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Employing a pseudo-orthonormal coordinate-free approach, the solutions to the Klein–Gordon and Dirac equations for particles
in Melvin spacetime are derived in terms of Heun’s biconfluent functions.

1. Introduction

The study of relativistic particles in static magnetic fields has
a long history and is still attracting considerable attention,
especially for cases where someone deals with curved man-
ifolds.

Even though on Minkowski spacetime the relativistic
behavior of an electron in various magnetostatic configu-
rations is well understood (see, for example, Johnson and
Lippmann’s paper [1]), a weakness on curved spacetime
regards the explicit gauge covariant formulation.

Recently, when dealing with slowly rotating neutron
stars which have been termed as magnetars [2], it has been
assumed that their huge magnetic induction in the core and
crust, 𝐵 ∼ 1014–1015 (G), is affecting the spacetime geometry.
Away out could be the search for general relativistic solutions
with the magnetic field considered as a perturbation of the
spherically symmetric background [3]. Another way is to
assume that magnetized metrics, as the one belonging to the
Melvin class [4, 5], may be reliable candidates for describing
these highly compact astrophysical objects with a dominant
axial magnetic field [6].

Within a coordinate-dependent formulation, switching
between canonical andpseudo-orthonormal basis, the above-
mentioned authors are integrating the system of four coupled
first-order differential equations, in the first approximation,
neglecting the terms in higher orders of the polar radial
coordinate 𝜌. Their solutions are expressed in terms of

generalized Laguerre polynomials, similarly to the case of the
Dirac equation in cylindrical coordinates on a flat manifold
[7].

In the present work, we are applying a coordinates-free
method to analyze the Klein–Gordon and Dirac equations
describing particles evolving in Melvin’s spacetime. Employ-
ing Cartan’s formalism, we are computing all the essential
geometrical objects for writing down the corresponding
matter fields and Einstein’s equations.

It turns out that the 𝑆𝑂(3, 1) × 𝑈(1)-gauge covariant
Klein–Gordon equation can be exactly solved, its solutions
being given by the Heun biconfluent functions [8–10]. The
samehappenswith the approximate expression of the second-
order differential system derived from the Dirac equation.

The Heun functions, either general or confluent, are
main targets of recent investigations and have been obtained
for massless particles evolving in a Universe described
by the metric function written as a nonlinear mixture of
Schwarzschild, Melvine, and Bertotti-Robinson solutions
[11].

2. The Geometry

Recently, in [12], the procedure of transforming a known
static symmetric solution to Einstein-hydrodynamic equa-
tions into a magnetized metric was presented, by (nonlin-
early) adding themagnetic field. In spherical coordinates, this
has the general form
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Figure 1: The radial current (50) in terms of the variable 𝑥 ≈ √2𝑀𝐵2∗𝜌2/(8𝜔).

𝑑𝑠2 = Λ2𝑔11 (𝑑𝑟)2 + Λ2𝑟2 (𝑑𝜃)2 + 𝑟2sin2 𝜃Λ2 (𝑑𝜑)2
− Λ2𝑔00 (𝑑𝑡)2 ,

(1)

with the metric functions 𝑔11 and 𝑔00 depending only on 𝑟
and

Λ = 1 + 𝐵2∗4 𝑟2sin2 𝜃, (2)

where, for the moment, 𝐵∗ is a parameter related to the
magnetic field intensity.

In the pseudo-orthonormal Cartan frame corresponding
to the metric (1),

𝜔1 = Λ√𝑔11𝑑𝑟,
𝜔2 = Λ𝑟𝑑𝜃,
𝜔3 = 𝑟 sin 𝜃Λ 𝑑𝜑,
𝜔4 = Λ√𝑔00𝑑𝑡,

(3)

for the potential

𝐴2 = 𝐵0𝑟 sin 𝜃2 , (4)

where 𝐵0 is the strength of the magnetic field on the axis, and
the Maxwell tensor components, corresponding to a poloidal
magnetic field with 𝐵�휌 and 𝐵�휃, are given by the relations

𝐹23 = 𝐵0cos 𝜃Λ2 ,
𝐹13 = 𝐵0sin 𝜃Λ2√𝑔11 ,

(5)

pointing out a prolate (in shape) star.

