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We propose a general expression for the probability distribution of real-valued tunneling times of a localized particle, as measured
by the Salecker-Wigner-Peres quantum clock. This general expression is used to obtain the distribution of times for the scattering of
a particle through a static rectangular barrier and for the tunneling decay of an initially bound state after the sudden deformation of
the potential, the latter case being relevant to understand tunneling times in recent attosecond experiments involving strong field

ionization.

1. Introduction

The search for a proper definition of quantum tunneling
times for massive particles, having well-behaved properties
for a wide range of parameters, has remained an important
and open theoretical problem since, essentially, the incep-
tion of quantum mechanics (see, e.g., [1, 2] and references
therein). However, such tunneling times were beyond the
experimental reach until recent advances in ultrafast physics
have made possible measurements of time in the attosecond
scale, opening up the experimental possibility of measuring
electronic tunneling times through a classically forbidden
region [3-6] and reigniting the discussion of tunneling times.
Still, the intrinsic experimental difficulties associated with
both the measurements and the interpretation of the results
have, so far, prevented an elucidation of the problem and,
in fact, contradictory results persist, with some experiments
obtaining a finite nonzero result [3, 6] and others compatible
with instantaneous tunneling [4]. It should be noticed that
the similarity between Schrédinger and Helmholtz equations
allows for analogies between quantum tunneling of massive
particles and photons [7], and a noninstantaneous tunneling
time is supported by this analogy and experiments measuring
photonic tunneling times [8], as well as by many theoretical
calculations based on both the Schrédinger (for reviews see,
e.g., [1, 2]) and the Dirac equations (e.g., [9-16]).

The conceptual difficulty in obtaining an unambiguous
and well-defined tunneling time is associated with the impos-
sibility of obtaining a self-adjoint time operator in quantum
mechanics [17], therefore leading to the need for operational
definitions of time. Several such definitions exist, such as
phase time [18], dwell time [19], the Larmor times [20-23],
and the Salecker-Wigner-Peres (SWP) time [17, 24], and in
some situations these lead to different, or even contradictory,
results. This is not surprising, since by their own nature
operational definitions can only describe limited aspects of
the phenomena of tunneling, and it is unlikely that any one
definition will be able to provide a unified description of
the quantum tunneling times in a broad range of situations.
Nevertheless, it remains an important task to obtain a well-
defined and real time scale that accurately describes the
recent experiments [3-6, 25-27].

It is important to notice that the time-independent
approach to tunneling times (i.e., for incident particles with
sharply defined energy), which comprises the vast majority of
the literature, is ill-suited to accomplish the above-mentioned
goal, since it ignores the essential role of localizability in
defining a time scale [23, 28]; see, however, [29], which
applies the time defined in [30] to investigate the half-life
of a-decaying nuclei. A few works (e.g., [23, 28, 31, 32])
address the issue of localizability and, consequently, arrive
at a probabilistic definition of tunneling times (that is, an
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average time). In particular, in [28] the SWP clock was used to
obtain an average tunneling time of transmission (reflection)
for an incident wave packet, and such time was employed to
investigate the Hartman effect [33] for a particle scattered oft
a square barrier and it was shown that it does not saturate in
the opaque regime [28, 34].

The tunneling time scales considered in [23, 28, 31]
involve taking an average over the spectral components of
the transmitted wave packet and, thus, obscure the interpre-
tation of the resulting average time. In this paper, we take
as a starting point the real-valued average tunneling time
obtained in [28], using the SWP quantum clock, and obtain
a probability distribution of transmission times, by using
a standard transformation between random variables. In
addition to providing a more accurate time characterization
of the tunneling process, this should provide a clearer con-
nection with the experiments (which measure a distribution
of tunneling times; see, e.g., Figure 4 in [3]). It is worth noting
that some approaches using Feynman’s path integrals address
the problem of obtaining a probabilistic distribution of the
tunneling times (see, e.g., [35]). However, these methods in
general result in a complex time (or, equivalently, multiple
time scales), and some arbitrary procedure is needed to select
the physically meaningful real time a posteriori.

After obtaining a general formula for the distribution of
tunneling times, which is the main result of this work, we
apply it to two specific cases. First, to illustrate the formalism
in a simple scenario, we consider the situation of a particle
tunneling through a rectangular barrier. Then, we consider
a slight modification of the model proposed in [36] for the
tunneling decay of an initially bound state, after the sudden
deformation of the binding potential by the application of
a strong external field; the modification considered here
allows us to investigate the whole range of possibilities for
the tunneling times, without having an “upper cutoft”, as
is the case in the original model. Finally, some additional
comments on the results are reserved for the last section.

2. The SWP Clock’s Average Tunneling Time

We start by briefly reviewing the time-dependent application
of the SWP clock to the scattering of a massive particle off a
localized static potential barrier in one dimension (for details
see [28]) which is appropriate, since it follows from the three-
dimensional Schrédinger equation for this problem that the
dynamics is essentially one-dimensional [3].

