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We have obtained exact solution of the effectivemass Schrödinger equation for the generalisedHylleraas potential.The exact bound
state energy eigenvalues and corresponding eigenfunctions are presented. The bound state eigenfunctions are obtained in terms of
the hypergeometric functions. Results are also given for the special case of potential parameter.

1. Introduction

The study of quantum mechanical systems within the frame-
work of effective position dependent mass has been the
subject of much activity in recent years. The Schrödinger
equation with position-dependent (nonconstant) mass pro-
vides an interesting and useful model for the description of
many physical problems. The most extensive use of such an
equation is in the physics of semiconductor nanostructures
[1, 2], quantumdots [3], 3He clusters [4], quantum liquids [5],
semiconductor heterostructures [6, 7], and so forth.

The solutions of nonrelativistic wave equations with
constant mass have been extended to the position dependent
mass in recent studies [8–11]. A general formalism for energy
spectra andwave functionswas found in nonrelativistic prob-
lems by using point canonical transformation [8]. Compared
to the constant mass wave equation, the position-dependent
mass Schrödinger equation is more complex. It is difficult
to obtain its analytical solution as usual. Several authors
have studied the effects of the position-dependent mass
on the solutions of the Schrödinger equation. A position-
dependent effective mass,𝑚(𝑥) = 𝑚

1
⋅ 𝑚(𝑥), associated with

a quantummechanical particle constitutes a useful model for
the study of various potentials such as Morse potential [12–
18], hard-core potential [18], Scarf potential [19–21], Pöschl-
Teller potential [22, 23], spherically ring-shaped potential
[24], Hulthén potential [25], Kratzer potential [26], and

Coulomb-like potential [27, 28]. Different techniques have
been developed to obtain its exact solutions, such as factor-
ization methods [29], Nikiforov-Uvarov (NU) methods [30],
and supersymmetric quantum mechanics [31]. The position-
dependent effective mass might have impact on high-energy
physics [31].

The objective of this paper is to investigate the position-
dependent effective mass Schrödinger equation for the gen-
eralised Hylleraas potential [32, 33] by using the Nikiforov-
Uvarov (NU) method (Figure 1) [30]. Hylleraas potential is
used to describe the interaction between two atoms in a
diatomic molecule. We have also investigated the solutions
of Hulthén potential and Woods-Saxon potential.

The plan of the present paper is as follows. In Section 2,
the Nikiforov-Uvarov method is summarized. Section 3 is
devoted to the solution of the position-dependent effective
mass Schrödinger equation. In Sections 4 and 5, the Hulthén
potential and Woods-Saxon potential are discussed, respec-
tively. The paper is ended with a summary.

2. Nikiforov-Uvarov Method

The NU method is a useful technique to solve the second-
order linear differential equations with special orthogonal
functions [34]. In this method, after employing an appropri-
ate coordinate transformation 𝑠 = 𝑠(𝑥), the nonrelativistic
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Figure 1: Hylleraas potential for 𝑉
1
= 50, 𝑉

2
= 100, 𝑎 = 10, 𝑏 = 0.5,

and 𝑑 = 20.

Schrödinger equation 𝑑
2
𝜓/𝑑𝑥
2
+(𝐸−𝑉(𝑥))𝜓 = 0, (ℏ = 2𝑚 =

1) can be written in the following form:

𝜓
󸀠󸀠
(𝑠) +

𝜏 (𝑠)

𝜎 (𝑠)

𝜓
󸀠
(𝑠) +

𝜎̃ (𝑠)

𝜎
2
(𝑠)

𝜓 (𝑠) = 0, (1)

where the prime denotes the differentiation with respect to 𝑠,
𝜎(𝑠) and 𝜎̃(𝑠) are polynomials, at most of second degree, and
𝜏(𝑠) is a polynomial, at most of first degree. In order to obtain
a particular solution to (1), we set the followingwave function
as a multiple of two independent parts:

𝜓 (𝑠) = 𝜙 (𝑠) 𝑦
𝑛
(𝑠) . (2)

Equation (2) transformed (1) to a hypergeometric-type equa-
tion:

𝜎 (𝑠) 𝑦
󸀠󸀠

𝑛
(𝑠) + 𝜏 (𝑠) 𝑦

󸀠

𝑛
(𝑠) + 𝜆𝑦

𝑛
(𝑠) = 0, (3)

where first part of (2), 𝜙(𝑠), has a logarithmic derivative:

𝜙
󸀠
(𝑠)

𝜙 (𝑠)

=

𝜋 (𝑠)

𝜎 (𝑠)

, (4)

and second part of (2), 𝑦
𝑛
(𝑠), is the hypergeometric-type

function whose polynomial solution satisfies the Rodrigues
relation:

𝑦
𝑛
(𝑠) =

𝐶
𝑛

𝜌 (𝑠)

𝑑
𝑛

𝑑𝑠
𝑛
[𝜎
𝑛
(𝑠) 𝜌 (𝑠)] , (5)

where 𝐶
𝑛
is normalization constant and the weight function

𝜌(𝑠) satisfies the relation as
𝑑

𝑑𝑠

[𝜎 (𝑠) 𝜌 (𝑠)] = 𝜏 (𝑠) 𝜌 (𝑠) . (6)

The function 𝜋(𝑠) and the eigenvalue 𝜆 required in this
method are defined as

𝜋 (𝑠) = (

𝜎
󸀠
− 𝜏

2

) ± √(

𝜎
󸀠
− 𝜏

2

)

2

− 𝜎̃ + 𝑘𝜎, (7)

𝑘 = 𝜆 − 𝜋
󸀠
(𝑠) . (8)

Hence, the determination of 𝑘 is the essential point in the
calculation of 𝜋(𝑠), for which the discriminant of the square
root in (7) is set to zero. Also, the eigenvalue equation defined
in (8) takes the following new form:

𝜆 = 𝜆
𝑛
= −𝑛𝜏

󸀠
(𝑠) −

𝑛 (𝑛 − 1)

2

𝜎
󸀠󸀠
(𝑠) , 𝑛 = 0, 1, 2, . . . , (9)

𝜏 (𝑠) = 𝜏 (𝑠) + 2𝜋 (𝑠) , 𝜏
󸀠
(𝑠) < 0. (10)

Since 𝜌(𝑠) > 0 and 𝜎(𝑠) > 0, the derivative of 𝜏(𝑠) should be
negative [30], which helps to generate the essential condition
for any choice of proper bound state solutions. In addition,
the energy eigenvalues are obtained from (8) and (9).

3. Position-Dependent Effective Mass
Schrödinger Equation

In general, working on position-dependent effective mass
Hamiltonians is inspired by the von Roos Hamiltonian [35]
proposal with ℏ = 2𝑚

0
= 1:

[−

1

2

(𝑚
𝛼
(𝑥) 𝜕𝑥

𝑚
𝛽
(𝑥) 𝜕𝑥

𝑚
𝛾
(𝑥)

+ 𝑚
𝛾
(𝑥) 𝜕
𝑥
𝑚
𝛽
(𝑥) 𝜕
𝑥
𝑚
𝛼
(𝑥)) + 𝑉 (𝑥) ] 𝜑 (𝑥)

= 𝐸𝜑 (𝑥) ,

(11)

where ℏ = 2𝑚
0
= 1 and 𝑚(𝑥) is the dimensionless form of

the function𝑚(𝑥) = 𝑚
1
⋅𝑚(𝑥).The ambiguity parameters are

constrained by the relation 𝛼 + 𝛽 + 𝛾 = −1 and we have the
following time-independent Schrödinger equation from (11):

𝐻𝜑 (𝑥) ≡ [−𝜕
𝑥
(

1

𝑚 (𝑥)

) 𝜕
𝑥
+ 𝑉eff (𝑥) − 𝐸]𝜑 (𝑥) = 0, (12)

where the effective potential is

𝑉eff (𝑥) = 𝑉 (𝑥) +

1

2

(𝛽 + 1)

𝑚
󸀠󸀠
(𝑥)

𝑚
2
(𝑥)

− [𝛼 (𝛼 + 𝛽 + 1) + (𝛽 + 1)]

𝑚
󸀠2
(𝑥)

𝑚
3
(𝑥)

,

(13)

where primes denote derivatives. Thus Schrödinger equation
takes the form

(−

1

𝑚 (𝑥)

𝑑
2

𝑑𝑥
2
+

𝑚
󸀠
(𝑥)

𝑚
2
(𝑥)

𝑑

𝑑𝑥

+ 𝑉eff (𝑥) − 𝐸)𝜑 (𝑥) = 0. (14)
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Figure 2: Plot for mass function𝑚(𝑥) for 𝑏 = 0.5 and𝑚
1
= 1.