Once we assume 𝑔00 = 𝑔11 = 1, we can switch to
cylindrical coordinates {𝜌, 𝜑, 𝑧, 𝑡}, by

𝜌 = 𝑟 sin 𝜃,
𝑧 = 𝑟 cos 𝜃, (6)

so that themagnetizedmetric (1) turns into the simpleMelvin
expression

𝑑𝑠2 = Λ2 (𝑑𝜌)2 + 𝜌2Λ2 (𝑑𝜑)2 + Λ2 (𝑑𝑧)2 − Λ2 (𝑑𝑡)2 , (7)

with

Λ = 1 + 𝐵2∗𝜌24 . (8)

Within an 𝑆𝑂(3, 1)-gauge covariant formulation, we
introduce the pseudo-orthonormal frame

𝑒1 = 1Λ𝜕�휌,
𝑒2 = Λ𝜌 𝜕�휑,
𝑒3 = 1Λ𝜕�푧,
𝑒4 = 1Λ𝜕�푧,

(9)
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whose corresponding dual base is

𝜔1 = Λ𝑑𝜌,
𝜔2 = 𝜌Λ𝑑𝜑,
𝜔3 = Λ𝑑𝑧,
𝜔4 = Λ𝑑𝑡,

(10)

so that the metric (7) gets the Minkowskian form 𝑑𝑠2 =𝜂�푎�푏𝜔�푎𝜔�푏, with 𝜂�푎�푏 = [1, 1, 1, −1]. The first Cartan equation,

𝑑𝜔�푎 = Γ�푎.[�푏�푐]𝜔�푏 ∧ 𝜔�푐, (11)

with 1 ≤ 𝑏 < 𝑐 ≤ 4 and Γ�푎.[�푏�푐] = Γ�푎.�푏�푐−Γ�푎.�푐�푏, leads to the following
connection one-form:

Γ12 = (Λ�耠Λ2 − 1𝜌Λ)𝜔2,
Γ13 = −Λ�耠Λ2𝜔3,
Γ14 = Λ�耠Λ2𝜔4,

(12)

where Λ�耠 is the derivative of Λ with respect to 𝜌.
Employing the second Cartan equation

R�푎�푏 = 𝑑Γ�푎�푏 + Γ�푎�푐 ∧ Γ�푐.�푏, (13)

one derives the curvature two-forms R�푎�푏 = 𝑅�푎�푏�푐�푑𝜔�푐 ∧ 𝜔�푑,
with 1 ≤ 𝑐 < 𝑑 ≤ 4, leading to the curvature components

𝑅1212 = 2𝐵2∗Λ4 [1 − 𝐵2∗𝜌28 ] ,
𝑅3434 = 𝐵4∗𝜌24Λ4 ,
𝑅1313 = 𝑅2323 = − 𝐵2∗2Λ4 [1 −

𝐵2∗𝜌24 ] = −𝑅1414
= −𝑅2424,

(14)

pointing out the special radius value 𝜌∗ = 2/𝐵∗, for which
only the components 𝑅1212 = 𝐵2∗/Λ4 = 𝑅3434 are surviving
and the Weyl tensor vanishes.

Since the scalar curvature is zero, the Einstein tensor
components are given by the Ricci tensor components, as

𝐺11 = 𝐺22 = −𝐺33 = 𝐺44 = 𝐵2∗Λ4 . (15)

In the pseudo-orthonormal frame whose dual bases
are (10), it turns out that the potential (4), generating the
magnetic induction along 𝑂𝑧, gets the familiar expression

𝐴2 = 𝐵0𝜌2 , (16)

and the essential component of the Maxwell tensor reads

𝐹12 = 𝐴2|1 + Γ212𝐴2 = 𝐵0Λ2 , (17)

where 𝑓|1 = 𝑒1(𝑓).
Using the energy-momentum tensor components

𝑇11 = 𝑇22 = −𝑇33 = 𝑇44 = 12𝐹212 = 12
𝐵20Λ4 , (18)

in the Einstein equations 𝐺�푎�푏 = 𝜅0𝑇�푎�푏, one gets the following
relation between the parameters 𝐵∗ and 𝐵0:

𝐵2∗ = 𝜅0𝐵202 , (19)

with 𝜅0 = 8𝜋𝐺/𝑐4.
3. Exactly Solvable Klein–Gordon Equation

In this section, we are going to construct the wave function
of the charged bosons, considered as test particles evolving in
the crust of a relativistic magnetar. The complex scalar field
of mass 𝜇, minimally coupled to gravity, is described by the𝑆𝑂(3, 1) × 𝑈(1) gauge covariant Klein–Gordon equation