The SWP clock is a quantum rotor weakly coupled to
the tunneling particle and that runs only when the particle
is within the region in which V(x) # 0, where V(x) is
the potential energy. The Hamiltonian of the particle-clock
system is given by (we use & = 2u = 1, where y is the particle’s
mass) [17]

aZ
H=—ﬁ+V(x)+9’(x)Hc, @
where P(x) = 1if V(x) # 0 and zero otherwise. The clock’s
Hamiltonian is H. = —iw(0/06), where the angle 6 € [0, 27)
is the clock’s coordinate and w = 271/(2j + 1)9 is the clock’s
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angular frequency, with j being a nonnegative integer or half-
integer giving the clock’s total angular momentum, and 9 is
the clocK’s resolution. The weak coupling condition amounts
to assume that 9 is large, in such a way that the clock’s energy
eigenvalues, 7, = mw (—j < m < j), are very small compared
to the barrier height and the particle’s energy. It is assumed
that, at t = 0, well before it reaches the barrier, the particle
is well-localized far to the left of the barrier and the wave
function of the system is a product state of the form

=y (%) v (0), )

where y(x) is the particle’s initial state, represented by a wave
packet centered around an energy E,, and the clock initial
state is assumed to be “in the zero-th hour” [17]

D (0, x,t=0)

vy (0) = (3)

\/ mZ;]

where u,,(0) = e |\21r are the clocK’s eigenfunctions
corresponding to the energy eigenvalues 7,,,.

The state v,(0) is strongly peaked at 8 = 0, thus allowing
the interpretation of the angle 6 as the clock’s hand, since for
a freely running clock the peak evolves to wt,, where ¢ is the
time measured by the clock [17]. Since here clock and particle
are coupled according to (1), when the particle passes through
the region V(x) # 0 it becomes entangled with the clock, with
the wave function for the entire system given by

D (0, x,t) =

\/_ Z ¥ (x, 1) u,, (6),

) <x,t)=j dkA (o) y{™ (x) e,
0

(4)

where E is the incident particle’s energy, k = VE, and A(k) is
the Fourier spectral decomposition of the initial wave packet
y(x) in terms of the free particle eigenfunctions (we are
assuming delta-normalized eigenfunctions). The functions

™ (x) satisfy a time-independent Schrédinger equation
with a constant potential #,, in the barrier region. Outside
the potential barrier region and for a particle incident from

the left, the (unnormalized) solution 1// ™ (x) of the time-
independent Schrodinger equation is given by [28]

™ () kL R (ke ™ x<-L 5)
X) = ) 5
Vi T (k) e, x>1L,

where T (k) [R" (k)] stands for the transmission (reflec-
tion) coeflicient, and it is assumed, without loss of generality,
that the potential is located in the region -L < x <
L. Considering only the transmitted solution in (5) and
substituting it into the time-dependent solution (4), it can be
shown that for weak coupling

D,, (0,x,1)

0 , (6)
- J dkA (k) T (k) €% By (6 - wt” (k)),
0
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where

b (m)
rﬁm=—<g%—> %
=0

m

is the stationary transmission clock time corresponding to
the wave number component k [17, 37]. The transmission
coefficient T'(k) corresponds to the stationary problem in the
absence of the clock.

For tunneling times one is interested only in the clock’s
reading for the postselected asymptotically transmitted wave
packet. Thus, tracing out the particle’s degrees of freedom, the
expectation value of the clock’s measurement can be defined,
resulting in the average tunneling time [28]

()= [akp Wt . p0I=NAWTRE, ©

where N = 1/ I dk|A(k)T(k)|? is a normalization constant
and p(k) is the probability density of finding the component
k in the transmitted wave packet. Similar expressions can be
obtained for the reflection time.

3. The Tunneling Times Distribution

Animportant aspect of the average tunneling time considered
in the previous section is that it emphasizes the probabilistic
nature of the tunneling process. However, since the average in
(8) is over the time taken by the spectral components of the
wave packet, it does not lend itself to an easy interpretation,
given the spectral components of the wave packet tunnel with
different times. Thus, instead of (8), one would rather obtain
an average over (real) times of the form

<n>=_L drp, (1), (©)

where p,(7) stands for the probability density for observing a
particular tunneling time 7 for the asymptotically transmitted
wave packet. This can easily be achieved by noticing that
in probability theory (8) and (9), which must be equal,
are related by a standard transformation between the two
random variables k and 7 through a function t;F(k). It follows
that the probability distribution of times is given by

p (1) = Jp (k)8 (r—t; (k))dk (10)

which, in essence, is the statement that all the k-components
in the transmitted packet for which tcT(k) = 7 must contribute
to the value of p,(7) with a weight p(k). Finally, using the
properties of the Dirac delta function (specifically, we use
the fact that 6(g(x)) = 2;(8(x — xj)/Ig’(xj)I), where {x} is
the set of zeros of the function g(x) and the prime indicates
a derivative with respect to the independent variable), we
obtain

(11)

where {k j(‘r)} is the set of zeros of the function g(k) = tCT(k)—T

and tZ' is the derivative of tCT(k) with respect to k.

A similar definition of the distribution of tunneling
times given in (10)-(11) can be obtained for any time scale
which is probabilistic in nature, that is, of the form (8).
Although several other probabilistic tunneling times exist in
the literature (e.g., [23, 31, 32, 35]), the SWP clock has proven
to yield well-behaved real times both in the time-independent
[17, 37, 38] and time-dependent approaches [28, 34, 39] and
it provides a simple procedure to derive the probabilistic
expression (8). In addition, the role exerted by circularly
polarized light in attoclock experiments [3, 25] seems to
provide a natural possibility for interpretation in terms of the
SWP clock.

As will be illustrated below, for the simple application of
this formalism to the problem of a wave packet scattered off
a rectangular potential barrier, the distribution of times (10)-
(11) cannot, in general, be obtained analytically even for the
simplest cases, except in trivial cases such as for a single Dirac
delta potential barrier [40-42], in which case tCT(k) = 0 and
pu(1) = 8(x) [ dkp(k).

