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We present another example of superfluid black hole containing A phase transition in Horava gravity. After studying the extended
thermodynamics of general dimensional Horava-Lifshitz AdS black holes, it is found that only the one with spherical horizon in
four and five dimensions has A phase transition, which is a line of (continuous) second-order phase transitions and was famous in
the discussion of superfluidity of liquid * He. The “superfluid” black hole phase and “normal” black hole phase are also distinguished.
Particularly, six-dimensional Horava-Lifshitz AdS black holes exhibit infinitely many critical points in P—» plane and the divergent
points for specific heat, for which they only contain the “normal” black hole phase and the “superfluid” black hole phase disappears
due to the physical temperature constraint; therefore there is no similar phase transition. In more than six dimensions, there is
no P — v critical behavior. After choosing the appropriate ordering field, we study the critical phenomena in different planes of
thermodynamical phase space. We also calculate the critical exponents, which are the same as the van der Waals fluid.

1. Introduction

Black hole thermodynamics always provides valuable insight
into quantum properties of gravity, and it has been studied
extensively for quite a long time, especially for the quantum
and microscopic interpretation of black hole temperature and
entropy (see [1, 2], for example). Besides, thermodynamics
and phase transitions of AdS black holes have been of great
interest since the Hawking-Page phase transition [3] between
stable large black hole and thermal gas is explained as the
confinement/deconfinement phase transition of gauge field
[4] inspired by the AdS/CFT correspondence [5-7].

After treating the cosmological constant as a pressure
with its conjugate quantity being the thermodynamic vol-
ume in thermodynamic phase space of charged AdS black
holes [8-14], the small/large black hole phase transition
is established in [15], which is exactly analogous to the
liquid/gas phase transition of the van der Waals fluid. This
kind of black hole phase transitions has attracted much
attention (see the recent review papers [16, 17]). Besides, this
semiclassical method of analogue is generalized to study the
microscopic structure of black holes and sheds some light on
the black hole molecules [18] and microscopic origin of the

black hole reentrant phase transition [19]. The study is also
extended to the quantum statistic viewpoint, as the superfluid
black holes are reported recently [20]. In Lovelock gravity
with conformally coupled scalar field, the authors present
the first example of A phase transition, which is a line of
(continuous) second-order phase transitions and was famous
for the successful quantum and microscopic interpretation of
superfluidity of liquid *He.

In this paper, we present another example of black holes
containing A phase transition in Horava gravity, which is a
candidate of quantum gravity in ultrahigh energy [21]. The
Horava-Lifshitz (HL) black hole solutions, thermodynamics,
and phase transitions have attracted a lot of attention [22-29]
(see [30] for a review on the recent development of various
areas). The general dimensional HL black hole solutions
are also introduced [31]. We will consider the extended
thermodynamics of general dimensional HL AdS black holes.
It is shown that only the one with spherical horizon in four
and five dimensions has A phase transition. Note that the first
example of “superfluid” black holes always has a hyperbolic
horizon [20]. Particularly, six-dimensional HL AdS black
holes exhibit infinitely many critical points in P — v plane
and the divergent points for specific heat, for which they only
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contain the “normal” black hole phase and the “superfluid”
black hole phase disappears due to the physical temperature
constraint; therefore there is no similar phase transition. In
more than six dimensions, there is no P — v critical behavior.
After identifying parameter € as the ordering field instead of
pressure and temperature, we study the critical phenomena
in different planes of thermodynamical phase space. We also
obtain the critical exponents, which are the same as the van
der Waals fluid.

The paper is structured as follows: in next section,
we present the extended thermodynamics of generalized
topological HL black holes. Then we study P — V criticality
in Section 3. We show the A phase transition for four and five
dimensions and the discussion for six dimensions in Sections
4 and 5, respectively. In Sections 6 and 7, we discuss the
critical phenomena and calculate the critical exponents in
different planes. In final section, some concluding remarks
are given.