𝜂�푎�푏Φ|�푎�푏 − 𝜂�푎�푏Φ|�푐Γ�푐�푎�푏 = 𝜇2Φ + 2𝑖𝑞𝐴2Φ|2 + 𝑞2𝐴22Φ, (20)

which, in the pseudo-orthonormal frame with the dual bases
(10), reads

1𝜌 𝜕𝜕𝜌 [𝜌𝜕Φ𝜕𝜌 ] + Λ4𝜌2 𝜕
2Φ𝜕𝜑2 + 𝜕2Φ𝜕𝑧2 − 𝜕2Φ𝜕𝑡2

= [𝜇2Λ2 + 𝑖𝑞𝐵0Λ3 𝜕Φ𝜕𝜑 + (𝑞𝐵0𝜌Λ2 )2]Φ.
(21)

The above form suggests the variables separation

Φ = 𝜙 (𝜌) 𝑒�푖�푚�휑𝑒�푖�푝𝑧�푧𝑒−�푖�휔�푡, (22)

which leads to the following differential equation for the
unknown function 𝜙,

1𝜌 𝜕𝜕𝜌 [𝜌𝜕𝜙𝜕𝜌] + [𝜔2 − 𝑝2�푧 − 𝑚2𝜌2 Λ4 − 𝜇2Λ2 + 𝑚𝑞𝐵0Λ3

− (𝑞𝐵0𝜌Λ2 )2]𝜙 = 0,
(23)

with Λ defined in (8).
This can be exactly integrated, its solution being expressed

in terms of the Heun biconfluent function as [9, 10]

𝜙 (𝑦) ∼ exp [−𝑦22 − 𝛽𝑦2 ]𝑦�훼/2HeunB [𝛼, 𝛽, 𝛾, 𝛿, 𝑦] , (24)
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where the variable and the parameters are, respectively, given
by

𝑦 = √𝑏𝐵∗𝜌24 ,
𝑏 = 𝑞𝐵0 − 𝑚𝐵2∗2 ≈ 𝑞𝐵0,

(25)

𝛼 = ±𝑚,
𝛽 ≈ 2√𝑞𝐵0𝐵∗ ,
𝛾 ≈ 𝑚 − 𝜇2𝑞𝐵0 ,

𝛿 ≈ −2 [𝜔2 − 𝑝2�푧 − 𝜇2 + 𝑚𝑞𝐵0]𝐵∗√𝑞𝐵0 .

(26)

Let us point out that the Heun biconfluent equation has
one regular singularity at the origin and one irregular at ∞
and can be obtained, from the Heun general equation, by a
process of successive confluences [10].

Regarding the asymptotic behavior of the function (24),
solution to (23), that has a singularity in 𝜌 → 0, due to the
exponential term, this is vanishing for large 𝑦-values. On the
other hand, for a regular solution at the origin 𝑦 = 0 (where
HeunB(0) = 1), one has to choose the plus sign of 𝛼 in (26).

4. The 𝑆𝑂(3, 1) × 𝑈(1)-Gauge Covariant
Dirac Equation

For relativistic fermions of mass 𝑀, coupled to the external
magnetic field generated by (16), the Dirac equation has the𝑆𝑂(3, 1) × 𝑈(1)-gauge covariant expression

𝛾�푎Ψ;�푎 +𝑀Ψ = 0, (27)

where “;” stands for the covariant derivative

Ψ;�푎 = 𝑒�푎Ψ + 14Γ�푏�푐�푎𝛾�푏𝛾�푐Ψ − 𝑖𝑞𝐴�푎Ψ. (28)

In view of the relations (12), the term expressing the Ricci
spin-connection in (27) reads

14Γ�푏�푐�푎𝛾�푎𝛾�푏𝛾�푐 = 𝑓Λ𝛾1, (29)

where we have introduced the function

𝑓 = 12 [1𝜌 + Λ�耠Λ ] . (30)

With the explicit form of the Dirac equation (27) being

1Λ [𝛾1 (𝜕�휌 + 𝑓) + Λ2𝜌 𝛾2𝜕�휑 + 𝛾3𝜕�푧 + 𝛾4𝜕�푡 +𝑀Λ
− 𝑖𝑞𝛾2Λ𝐴2]Ψ = 0,

(31)

one may use the variables separation

Ψ = 𝑒�푖(�푚�휑+�푝𝑧�푧−�휔�푡)𝜓 (𝜌) , (32)

to derive the differential equation satisfied by the part
depending on 𝜌; i.e.,
𝛾1 [𝜓�耠 + 𝑓𝜓]

+ 𝑖 {𝛾2Λ[𝑚Λ𝜌 − 𝑞𝐵0𝜌2 ] + 𝑝�푧𝛾3 − 𝜔𝛾4 − 𝑖𝑀Λ}𝜓
= 0.