It should also be noticed that, despite the fact that the
derivation of the previous section leading to (8) and, thus
(10)-(11), assumed a scattering situation, these expressions
can be shown to be valid for any situation involving prese-
lection of an initial state localized to the left of a potential
“barrier” followed by postselection of an asymptotic trans-
mitted wave packet. This allows us to obtain the distribution
of times for a model that simulates the tunneling decay of an
initially bound particle by ionization induced by the sudden
application of a strong external field; the model considered
below is a variant of that introduced in [36].

4. The Distribution of Tunneling Times for
a Rectangular Barrier

As a first illustration of the formalism developed above, let
us consider a rectangular barrier of height V; located in the
region x € (—L, L). The particle’s initial state ¢,(x) = y(x, t =
0) is assumed to be a Gaussian wave packet

2
¢, (x) = exp [ikox - %] , (12)

1
em)'* \o

where the parameters x,, 0, and k; are chosen such that the
wave packet is sharply peaked in a tunneling wave number
ko = /E, < \/V, and is initially well-localized around x = x,
far to the left of the barrier; in the calculations that follow we
take x, = —80, such that at ¢ = 0 the probability of finding the
particle within or to the right of the barrier is negligible. The
transmission coefficient T'(k) and the spectral function A(k)
are well-known and given by

2ikq€_2ikL

T (k) =
() (k? - g?) sinh (2Lq) + 2ikq cosh (2Lq)

(13)




2 1/4
Am):(;) VG exp [4ko (koo + 4i) "

-0 (k+ky) (ko + koo + 8i)],

where g = 1|V, — k2. The stationary transmission clock time
(7) is [22, 28]
HORL
q

15
(qz + k2) tanh (2qL) + 2qL (qz - kz) sech” (2qL) W)

4g°K? + (% - k?)° tanh® (2qL)

with tunneling times corresponding to real values of g (i.e.,
V, > k*). Figure 1 shows a plot for the stationary transmission
times tCT(k), the distribution of wave numbers p(k) in the
transmitted wave packet, and the distribution |A(K))? of
wave numbers (momenta) in the incident packet, for two
values of the barrier width. For the chosen parameters and
barrier widths both the incident and the transmitted wave
packets have an energy distribution very strongly peaked in
a tunneling component (in the bottom plot of Figure 1 the
barrier is much more opaque than that in the top plot and we
can observe that—despite being with a negligible probability
for the parameters chosen for this plot—in this situation
some above-the-barrier components start to appear in the
distribution of the transmitted wave packet. So, in order to
consider mainly transmission by tunneling we must restrict
the barrier widths to not too large ones). We also observe
the very well-known fact that the transmitted wave packet
“speeds up” when compared to the incident particle [28].
As a general rule, the larger is the barrier width (i.e., the
more opaque is the barrier), the greater is the translation
of the central component towards higher momenta. In what
concerns the off-resonance stationary transmission time, it
initially grows with the barrier width, and saturates for very
opaque barriers (the Hartman effect); on the other hand,
it presents peaks at resonant wave numbers that grow and
narrow with the barrier width; for a detailed discussion see
(28]).

Figure 2 shows plots of the probability distribution p,(7)
of the tunneling times according to (10)-(11), corresponding
to both the barrier widths shown in Figure 1 [to obtain
these plots we used a Monte Carlo procedure to generate
a large number of k outcomes from the distribution p(k),
which afterwards were transformed into 7 values by using
the function 7 = tCT(k)]. The vertical grey lines in these
plots correspond to the time the light takes to cross the
barrier distance. It is observed that for the two distributions
shown in Figure 2 the probability to observe superluminal
tunneling times is negligible. It is also observed that these
distributions have a shape that resembles that of the k
distribution, albeit with a more pronounced skewness. This
shape could be inferred from Figure 1 and from (11), since
tCT'(k) grows very smoothly in the region were p(k) is
nonvanishing. Furthermore, a comparison between the two
plots in Figure 2 shows that the tunneling times do not grow
linearly with the barrier width and, therefore, the distribution
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FIGURE 1: Stationary transmission clock time tcT(k) (green) and the
distributions p(k) (orange and arbitrary scale) and |A(K)|* (blue,
dashed, and arbitrary scale) for the transmitted and incident wave
packets, respectively. Rydberg atomic units # = 2y = 1 are used
in all plots; the tunneling energies correspond to 0 < k < \7,
corresponding to a barrier height V; = 7 (the maximum tunneling
wave number V/7 is shown by a vertical grey line in the plots). In both
plots the incident wave packet parameters are k, = 1.5,0 = 5,x, =
—80. Top: barrier width 2L = 2. Bottom: barrier width 2L = 16.

in the bottom plot of Figure 2 is “closer” to the light time
than the distribution shown in the top plot; [28] already
observed that for intermediate values of barrier widths the
average transmission time—corresponding to the mean of
the distribution p,—reaches a plateau.