Using the transformation [36], 𝜑(𝑥) = 𝑚
]
(𝑥)𝜓(𝑥) in (14), we

have

{−

𝑑
2

𝑑𝑥
2
− (2] − 1)

𝑚
󸀠
(𝑥)

𝑚 (𝑥)

𝑑

𝑑𝑥

− (] (] − 2) + 𝛼 (𝛼 + 𝛽 + 1) + 𝛽 + 1)

𝑚
󸀠2

𝑚
2

+(

1

2

(𝛽 + 1) − ])
𝑚
󸀠󸀠
(𝑥)

𝑚 (𝑥)

+ 𝑚 (𝑥) (𝑉 (𝑥) − 𝐸)}𝜓 (𝑥)

= 0,

(15)

where 𝑉(𝑥) is the Hylleraas potential [29, 30] given by

𝑉 (𝑥) = 𝑉
1

𝑎 + 𝑒
𝜆𝑥

𝑏 + 𝑒
𝜆𝑥

− 𝑉
2

𝑑 + 𝑒
𝜆𝑥

𝑏 + 𝑒
𝜆𝑥

, (16)

where 𝑎( ̸= 𝑏), 𝑏, and 𝑑( ̸= 𝑏) are the Hylleraas parameters, 𝑉
1
,

𝑉
2
are the potential depths, and −∞ < 𝑥 < ∞.
Here, we consider the following mass distribution:

𝑚(𝑥) =

𝑚
1

1 + 𝑏𝑒
−𝜆𝑥

. (17)

The most extensive use of such kind of mass is in the physics
of semiconductor quantum well structures [11]. The motion
of electrons in them can often be described by the envelope
function effective-mass Schrödinger equation, where 𝑚

1
is a

constant mass (Figure 2).
Obviously it has the exponential form. The above mass

function is convergent 𝑚(𝑥) → 𝑚
1
(finite), when 𝑥 → ∞.

In order to reduce the above equation (15) into Nikiforov-
Uvarov equation, we make the transformation 𝑠 = 1/(1 +

𝑏𝑒
−𝜆𝑥

), (0 ≤ 𝑠 ≤ 1):

𝐴 = ] (] − 2) + 𝛼 (𝛼 + 𝛽 + 1) + 𝛽 + 1,

𝐵 = (

1

2

(𝛽 + 1) − ]) ,

𝜁 =

1

2

− ],

𝑃 − 𝜁
2
= − 𝐴 + 2𝐵 −

𝑚
1
(𝑎 − 𝑏)𝑉

1

𝑏𝜆
2

+

𝑚
1
(𝑑 − 𝑏)𝑉

2

𝑏𝜆
2

,

𝑄 − 2𝜁
2
= − 2𝐴 + 3𝐵 −

𝑚
1
(𝑎𝑉
1
− 𝑑𝑉
2
− 𝑏𝐸)

𝑏𝜆
2

,

𝑅 − 𝜁
2
= − 𝐴 + 𝐵,

𝑃 − 𝑄 + 𝑅 =

𝑚
1
(𝑉
1
− 𝑉
2
− 𝐸)

𝜆
2

= 𝜀
2
;

(18)

also

𝑚
󸀠
(𝑥)

𝑚 (𝑥)

= 𝜆 (1 − 𝑠) ,

𝑚
󸀠󸀠
(𝑥)

𝑚 (𝑥)

= 𝜆
2
(1 − 𝑠) (1 − 2𝑠) .

(19)

Using (15)–(19), we have

𝑑
2
𝜓

𝑑𝑠
2
+

2] − (2] + 1) 𝑠

𝑠 (1 − 𝑠)

𝑑𝜓

𝑑𝑠

+

1

𝑠
2
(1 − 𝑠)

2
[(𝜁
2
− 𝑃) 𝑠

2
+ (𝑄 − 2𝜁

2
) 𝑠 + (𝜁

2
− 𝑅)]𝜓 = 0.