(33)

With the following function substitution

𝜓 = 1
2√𝜌Λ𝜒, (34)

the above equation becomes

𝛾1𝜒�耠 + 𝑖 {𝛾2𝐹 + 𝑝�푧𝛾3 − 𝜔𝛾4 − 𝑖𝑀Λ}𝜒 = 0, (35)

where

𝐹 (𝜌) = Λ[𝑚Λ𝜌 − 𝑞𝐵0𝜌2 ] , (36)

and we are going to use the Dirac representation for the 𝛾�푖
matrices,

𝛾�휇 = −𝑖𝛽𝛼�휇,
𝛾4 = −𝑖𝛽,
𝜇 = 1, 3,

(37)

with

𝛽 = (I 0
0 −I) ,

𝛼�휇 = ( 0 𝜎�휇
𝜎�휇 0 ) ,

(38)

where 𝜎�휇 denotes the usual Pauli matrices.
In the following, we are assuming that the particle is not

moving along the magnetic field direction, i.e., 𝑝�푧 = 0, and
the bispinor 𝜒 is of the form

𝜒 (𝜌) = [𝜁 (𝜌)𝜂 (𝜌)] , (39)

so that (35) decouples in two equations for the (two-
component) spinors 𝜁 and 𝜂; i.e.,

𝜎1𝜁�耠 + 𝑖𝐹𝜎2𝜁 = 𝑖 (𝜔 +𝑀Λ) 𝜂,
𝜎1𝜂�耠 + 𝑖𝐹𝜎2𝜂 = 𝑖 (𝜔 −𝑀Λ) 𝜁. (40)



Advances in High Energy Physics 5

Applying the usual procedure, one gets the following
differential equations:

𝜁�耠�耠�퐴 − 𝑀Λ�耠𝜔 +𝑀Λ𝜁�耠�퐴
+ {𝜔2 −𝑀2Λ2 − 𝐹2 ∓ [𝐹�耠 − 𝑀𝐹Λ�耠𝜔 +𝑀Λ]} 𝜁�퐴 = 0,

𝜂�耠�耠�퐴 + 𝑀Λ�耠𝜔 −𝑀Λ𝜂�耠�퐴
+ {𝜔2 −𝑀2Λ − 𝐹2 ∓ [𝐹�耠 + 𝑀𝐹Λ�耠𝜔 −𝑀Λ]}𝜂�퐴 = 0,

(41)

which cannot be analytically solved. However, by imposing
the condition𝐵2∗ ≪ 𝑞𝐵0 and neglecting the powers of 𝜌 larger
than 3, (41) get the simpler forms:

𝜁�耠�耠�퐴 − 𝑀𝐵2∗𝜌2 (𝜔 +𝑀) [1 −
𝑀𝐵2∗𝜌24 (𝜔 +𝑀)] 𝜁�耠�퐴 + {𝜔2 −𝑀2

+ (𝑚 ± 12) 𝑞𝐵0 − 𝑚 (𝑚 ∓ 1)𝜌2 − (𝑞𝐵0𝜌2 )2} 𝜁�퐴 = 0,
𝜂�耠�耠�퐴 + 𝑀𝐵2∗𝜌2 (𝜔 −𝑀) [1 +

𝑀𝐵2∗𝜌24 (𝜔 −𝑀)] 𝜂�耠�퐴 + {𝜔2 −𝑀2

+ (𝑚 ± 12) 𝑞𝐵0 − 𝑚 (𝑚 ∓ 1)𝜌2 − (𝑞𝐵0𝜌2 )2}𝜂�퐴 = 0.