5. Distribution of Ionization Tunneling Times

In this section we obtain a distribution for tunneling times for
a particle that is initially in a bound state of a given binding
potential. The potential is then suddenly deformed in such a
way that the particle can escape from the initially confining
region by tunneling. The model considered here is a slight
modification of that proposed by Ban et al. [36] to simulate,
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FIGURE 2: Probability distribution p,(7) for the tunneling times 7,
obtained by Monte Carlo samplings of k-values from the distribu-
tion p(k) and then transforming these to time values through 7 =
t’ (k). The parameters are the same as in the corresponding plots in
Figure 1 and are all expressed in Rydberg atomic units. Top: 2L = 2.
Bottom: 2L = 16. These plots are in the same range and scale and
can be compared. The vertical grey line in both plots corresponds
to the time the light takes to traverse the barrier distance. The ticks
in the horizontal axes correspond to the light time, the minimum,
the median and the maximum values of 7 in the histogram (in the
bottom plot the maximum 7 is out of the plot’s range).

in a simple scenario, key features of the decay of a localized
state by tunneling ionization induced by the application of a
strong external field with a finite duration.

In [36], for t < 0, the particle is in an eigenstate of a semi-
infinite square-well potential V;(x),

+oo x<0
Vi (x) =40 0<x<a (16)
Vo x>a,

and, therefore, it cannot decay by tunneling. At t = 0 the
potential is suddenly deformed to V,(x),

+00 x<0
0 0<x<a

V, (x) = (17)
Vo, a<x<b

0 x=b,

such that the particle can now tunnel through the potential
barrier; it is assumed that the wave function does not
change during the sudden change of the potential. Finally,
after a finite time f, the potential returns to its original
configuration, V;(x), and tunneling terminates. The cutoft
time ¢, mimics the natural upper bound for tunneling times
measured in recent attoclock experiments (see, e.g., [3, 6]
and references therein), since the opening and closing of the
tunneling channel in these experiments occur in intervals of
half the laser field’s period.

Here, we deviate from [36] by setting f, — ©0; i.e., once
deformed the potential does not return to its original form
and, after a long enough time, the particle will be transmitted
with unit probability; thus, by eliminating the cutoff (which
is just an experimental limitation) we are able to explore the
whole range of possibilities for the ionization tunneling time.
In addition, for t > 0, the particle is assumed to be coupled
to a SWP quantum clock running only in the region (a, b), so
that the clocK’s readings for the asymptotic transmitted wave
packet give the time the particle spent within the barrier after
t = 0. Following [36], we assume that for t < 0 the particle
is in the ground state of the potential V, (x), whose stationary
wave function is given by

sin (kyx), 0<x<a
¢o(x) =N (a—x) (18)
sink,e™ ™ x> a,

where N is a normalization constant, k, = +/E,, E, is the

ground state energy, and g, = \/V;, — k. It is also assumed, as

in [36], that immediately after the sudden deformation of the
potential from V; (x) to V,(x), att = 0, the wave function does
not change. However, for ¢t > 0 the particle state, which is no
longer an energy eigenstate, is given by a superposition of the
energy eigenstates v (x) (k = VE) of the potential V,(x), i.e.,
(36]

(o]

Wt =0) = ¢y (x) = J SEy (0 dk,  (19)

0

where
S = |4y (v (), (20)
with
A (k) sin (kx), 0<x<a
v (%) = Cﬁc)eq"+D(k)e"q", a<x<b (21)
\/%cos[k(x—b)+ﬂ(k)], x> b,
where g = \/VO — k? and the coeflicients A(k), C(k), D(k)

and the phase Q(k) are determined by the usual boundary
conditions at x = a and x = b and are such that the
normalization (y;(x), y(x)) = 8(k — k") holds [36]. From
the above expressions it follows that, without any loss of
generality, we can take S(k) and all the eigenfunctions (21)
to be real.



In order to consider the coupling with the SWP clock
for times ¢ > 0 we proceed as follows. At t = 0 the system
particle+clock is described by the product state y(x, 0)v,(0),
where y/(x,0) is the state (19) and v,(0) is the initial clock
state given by (3). After ¢t = 0 the particle and the clock states
become entangled. For the procedure of postselection of the
asymptotically transmitted wave function we notice that the
role of the transmission coefficient for the wave function
(21) is played by V2 TR R where the superscript
m indicates the weak coupling with the clock. The right
moving asymptotic wave packet representing the coupled
system formed by the transmitted particle and the clock is

D,, (0, x,t) = deks (k) ei[k(x—b)+Q(m)(k)_Et]
° 2)

X ¥ [0 - wtCT (k)] ,

where, as before, t! (k) = —-(0Q"(k)/an,,), o, = —(1/
2q)(0Q/0q) [with quantities without the subscript “(m)”
representing the limit #7,, — 0]. By following the same steps
described in [28], we trace out the clock’s degree of freedom in
the asymptotic transmitted wave packet in order to obtain the
distribution p(k) of the wave numbers for the asymptotically
transmitted wave packet, which in this case is simply given by

p k) =1S(K); (23)

i.e,, the probability to find a wave number k in the asymptotic
transmitted wave packet is the same as in the initial state,
which is as expected, since after a long enough time the
initial wave packet will be transmitted with probability unit,
as mentioned earlier.