(20)

Comparing (20) with (1), we have

𝜎 (𝑠) = 𝑠 (1 − 𝑠) ,

𝜎̃ (𝑠) = (𝜁
2
− 𝑃) 𝑠

2
+ (𝑄 − 2𝜁

2
) 𝑠 + (𝜁

2
− 𝑅) ,

𝜏 (𝑠) = 2] − (2] + 1) 𝑠.

(21)

Substituting these polynomials into (7), we have

𝜋 (𝑠) = (

1

2

− ]) (1 − 𝑠)

± {

(√𝑅 − 𝜀) 𝑠 − √𝑅; 𝑘 = 𝑄 − 2𝑅 + 2𝜀√𝑅

(√𝑅 + 𝜀) 𝑠 − √𝑅; 𝑘 = 𝑄 − 2𝑅 − 2𝜀√𝑅.

(22)

For physical solutions, it is necessary to choose

𝜋 (𝑠) = 𝜁 (1 − 𝑠) − (√𝑅 + 𝜀) 𝑠 + √𝑅

if 𝑘 = 𝑄 − 2𝑅 − 2𝜀√𝑅.

(23)
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The origin of the Nikiforov-Uvarov method is negative sign
of derivative of 𝜏

󸀠
(𝑠) because the condition 𝜏

󸀠
(𝑠) < 0

helps to generate energy eigenvalues and corresponding
eigenfunctions. Therefore 𝜏(𝑠) becomes

𝜏 (𝑠) = 1 + 2√𝑅 − 2 (2 + 2√𝑅 + 2𝜀) 𝑠. (24)

Therefore, from (8) and (9), we have

𝜆 = 𝑄 − 2𝑅 − 2𝜀√𝑅 − 𝜁 − (√𝑅 + 𝜀) ,

𝜆 = 𝜆
𝑛
= 2𝑛 (√𝑅 + 𝜀) + 𝑛 (𝑛 + 1) .

(25)

Comparing (25), we have

√𝑅 + 𝜀 = −(𝑛 +

1

2

) + √𝑃 − ] +
1

4

,

√𝑅 − 𝜀 =

𝑄 − 𝑃

− (𝑛 + 1/2) + √𝑃 − ] + 1/4

.

(26)

Using (26) and (18), we have

𝜀
2
=

1

4

[2𝑛 + 1 + 2√𝑅 − √𝑃 − ] +
1

4

]

2

. (27)

Hence the energy becomes

𝐸
𝑛

= −

𝜆
2

4𝑚
1

×
[

[

2𝑛 + 1

− 2
√

𝑚
1
(𝑉
1
− 𝑉
2
)

𝜆
2

−

𝑚
1
(𝑉
1
𝑎 − 𝑉
2
𝑑)

𝑏𝜆
2

− 𝛼 (𝛼 + 𝛽 + 1)

+ 2√−](] − 1) − 𝛼(𝛼 + 𝛽 + 1) −

(𝛽 + 1)

2

+ (

1

2

− ])
2

]

]

2

+ (𝑉
1
− 𝑉
2
) , 0 ≤ 𝑛 < ∞.

(28)

The last term of the square bracket must be positive for Ben-
Daniel and Duke’s model [37] (𝛼 = ] = 0, 𝛽 = −1) (Figure 3).

From (6), (21), and (24) we obtain the weight function

𝜌 (𝑠) = 𝑠
2√𝑅

(1 − 𝑠)
2𝜀
, (29)

and from (4), (21), and (23) we have

𝜙 (𝑠) = 𝑠
√𝑅+𝜁

(1 − 𝑠)
𝜀
. (30)
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Figure 3: Hylleraas energy 𝐸
𝑛
for 𝛼 = 0, 𝛽 = −1, 𝑎 = 10, 𝑏 = 0.5,

𝑑 = 20,𝑚
1
= 1, 𝑉

1
= 50, and 𝑉

2
= 100.

Now we use the properties of Jacobi polynomial [35]:

𝑃
(𝜁,𝜉)

𝑛
(𝑥) =

(−1)
𝑛
(1 − 𝑥)

−𝜁
(1 + 𝑥)

−𝜉

2
𝑛
𝑛!

