
momentum, polar and elliptic flow, and angular correlation,
and so on.

In recent years, a dihadron correlation has been one of
the hot topics in particle and nuclear physics. Experimen-
tally, RHIC and LHC have observed or will observe the
dihadron azimuthal correlations in proton-proton, proton-
nucleus, and nucleus-nucleus collisions. Some theoretical
investigations [5–10] give many valuable and interesting
results to explain the ridge phenomena, which were regarded
as a contribution from jet-medium interactions. In these
works, various models have been proposed. In this paper, we
would like to apply a multisource thermal model to discuss
azimuthal correlations of dihadron for different associated
transverse momentum 𝑝assoc

𝑇
intervals in 20–40% and 50–

80%, which are measured in Au-Au collisions at √𝑠NN =
200GeV [11]. For a comparison, we will also use the model to
discuss the azimuthal correlations of the dihadron for a wide
centrality range in Pb-Pb collisions at√𝑠NN = 2.76TeV [12].

2. Dihadron Azimuthal Correlation in
the Model and Experiments

As a presupposition in the multisource thermal model
[13–15], the observed particles are projected isotropically
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Figure 1: Dihadron azimuthal correlations for 20–40% in Au-Au collisions at √𝑠NN = 200GeV. The symbols denote the data of the RHIC
[11], and the lines are the modeling results.

from different or the same coordinates in a system of high-
energy collision. The emission coordinates compose a space
of emission sources, which are at a local equilibrium state. For
the particle pairs, the normal distribution is taken to calculate
their spectra [16, 17]. The two particles may be considered
to be from two emission coordinates in one source or two
sources. Due to the interaction between the emissions, in
momentum space (𝑝

𝑥
, 𝑝
𝑦
, 𝑝
𝑧
), the particle distribution is

given by

𝑝
𝑥
= 𝛼
𝑥
𝑝


𝑥
+ 𝛽
𝑥
,

𝑝
𝑦
= 𝛼
𝑦
𝑝


𝑦
+ 𝛽
𝑦
,

(1)

where 𝛼
𝑥
and 𝛼
𝑦
denote the amplitude change of themomen-

tum and 𝛽
𝑥
and 𝛽

𝑦
denote the translational amplitude. By the

Monte Carlo method, the particle momentum is

𝑝
𝑥
= 𝛼
𝑥
𝜎√−2 ln𝑥

1
cos (2𝜋𝑥

2
) + 𝛽
𝑥
,

𝑝
𝑦
= 𝛼
𝑦
𝜎√−2 ln𝑦

1
cos (2𝜋𝑦

2
) + 𝛽
𝑦
,

(2)

where 𝜎 is the standard deviation. We obtain the formulation
of the dihadron correlation,

Δ𝜑 = arctan[𝜎
𝛼
𝑦
√−2 ln𝑦

1
cos (2𝜋𝑦

2
) + 𝛽
𝑦
/𝜎

𝛼
𝑥
√−2 ln𝑥

1
cos (2𝜋𝑥

2
) + 𝛽
𝑥
/𝜎
] . (3)

Figures 1 and 2 show dihadron azimuthal correlations for
20–40% and 50–80% in Au-Au collisions at√𝑠NN = 200GeV.
The 𝑝assoc

𝑇
ranges are 0.2–0.8GeV, 0.8–1.4GeV, and 1.4–

2.0GeV, respectively. The symbols indicate the experimental
data observed in the RHIC [11], and the lines indicate the
modeling results. Table 1 shows 𝛼

𝑥
and 𝛽

𝑥
extracted by fitting

the data. The 𝑝
𝑥
amplitude of the source increases, and the

source translates along a negative direction of the 𝑝
𝑥
[6, 18,

19]. For the same centrality, the values of 𝛼
𝑥
and |𝛽

𝑥
| increase

with the increase of 𝑝assoc
𝑇

intervals [20]. For the same 𝑝assoc
𝑇

interval, the values of 𝛼
𝑥
for 50–80% are greater than those

in 20–40%. It is found that the central 20–40% and 50–80%
events both have a single-peak structure.

Figure 3 shows the azimuthal correlations of the per-
trigger-particle associated hadrons produced in Pb-Pb col-
lisions at √𝑠NN = 2.76TeV. The symbols indicate the data
measured by the CMS collaboration at the LHC [12], and the
lines indicate the modeling results. The rapidity 𝜂 interval
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Figure 2: Same as Figure 1, but for 50–80%.

Table 1: Values of 𝛼
𝑥
and 𝛽

𝑥
extracted from Figures 1–5.