The general behavior of t;r(k) and p(k) is illustrated in
Figures 3 and 4, corresponding to two barriers with different
opacities (b — a = 2 and 4, respectively). These plots show, as
expected, that the distribution p(k) is strongly peaked at the
wave number k,, corresponding to the energy of the initially
bound state and is negligible for nontunneling components.
For tunneling wave numbers (k < +/V;) the function
tT(k) is also strongly peaked at the same wave number k,
which corresponds to a local maximum (for nontunneling
wave numbers there are several other resonance peaks).
From (11) we would expect that the peaks in the tunneling
times distribution p,(r) would occur for times 7 = t;r(k)

corresponding to values of k for which tCT'(k) ~ 0—which
occur at points of local maxima and minima of the function
tcT(k)—and corresponding to nonnegligible p(k). Therefore,
from the plots in Figures 3 and 4 one could expect the
first peak of the tunneling time distribution p,(7) at 7 =
0.105 a.u. (the local minimum of tCT(k), which is similar for
both barrier widths, since nonresonant times t;r(k) change
little with the barrier width for opaque barriers, as is the
case in Figures 3 and 4); a second peak in p,(7) is expected
to occur around the local maximum of tcT(k), which corre-
sponds to T = tZ(kO) (this local maximum—corresponding
to resonant wave numbers—changes significantly with the
barrier widths; see, e.g., [28]). On the other hand, peaks in
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FIGURE 3: Top: the stationary transmission clock time tCT(k) (blue)
and the wave number distribution p(k) = [S(k)|? (orange, dashed,
and arbitrary scale), for Vy = 7,a = 1, b = 3, and k, = 2.175932),
with the initial state given by (18). Bottom: close view of the above
plot for small times. The vertical grey lines in the plots correspond
to k = k, and k = /V},. The regions in which tCT'(k) =~ 0 (around the
local maximum and minimum of tCT(k)) correspond to times 7 =
t!'(k,) and 7 = 0.105 a.u. Rydberg atomic units were used in all the
plots.

p¢(7) coming from local maxima (resonances) and minima
associated with nontunneling values of k are suppressed,
since p(k) = O in these cases. Figure 5 confirm these
claims. For both barrier widths considered, the distribution
of tunneling times is “U” shaped, having peaks at the times
corresponding to the local maxima and minima of the
stationary time ¢! (k) inside the tunneling region. It should
be observed that the larger is the barrier width, the broader is
the tunneling time distribution, due to the strong increase of
the resonant tunneling time with the barrier width.

Figures 6 and 7 show close views of the tunneling
time distributions p,(7) for small and large tunneling times
(Figure 6 corresponds to the plot at the top of Figure 5, while
Figure 7 corresponds to the plot at the bottom of Figure 5).
In the top plots of these Figures we can clearly observe the
first peak around the local minimum of ¢,(k) in the tunneling
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FIGURE 4: Top: the stationary transmission clock time tcT(k) (blue)
and the wave number distribution p(k) = 1S(k)|? (orange, dashed,
and arbitrary scale), for Vy = 7,a = 1, b = 5, and k, = 2.175932),
with the initial state given by (18). Bottom: close view of the above
plot for small times. The vertical grey lines in the plots correspond
tok = kyand k = +/V,. The region of relatively slow growth of
the derivative "' (k) correspond to times around 0.105 a.u. Rydberg
atomic units were used in all the plots.

region, which in both plots corresponds to almost the same
value 7 = 0.105 au = 5.1 attoseconds. The top plot of
Figure 6 shows that for the less opaque barrier there exists a
(very small) probability to observe a superluminal tunneling
time. Even if this possibility cannot be precluded in principle
(see, e.g., [16]), in the present case the possibility of emergence
of such small times was expected, since at t = 0 there
was a significant portion of the wave packet (roughly 27%)
penetrating the whole distance of the barrier, and this has an
important contribution to the emergence of small times in
the clocK’s readings associated with the transmitted particle.
On the other hand, the top plot of Figure 7 shows that for
the thicker barrier the probability for superluminal times is
negligible; the portion of the wave packet already inside the
barrier at t = 0 is the same (~27%), but the wave packet
penetrates proportionally a smaller distance inside the barrier
and, thus, it does not contribute in a significant way to the
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FIGUure 5: Distributions of tunneling decay times p,(7) through
the barrier of the potential V,(x) for the initial bound state ¢,(x)
given by (18). The histograms were built by using the Monte Carlo
procedure described in Figure 2 and in the main text. The vertical
grey lines indicate percentiles of the distribution (the first and the
last correspond to 1% and 99%, the remaining ones range from 5%
to 95%, in steps of 5%); the three thick vertical lines indicate the
first quartile (percentile 25%), the median, and the third quartile
(percentile 75%). Rydberg atomic units were used in all the plots.
Top: barrier width b — a = 2 and bin length = 0.0031a.u. (= 0.15
attoseconds). Bottom: barrier width b—a = 4 and bin length =~ 40a.u1.
(= 1,935 attoseconds).

emergence of very small times in the clock readings. We note
that the introduction of the cutoff t,, as in [36], would result
in a time distribution similar to the truncated distributions
shown in the top plots of Figures 6 and 7.

It is also worth observing that, for small times, the
distributions obtained here resemble qualitatively those in
Figure 4 of [3], except for the presence of several peaks at
discrete values of the time in the latter. The considerations
above, relating the peaks of the distribution of clock times
p(7) to the local maxima and minima of the stationary
time tCT(k) and the magnitude of distribution p(k) in the
neighborhood of these points, suggest a scenario in which
such multiple peaks at discrete values of time can appear in
the distribution p,(7) of transmission times. Indeed, if above-
the-barrier wave numbers had a significant contribution to
the initial wave packet, then the several local maxima and
minima present in the vicinities of the resonant nontunneling
components will also contribute in a significant way to build
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F1GURE 6: Close views of the plot at the top of Figure 5, correspond-
ing to the barrier width b — a = 2, with the bin length =~ 0.0031a.u.
(= 0.15 attoseconds). Top: small tunneling times. The vertical grey
line in the left of this plot corresponds to the time the light takes to
travel the barrier distance. The second grey vertical line corresponds
to the percentile 1%. Bottom: large tunneling times. The vertical grey
lines correspond to the percentiles 95% and 99%, respectively.