×

𝑑
𝑛

𝑑𝑥
𝑛
[(1 − 𝑥)

𝑛+𝜁
(1 + 𝑥)

𝑛+𝜉
] ,

𝑃
(2𝜁,2𝜉)

𝑛
(1 − 2𝑠) =

(−2)
𝑛
(𝑠)
−2𝜁

(1 − 𝑠)
−2𝜉

2
𝑛
𝑛!

×

𝑑
𝑛

𝑑𝑥
𝑛
[𝑠
𝑛+2𝜁

(1 − 𝑠)
𝑛+2𝜉

] ,

(31)

where 𝑃
(𝑎,𝑏)

𝑛
(𝑥) (𝑎 > −1, 𝑏 > −1) is the Jacobi polynomial.

The wave functions (Figure 4) are obtained from (2), (5), and
((29)–(31)):

𝜓
𝑛
(𝑠) = 𝑁

𝑛
𝑠
√𝑅+𝜁

(1 − 𝑠)
𝜀
𝑃
(2√𝑅,2𝜀)

𝑛
(1 − 2𝑠) , (32)

where 𝑁
𝑛
is normalization constant to be determined from

the normalization condition:

∫

∞

−∞

󵄨
󵄨
󵄨
󵄨
𝜓
𝑛 (

𝑥)
󵄨
󵄨
󵄨
󵄨

2
𝑑𝑥 = 1 = ∫

1

0

󵄨
󵄨
󵄨
󵄨
𝜓
𝑛 (

𝑠)
󵄨
󵄨
󵄨
󵄨

2
𝑑𝑠. (33)

For acceptable solution it is required that |√𝑅 + 𝜁| ≥ 𝜀 when
√𝑅 + 𝜁 < 0, 𝜀 > 0 and√𝑅 + 𝜁 ≤ |𝜀| when√𝑅 + 𝜁 > 0, 𝜀 < 0.

4. Hulthén Potential

We set the conditions 𝑉
2

= 𝑉
1
, 𝑎 = 1 + 𝑑, and 𝑏 = −𝑞;

the potential in (16) reduces to Hulthén potential (Figure 5)
[38–41]:

𝑉 (𝑥) = −𝑉
1

𝑒
−𝜆𝑥

1 − 𝑞𝑒
−𝜆𝑥

. (34)
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Figure 5: Hulthén potential for 𝑉
1
= 100.0 and 𝑞 = 0.5.

Then the energy becomes

𝐸
𝑛

= −

𝜆
2

4𝑚
1

×
[

[

2𝑛 + 1 − 2√

𝑚
1
𝑉
1

𝑞𝜆
2

− 𝛼 (𝛼 + 𝛽 + 1)

+ 2√−](] − 1) − 𝛼(𝛼 + 𝛽 + 1) −

(𝛽 + 1)

2

+ (

1

2

− ])
2

]

]

2

(35)

with 0 ≤ 𝑛 < ∞. It is exactly the same result in the literature
[38] for𝑚

1
= 1.
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Figure 6: Woods-Saxon potential for 𝑉
0
= 100.0 and 𝑏 = 0.5.

5. Woods-Saxon Potential

For the conditions 𝑉
1
= −𝑉
0
, 𝑎 = 0, and 𝑉

2
= 0, the potential

given in (16) becomesWoods-Saxon potential (Figure 6) [40–
45],

𝑉 (𝑥) = −𝑉
0

1

1 + 𝑏𝑒
−𝜆𝑥

. (36)

Then the energy becomes

𝐸
𝑛

= −

𝜆
2

4𝑚
1

×
[

[

2𝑛 + 1 − 2√
𝑚
1
(1 − 𝑏)𝑉

0

𝑏𝜆
2

− 𝛼 (𝛼 + 𝛽 + 1)

+ 2
√
−] (] − 1) − 𝛼 (𝛼 + 𝛽 + 1)−

(𝛽 + 1)

2

+ (

1

2

− ])
2

]

]

2

− 𝑉
0
,

(37)

where 0 ≤ 𝑛 < ∞.

6. Conclusion

We have applied the NUmethod derived for the exponential-
type potentials to obtain the bound state solutions of the effec-
tive Schrödinger equation with position-dependent mass for
the Hylleraas potential. Furthermore, a suitable choice of
a position mass function of the exponential-like form has
also been devised. Also we have shown that our results are
consistent with ones obtained before.
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