Figure Centrality 𝛼
𝑥

𝛽
𝑥

Figure 1(a) 20–40% 1.029 −0.001
Figure 1(b) 20–40% 1.045 −0.015
Figure 1(c) 20–40% 1.050 −0.020
Figure 2(a) 50–80% 1.038 −0.008
Figure 2(b) 50–80% 1.065 −0.010
Figure 2(c) 50–80% 1.070 −0.040
Figure 3(a) 10–15% 1.025 −0.003
Figure 3(b) 15–20% 1.039 0.001
Figure 3(c) 20–25% 1.051 0.004
Figure 3(d) 25–30% 1.060 0.004
Figure 4(a) 30–35% 1.068 0.004
Figure 4(b) 35–40% 1.071 0.004
Figure 4(c) 40–50% 1.072 0.004
Figure 4(d) 50–60% 1.067 −0.007
Figure 5(a) 60–70% 1.057 −0.013
Figure 5(b) 70–80% 1.044 −0.040
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Figure 3: Azimuthal correlations of the per-trigger-particle associated hadrons for 10–15%, 15–20%, 20–25%, and 25–30% in Pb-Pb collisions
at√𝑠NN = 2.76TeV in 3 < 𝑝trig

𝑇
< 3.5GeV/c and 1 < 𝑝assoc

𝑇
< 1.5GeV/c.The symbols denote the data of the CMS experiment at the LHC [12],

and the lines denote the modeling results.

is 2–4 for trigger particles with 𝑝
𝑇
in 3–3.5 GeV and for

associated particles with 𝑝
𝑇
in 1–1.5 GeV for centralities 10–

15%, 15–20%, 20–25%, and 25–30%.Themodeling results are
in agreement with the data for the four centrality intervals.
The values of 𝛼

𝑥
and 𝛽

𝑥
are listed in Table 1.The 𝑝

𝑥
amplitude

of the source increases, and the source translates along the
negative direction of the 𝑝

𝑥
for 10–15%. For the other three

centralities, the source translates along the positive direction
of the𝑝

𝑥
. In addition, there is a single-peak shape in the figure

for the four centrality bins.
Similar to Figure 3, we present the correlations as a

function of Δ𝜑 in Figures 4 and 5. The symbols indicate the
data [12] for 30–35%, 35–40%, 40–50%, 50–60%, 60–70%,
and 70–80%.The values of 𝛼

𝑥
and 𝛽

𝑥
are also given in Table 1.

The 𝑝
𝑥
amplitude of the source is also magnified, and the

source translates along the positive 𝑝
𝑥
direction for 30–35%,

35–40%, and 40–50% and along the negative 𝑝
𝑥
direction for

the other centralities. With the increase of the centrality, the
value of 𝛼

𝑥
increases over a range from 30–35% to 40–50%

and decreases from 50–60% to 70–80%. In Figures 3 and 4,
there is the single-hump phenomenon.

3. Conclusion

In a multisource thermal model, we investigate the dihadron
azimuthal correlations for 20–40% and 50–80% in Au-Au
collisions at √𝑠NN = 200GeV in the associated transverse
momentum𝑝assoc

𝑇
intervals, 0.2–0.8, 0.8–1.4, and 1.4–2.0GeV.

As a comparison, we also investigate the azimuthal correla-
tions of particles produced in Pb-Pb collisions at √𝑠NN =
2.76TeV for trigger particles with 𝑝

𝑇
in 3–3.5 GeV and for

associated particles with 𝑝
𝑇
in 1–1.5 GeV. By comparing the

model results with the experimental data, we find that the
model can approximately describe the dihadron azimuthal
correlations of hadrons produced in Au-Au collisions at
200GeV and in Pb-Pb collisions at 2.76 TeV. In the calcula-
tion, the parameter 𝛼

𝑥
is used to characterize the expansion

extent of the source in the 𝑝
𝑥
direction and the parameter
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Figure 4: The same as Figure 3, but for 30–35%, 35–40%, 40–50%, and 50–60%.
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Figure 5: The same as Figure 3, but for 60–70% to 70–80%.
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𝛽
𝑥
is used to characterize the source movement along the

positive or negative 𝑝
𝑥
direction for the different centralities.

The 𝑝
𝑥
amplitude of the source is magnified, and the source

translates along the 𝑝
𝑥
direction. In most cases, the value

of 𝛼
𝑥
increases with the increase of the centrality in Pb-

Pb collisions at √𝑠NN = 2.76TeV. Moreover, a single-peak
structure has been seen in all the figures.

For a dihedron, the “trigger” and “associated” particles at
final state are projected from the two coordinates in single or
two sources formed in the collisions.The interaction between
the two emission coordinates leads to the dihadron azimuthal
correlation. In the high-energy collisions, the model has
successfully described a variety of observables spectra at final
state [9, 10, 13, 14], which reveal a multisource phenomenon
in the colliding process. Further discussions on the dihadron
azimuthal correlations of other different colliding systems
using the model will be of interest.
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