multiple peaks in the distribution of transmission times; these
peaks, however, could not be associated with the tunneling
process. We can consider such a scenario by choosing as
the initial state a tightly localized state given by y(x,0) =
V2 sin kyx, with k, = 7 and the barrier parameters a = 1,
b =2, and V;, = 11, in Rydberg atomic units. In this situation
the initial wave function is perfectly confined to the left of
the barrier (0 < x < 1), and above-the-barrier components
contribute in a significant way to build the wave packet, as
can be seen from p(k) in the top plot of Figure 8 (in this
case the probability of finding a nontunneling k component
in the wave packet is approximately 75%). In this plot we can
also observe that all the local maxima and minima of tCT(k)
shown occur in neighborhoods of wave numbers k for which
p(k) is nonnegligible; therefore, all these local maxima and
minima contribute significantly to build multiple peaks in
the distribution of transmission times p,(7). The middle and
the bottom plots of Figure 8 confirm this statement: all the
peaks of the distribution of transmission times correspond
very closely to the local maxima and minima of t_(k), as can
be seen by comparing the plots in the top and the bottom
of this figure (except for the first, all the other significant
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FiGure 7: Close views of the plot at the bottom of Figure 5,
corresponding to the barrier width b — a = 4. Top: small tunneling
times and bin length = 0.0031a.u. (= 0.15 attoseconds). The vertical
grey line in the left of this plot corresponds to the time the light takes
to travel the barrier distance. The percentile 1% (corresponding to
= 5.1 a.u. = 247 attoseconds) is out of the range of this plot. Bottom:
large tunneling times, with bin length = 2 a.u = 100 attoseconds.
The vertical grey line corresponds to the percentile 99%.

peaks in the bottom plot are associated with nontunneling
components).

6. Conclusions

Taking as a starting point the probabilistic (average) tunneling
time obtained in [28] with the use of a SWP clock [17, 24, 37],
we obtained a probability distribution of times (10)-(11). An
important advantage of using the SWP clock, in addition to
those already mentioned, is that by running only when the
particle is inside the barrier it allows us to address the concept
of tunneling time in a proper way, since the time spent by
the particle standing in the well before penetrating the barrier
is not computed. A clear advantage of having a probability
distribution of transmission (tunneling) times is that, in
addition to the usual expectation value, we can obtain all the
statistical properties of this time, such as its most probable
values (peaks of the distribution), the dispersion around the
mean value, and the probability to observe extreme outcomes
(superluminal times, for instance).

As an initial test, the distribution of times (10)-(11) was
applied to the simple problem of a particle tunneling through
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FIGURE 8: Top: the stationary time tCT(k) and the wave number
distribution p(k), for V, = 11, barrier width b —a = 36, k, = 7,
and an initial state y/(x,0) = V2 sin kox, with k, = 7. The vertical
lines correspond to k = k, and k = +/V,. Middle: distribution
p(7) for the transmission times, with the histogram built by the
Monte Carlo procedure described in the text. Vertical lines indicate
the percentiles, as in the Figure 5. Bottom: close view of the above
histogram for the range of small times. The first vertical line at the
left indicates the time the light takes to cross the barrier distance.
In both the histograms we used a bin length = 0.0031 g.u. = 0.15
attoseconds. Rydberg atomic units were used in all these plots.

a rectangular barrier. Unsurprisingly, it revealed behavior
similar to that already known from previous works using
a distribution of wave numbers (momentum)—see, e.g.,
[28] —although, using p,(7) these conclusions are much more
transparent. For example, one could answer the question
about the possibility of superluminal tunneling by direct
calculation from the probability distribution p,(7). In the
nonstationary case—which is the correct to address this
question—this problem is usually answered by considering

just the average tunneling time. But, given its probabilistic
nature, an answer based only on the average time may not
be satisfactory, especially if the dispersion of the distribution
of tunneling times is large, which is often the case when one
deals with well-localized particles, as suggested by the two
situations addressed in the present work.

As a main application of (10)-(11), we considered a
slight modification of the problem considered in [36] to
model strong field ionization by tunneling. The modification
considered here was the elimination of the cutoff time that
was introduced in [36] to simulate the upper bound that
arises in attoclock experiments [3, 6] due to the opening
and closing of the tunneling channel, naturally associated
with the oscillations in the laser field intensity. This cutoff
is not a fundamental requirement, but rather it is associated
with the experimental methods employed—in any case, its
implementation is rather trivial, since it just truncates the
distribution of times. The consideration of the full range
of the distribution of times allowed us to show that an
important contribution to p,(7) comes from very large times
associated with the resonance peaks in the tunneling region;
these very long tunneling times occur with a probability
comparable to very short ones, thus having an important
impact on the average tunneling times and, therefore, cause
difficulties when comparing theoretical predictions based on
an average time with the outcomes of experiments presenting
a natural cutoff in the possible time measurements. In
particular, in the attoclock experiments the relevant measure
is often associated with the peak of the tunneling time, which
may be promptly identified once one knows the probability
distribution for all possible times. A remark is in place; the
distribution of times proposed here, built on the SWP clock
readings, refers to the time the particle dwells within the
barrier, while the tunneling times often measured in recent
attoclock experiments actually refer to exit times [43].