(42)

The corresponding solutions, i.e.,

𝜁1 = {√𝜌, 𝜌�푚} 𝑢1,
𝜁2 = {√𝜌, 𝜌�푚+1} 𝑢2,
𝜂1 = {√𝜌, 𝜌�푚} V1,
𝜂2 = {√𝜌, 𝜌�푚+1} V2,

(43)

are expressed in terms of Heun’s biconfluent functions [8–10]

𝑢1 = HeunB [𝛼1, 𝛽, 𝛾+, 𝛿+1 , 𝑥�푢] ,
𝑢2 = HeunB [𝛼2, 𝛽, 𝛾+, 𝛿+2 , 𝑥�푢] ;
V1 = HeunB [𝛼1, 𝛽, 𝛾−, 𝛿−1 , 𝑥V] ;
V2 = HeunB [𝛼2, 𝛽, 𝛾−, 𝛿−2 , 𝑥V] ,

(44)

of variables

𝑥�푢 = −√2𝑀𝐵2∗𝜌28 (𝜔 +𝑀) ,
𝑥V = √2𝑀𝐵2∗𝜌28 (𝜔 −𝑀)

(45)

and parameters

𝛼1 = 𝑚 − 12 ,
𝛼2 = 𝑚 + 12 ,
𝛽 = √2,
𝛾± = −2 [𝑞𝐵0 (𝜔 ±𝑀)𝑀𝐵2∗ ]2 ,
𝛿±1 = ± 2√2𝑀𝐵2∗ (𝜔 ±𝑀) [𝜔2 −𝑀2 + (𝑚 + 12) 𝑞𝐵0] ,
𝛿±2 = ± 2√2𝑀𝐵2∗ (𝜔 ±𝑀) [𝜔2 −𝑀2 + (𝑚 − 12) 𝑞𝐵0] ,

(46)

and therefore the components of the bispinor 𝜓 in (34) are
given by

𝜓1 = 1
2√Λ {1, 𝜌�푚−1/2} 𝑢1,

𝜓2 = 1
2√Λ {1, 𝜌�푚+1/2} 𝑢2,

𝜓3 = 1
2√Λ {1, 𝜌�푚−1/2} V1,

𝜓4 = 1
2√Λ {1, 𝜌�푚+1/2} V2.

(47)

Using the expressions (47) in (32), one may compute the
radial current density, meaning particles per unit time and
per unit covariant 2-surface

𝑑Σ1 = 𝜔2 ∧ 𝜔3 = 𝜌𝑑𝜑 ∧ 𝑑𝑧, (48)

as

𝑗1 = 𝑖Ψ𝛾1Ψ = Ψ†𝛼1Ψ = 12Λ [𝑢1V2 + 𝑢2V1] (49)

and the corresponding (radial) current,

𝐼 (𝜌) = ∫�퐿𝑧/2
−�퐿𝑧/2

∫2�휋
0

𝑒1�푎𝑗�푎𝑑Σ1 = 𝜋𝐿�푧𝜌Λ2 [𝑢1V2 + 𝑢2V1] , (50)

represented in Figure 1, as a function of

𝑥 ≈ √2𝑀𝐵2∗𝜌28𝜔 . (51)

One may notice that, for 𝑥 ≪ 1, the current is suddenly
increasing from zero to a maximum value, which depends on
the ratio𝑀/𝜔 and on the magnetic field intensity.

The case corresponding to massless fermions is signifi-
cantly less complicated. Thus, the equation

1Λ [𝛾1 (𝜕�휌 + 𝑓) + Λ2𝜌 𝛾2𝜕�휑 + 𝛾3𝜕�푧 + 𝛾4𝜕�푡]Ψ0
− 𝑖𝑞𝛾2𝐴2Ψ0 = 0,

(52)
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with the variables separation (32), leads to the following
differential equation satisfied by the part depending on 𝜌; i.e.,

𝛾1 [𝜓�耠0 + 𝑓𝜓0]
+ 𝑖 {𝛾2Λ[𝑚Λ𝜌 − 𝑞𝐵0𝜌2 ] + 𝑝𝛾3 − 𝜔𝛾4}𝜓0 = 0. (53)

As customary for massless fermions, we are going to use
the Weyl representation for the 𝛾matrices,

𝛾�휇 = −𝑖𝛽𝛼�휇,
𝛾4 = −𝑖𝛽,
𝜇 = 1, 3,

(54)

with

𝛼�휇 = (𝜎�휇 0
0 −𝜎�휇) , (55)

and the bispinor 𝜓0 will be taken as

𝜓0 (𝜌) = [𝜁 (𝜌)𝜂 (𝜌)] . (56)