In sum, the approach introduced above and resulting in
(10)-(11) builds upon the already (conceptually) well tested
SWP clock to provide a real-valued distribution of times
that, in the simple models considered here, was demonstrated
to have physically sound properties and, in fact, (rough)
similarities with the time distribution obtained in recent
experiments [3], therefore warrantying further investigation
with more realistic potentials.

Data Availability

The numerical data used in the construction of the his-
tograms in this article were generated by a Monte Carlo
procedure, whose details were described in the main text.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

[1] H. G. Winful, “Tunneling time, the Hartman effect, and super-
luminality: a proposed resolution of an old paradox,” Physics
Reports, vol. 436, no. 1-2, pp. 1-69, 2006.



10

[2] H. G. Winful, “The meaning of group delay in barrier tun-
nelling: a re-examination of superluminal group velocities,”
New Journal of Physics, vol. 8, Article ID 101, 2006.

[3] A.S.Landsman, M. Weger, J. Maurer et al., “Ultrafast resolution
of tunneling delay time,” Optica, vol. 1, no. 5, pp. 343-349, 2014.

[4] L. Torlina, F. Morales, J. Kaushal et al., “Interpreting attoclock

measurements of tunnelling times,” Nature Physics, vol. 11, no.

6, pp. 503-508, 2015.

O. Pedatzur, G. Orenstein, V. Serbinenko et al., “Attosecond

tunnelling interferometry,” Nature Physics, vol. 11, no. 10, pp.

815-819, 2015.

[6] T.Zimmermann, S. Mishra, B. R. Doran, D. F. Gordon, and A. S.
Landsman, “Tunneling time and weak measurement in strong
field ionization,” Physical Review Letters, vol. 116, no. 23, Article
ID 233603, 2016.

[7] R. Chiao, P. Kwiat, and A. Steinberg, “Analogies between
electron and photon tunneling: a proposed experiment to
measure photon tunneling times,” Physica B: Condensed Matter,
vol. 175, no. 1-3, Pp. 257-262,1991.

[8] A.M. Steinberg, P. G. Kwiat, and R. Y. Chiao, “Measurement of
the single-photon tunneling time,” Physical Review Letters, vol.
71, no. 5, pp. 708-711, 1993.

[9] C.R. Leavens and R. Sala Mayato, “Are predicted superluminal
tunneling times an artifact of using nonrelativistic Schrodinger
equation?” Annalen der Physik, vol. 7, no. 7-8, pp. 662-670,1999.

[10] P. Krekora, Q. Su, and R. Grobe, “Effects of relativity on the

time-resolved tunneling of electron wave packets;” Physical

Review A: Atomic, Molecular and Optical Physics, vol. 63, no. 3,

Article ID 032107, 2001.

C.-F.Liand X. Chen, “Traversal time for Dirac particles through

a potential barrier;” Annalen der Physik, vol. 11, no. 12, pp. 916—

925, 2002.

[12] V. Petrillo and D. Janner, “Relativistic analysis of a wave
packet interacting with a quantum-mechanical barrier;” Physi-
cal Review A: Atomic, Molecular and Optical Physics, vol. 67, no.
1, Article ID 012110, 2003.

[13] X. Chen and C. Li, “Negative group delay for Dirac particles
traveling through a potential well,” Physical Review A: Atomic,
Molecular and Optical Physics, vol. 68, no. 6, Article ID 052105,
2003.

[14] S.De Leo and P. Rotelli, “Dirac equation studies in the tunneling
energy zone,” The European Physical Journal C, vol. 51, no. 1, pp.
241-247,2007.

[15] J. T. Lunardi and L. A. Manzoni, “Relativistic tunneling through
two successive barriers,” Physical Review A: Atomic, Molecular
and Optical Physics, vol. 76, no. 4, Article ID 042111, 2007.

[16] J. T. Lunardi, L. A. Manzoni, A. T. Nystrom, and B. M. Perreault,
“Average transmission times for the tunneling of wave packets,”
Journal of Russian Laser Research, vol. 32, no. 5, pp. 431-438,
2011.

[17] A. Peres, “Measurement of time by quantum clocks;” American
Journal of Physics, vol. 48, no. 7, pp. 552-557, 1980.

[18] E. P. Wigner, “Lower limit for the energy derivative of the
scattering phase shift,” Physical Review, vol. 98, no. 1, p. 145, 1955.

[19] E T. Smith, “Lifetime matrix in collision theory, Physical
Review, vol. 118, no. 1, p. 349, 1960.

[20] A. L. Baz, “Lifetime of intermediate states,” Soviet Journal of
Nuclear Physics, vol. 4, p. 182, 1967.

[21] V. E Rybachenko, “Time penetration of a particle through a
potential barrier;” Soviet Journal of Nuclear Physics, vol. 5, p. 635,
1967.

[5

—_

(11

Advances in High Energy Physics

[22] M. Biittiker, “Larmor precession and the traversal time for
tunneling,” Physical Review B, vol. 27, no. 10, p. 6178, 1983.

[23] J.P.Falckand E. H. Hauge, “Larmor clock reexamined,” Physical
Review B: Condensed Matter and Materials Physics, vol. 38, no.
5, pp. 3287-3297,1988.

[24] H. Salecker and E. P. Wigner, “Quantum limitations of the
measurement of space-time distances,” Physical Review, vol. 109,
pp. 571-577,1958.

[25] P. Eckle, A. N. Pfeiffer, C. Cirelli et al., “Attosecond ionization
and tunneling delay time measurements in helium,” Science, vol.
322, no. 5907, pp. 1525-1529, 2008.

[26] G. Orlando, C. R. McDonald, N. H. Protik, G. Vampa, and T.
Brabec, “Tunnelling time, what does it mean?” Journal of Physics
B: Atomic, Molecular and Optical Physics, vol. 47, no. 20, Article
ID 204002, 2014.

[27] A. S. Landsman and U. Keller, “Attosecond science and the
tunnelling time problem,” Physics Reports, vol. 547, pp. 1-24,
2015.

[28] J. T. Lunardi, L. A. Manzoni, and A. T. Nystrom, “Salecker-
Wigner—Peres clock and average tunneling times,” Physics
Letters A, vol. 375, no. 3, pp. 415-421, 2011.

[29] N.G. Kelkar, H. M. Castafieda, and M. Nowakowski, “Quantum
time scales in alpha tunneling,” Europhysics Letters, vol. 85, no.
2, Article ID 20006, 2009.

[30] M. Goto, H. Iwamoto, V. De Aquino, V. C. Aguilera-Navarro,
and D. H. Kobe, “Relationship between dwell, transmission and
reflection tunnelling times,” Journal of Physics A: Mathematical
and General, vol. 37, no. 11, pp. 3599-3606, 2004.

[31] S. Brouard, R. Sala, and J. G. Muga, “Systematic approach to
define and classify quantum transmission and reflection times,”
Physical Review A: Atomic, Molecular and Optical Physics, vol.
49, no. 6, pp. 4312-4325,1994.

[32] V. Petrillo and V. S. Olkhovsky, “Time asymptotic expansion
of the tunneled wave function for a double-barrier potential,”
Europhysics Letters, vol. 74, no. 2, p. 327, 2006.

[33] T.E. Hartman, “Tunneling of a wave packet,” Journal of Applied
Physics, vol. 33, pp. 3427-3433,1962.

[34] B. A. Frentz, J. T. Lunardi, and L. A. Manzoni, “Average clock
times for scattering through asymmetric barriers,” European
Physical Journal Plus, vol. 129, no. 1, Article ID 5, 2014.

[35] N. Turok, “On quantum tunneling in real time,” New Journal of
Physics, vol. 16, Article ID 063006, 2014.

[36] Y. Ban, E. Y. Sherman, J. G. Muga, and M. Biittiker, “Time
scales of tunneling decay of a localized state,” Physical Review
A: Atomic, Molecular and Optical Physics, vol. 82, no. 6, Article
1D 062121, 2010.

[37] M. Calgada, J. T. Lunardi, and L. A. Manzoni, “Salecker-Wigner-
Peres clock and double-barrier tunneling,” Physical Review A:
Atomic, Molecular and Optical Physics, vol. 79, no. 1, Article ID
012110, 2009.

[38] C.-S. Park, “Transmission time of a particle in the reflection-
less Sech-squared potential: quantum clock approach,” Physics
Letters A, vol. 375, no. 38, pp. 3348-3354, 2011.

[39] C.-S. Park, “Barrier interaction time and the Salecker-Wigner
quantum clock: wave-packet approach,” Physical Review A, vol.
80, no. 1, Article ID 012111, 2009.

[40] Y. Aharonov, N. Erez, and B. Reznik, “Superoscillations and
tunneling times,” Physical Review A: Atomic, Molecular and
Optical Physics, vol. 65, no. 5, Article ID 052124, 2002.

[41] Y. Aharonov, N. Erez, and B. Reznik, “Superluminal tunnelling
times as weak values,” Journal of Modern Optics, vol. 50, no. 7,
pp- 1139-1149, 2003.



Advances in High Energy Physics

[42] M. A. Lee, J. T. Lunardi, L. A. Manzoni, and E. A. Nyquist,
“Double General Point Interactions: Symmetry and Tunneling
Times,” Frontiers in Physics, vol. 4, Article ID 10, 2016.

[43] N. Teeny, E. Yakaboylu, H. Bauke, and C. H. Keitel, “Ionization
time and exit momentum in strong-field tunnel ionization,”
Physical Review Letters, vol. 116, no. 6, Article ID 063003, 2016.

11



"4

The Scientific
Y\Iorld Journal

Advances in

Chemistry

Applied Bionics
and Biomechanics

Active and Passive
Electronic Components

Shock and Vibration

Hindawi

Submit your manuscripts at
www.hindawi.com

Advances in

Mathematical Physics

International Journal of | J— o

Rotutiing b u) f -

Machinery b _ Advances in
Optical

Advances in . ‘—‘_‘o g » . P

. Technologies
OptoElectronics 1 g <
"y

)

Advances in

1
\
b

i : b International Journal of
Journal of Antennas anc
Chemistry Propagation

International Journal of

thics

oustics and Vibration



https://www.hindawi.com/journals/apec/
https://www.hindawi.com/journals/sv/
https://www.hindawi.com/journals/ahep/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/aav/
https://www.hindawi.com/journals/acmp/
https://www.hindawi.com/journals/ijo/
https://www.hindawi.com/journals/aa/
https://www.hindawi.com/journals/ijap/
https://www.hindawi.com/journals/ijge/
https://www.hindawi.com/journals/aot/
https://www.hindawi.com/journals/abb/
https://www.hindawi.com/journals/aoe/
https://www.hindawi.com/journals/amp/
https://www.hindawi.com/journals/ac/
https://www.hindawi.com/journals/jchem/
https://www.hindawi.com/journals/apc/
https://www.hindawi.com/journals/ijrm/
https://www.hindawi.com/journals/je/
https://www.hindawi.com/
https://www.hindawi.com/