Once (53) decouples in two equations for 𝜁 and 𝜂, one gets,
for the up spinor’s components, the second-order differential
equations

𝜁�耠�耠�퐴 + 2𝑓𝜁�耠�퐴 + [𝜔2 − 𝑝2�푧 + 𝑓2 − 𝐹2 + 𝜕�휌 (𝑓 ∓ 𝐹)] 𝜁�퐴
= 0, (57)

and similarly for 𝜂�퐴. Within the same approximation 𝐵2∗ ≪𝑞𝐵0 and neglecting the powers of 𝜌 larger than 2, (57) turns
into the simpler forms

𝑑2𝜁�퐴𝑑𝜌2 + [1𝜌 + 𝐵2∗𝜌2 ] 𝑑𝜁�퐴𝑑𝜌 + [𝜔2 − 𝑝2�푧 + 𝑞𝐵0 (𝑚 ± 12)
− (𝑚 ∓ 12)

2 1𝜌2 − (𝑞𝐵0𝜌2 )2] 𝜁�퐴 = 0,
(58)

whose solutions can be expressed either in terms of confluent
hypergeometric functions, as [13]

𝜁1 = 𝑥(1/2)(�푚−1/2)𝑒−�푥/2𝑈[−𝜔2 − 𝑝2�푧2𝑞𝐵0 + 𝐵2∗4𝑞𝐵0 , 𝑚
+ 12 , 𝑥] ;

𝜁2 = 𝑥−(1/2)(�푚+1/2)𝑒−�푥/2𝑈[−𝜔2 − 𝑝2�푧2𝑞𝐵0 + 𝐵2∗4𝑞𝐵0
− (𝑚 − 12) , − (𝑚 − 12) , 𝑥] ,

(59)

or in terms of Whittaker functions [13], as

𝜁1 = 1√𝑥W�휆1 ,�휇1 (𝑥) ,
𝜁2 = 1√𝑥W�휆2 ,�휇2 (𝑥) ,

(60)

with the dimensionless variable

𝑥 = 𝐵2∗𝜌24 √1 + (2𝑞𝐵0𝐵2∗ )2 ≈ 𝑞𝐵0𝜌22 (61)

and parameters

𝜆1 ≈ 𝜔2 − 𝑝2�푧2𝑞𝐵0 − 𝐵2∗4𝑞𝐵0 +
12 (𝑚 + 12) ,

𝜇1 = 12 (𝑚 − 12) ;
𝜆2 ≈ 𝜔2 − 𝑝2�푧2𝑞𝐵0 − 𝐵2∗4𝑞𝐵0 +

12 (𝑚 − 12) ,
𝜇1 = 12 (𝑚 + 12) .

(62)

5. Conclusions

Within the framework of the gauge-invariant geometry,
based on the semi-direct product of the local groups 𝑆𝑂(3, 1)
and𝑈(1), the present paper is focusing on the Klein–Gordon
and Dirac equations describing particles evolving in a back-
ground endowed with Melvin’s metric.

By making use of Cartan’s formalism, we have derived
the corresponding Einstein–Melvin equations leading to the
essential relation between the model’s parameters (19). As a
remark, switching to the canonical bases, the third covariant
induction component is given by the expression

𝐵�푧 = √󵄨󵄨󵄨󵄨𝑔󵄨󵄨󵄨󵄨𝐹12(�푐) = √󵄨󵄨󵄨󵄨𝑔󵄨󵄨󵄨󵄨𝑒1�푎𝑒2�푏𝐹�푎�푏 ≡ 𝐵0. (63)

In case of bosons, the Klein–Gordon equation can be
integrated exactly, its solution being given by the Heun
biconfluent functions of parameters (26).

Equations (41) coming from the Dirac equation (31) have
rather complicated expressions, containing several additional
terms which were neglected in [6]. In the assumption 𝐵2∗ ≪𝑞𝐵0, we have been able to find solutions for (42), expressed in
terms of Heun’s biconfluent functions (44). The correspond-
ing radial particle-current (50), represented in Figure 1, is
starting from zero, at the origin 𝜌 = 0, and exhibits a rather
nontrivial behavior, characterized by a sudden growth to a
maximum value. This one is followed by a local minimum
which might signal, in the approximation we have used,
the presence of a plateau. The seemingly far away unlimited
increasing is a result of the violation of the approximation
holding condition which demands 𝑥 < 1.
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