2. Extended Thermodynamics of
Generalized HL Black Holes

In this section, we present the extended thermodynamics of
generalized topological HL black holes in (d + 1) dimensions
(d = 3). We begin with the action of HL gravity at the z = 3
UV fixed point, which can be reexpressed as [31]

5= arfLo+ (1-).],

_ [ 44 2 ij 2
Lozjdx\/yN[E(Kinf—AK)
+K—2A—W((d—2)R—dA ) 1
8xi 1 dh wl | M
S| d
= [t (4 )
' J g 8ich, 1 - dA 4

~(1-d}) Rinij] ,

where the first two terms in the L are the kinetic actions,
while the residue corresponds to the potential actions. R;; is
the Ricci tensor, R is the Ricci scalar, and K;; is defined by
K = (1/2N)(gij - VN, - VjN,-), which are based on the
ADM decomposition of the higher dimensional metric, i.e.,
dsi,; = —N?df’ + g;(dx’ — N'dt)(dx’ — N’dt). Here the
lapse, shift, and d-metric N, N', and gij are all functions of ¢

and x', and a dot denotes a derivative with respect to t. There
are five constant parameters in the action: AW, A, €, K, and
Ky A = (d/2(d - 2))Ay is the cosmological constant. x and
Ky have their origin as the Newton constant and the speed
of light. A represents a dynamical coupling constant which
is susceptible to quantum corrections. We will fix A = 1 in
the following paper, only for which general relativity can be
recovered in the large distance approximation. In addition,
we will only consider the general values of € in the region
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0 < € < 1,as e = 0 corresponds to the so-called detailed-
balance condition, and HL gravity with € = 1 returns back to
general relativity.

Action Eq. (1) admits arbitrary dimensional topological
AdS black holes with the metric

dr?

ds* = —f (r)df* + ot r’dQ)_ )
and the horizon function [23, 31]
fr)
. 2A r?
(1-€2)d-1)(d-2) 3)

_2an © ¢ 4A2wrd
(1-€?) (1-e)*d-1)*d-2)"

where inH)k denotes the line element of a (d — 1)-
dimensional manifold with constant scalar curvature (d—1)k,
and k = 0, +1 indicates different topology of the spatial space.
¢ is integration constant, which is related to the black hole
mass

2 3
Qg k€ 1 [

T 167Gy d-2) Ay )

Ay’
where we have chosen the natural units and Qfl_l,k =16(d -
2)7.

In AdS space-time, the cosmological constant is intro-
duced as the thermodynamical pressure [15]:

p=-A_ 4, 5)

st lend-2) "
Then we can rewrite the horizon function as

f)
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and the mass is

64P7‘[rf (1 - 62) dkzrf_4
= +
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+ —_—
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where 7, denotes the event horizon which is the largest
positive root of f(r) = 0. The conjugate thermodynamic
volume of pressure is

v 647mr? B (1 - ez) di*rd
d-1*d-2d P*d-2)n

(8)
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The entropy and temperature are presented in [31] with the
following forms:

3
kd(1-€*)In(r
4mr? 1+M +So, d=3,
- 8(d —2) Pnr? )
16779 kd(d -1y (d-2)(1-¢)
—— | 1+ = ) +Sy, d=4,
d-1)"(d-2) 32(d-2)(d - 3) Pnrs
- 1024P° %} + 64k (d - 1) (d - 2) Prnrt + K*d (d - 1)* (d - 4) (1 - 62). )

8(d - 1)nr, (32nPr? + kd (d - 1) (1 - €2))

It is easy to check the first law of thermodynamics:
dM = TdS + VdP, (1

while the Smarr relation always fails to exist. This can be
easily found because of the existence of S, (and logarithmic
term for d = 3) in black hole entropy, which is not fixed
and may be calculated by invoking the quantum theory of
gravity as argued in [23]. Note that € scales as [L] 0 and there is
no other dimensional quantity in extended thermodynamic
phase space. In this meaning, the validity of the Smarr
relation will bring another physical consideration on the
parameter S).

In order to analyze the global thermodynamic stability
and phase transition of the HL black hole, it is always to study
the Gibbs free energy:

G=H-TS=M-TS, (12)

as the black hole mass M should be considered as the enthalpy
H in the extended thermodynamic phase space. For the local
thermodynamic stability, one can turn to the specific heat of
black hole

_dM  dM/dr,
~dr  dr/dr,

(13)

We present the above two quantities in the Appendix, as their
forms are very complicated.

3. P -V Criticality

According to (10), we can obtain the equation of state (EOS):

1024P*7°r? + 64k (d — 1) (d - 2) Par?
+kd@d-1)°(d-4)(1-¢€")
(14)
~8(d-1)nr, (32Pnr) +kd(d-1)(1-€))T

:0’

which reflects the double-valuedness of the pressure in the
extended thermodynamic phase space. On the other hand,
we can derive the pressure P(T,r,) as

d-1)
P(Lr) =55
2

<—kd +2(k+2nr,T)
(15)

V4 (k+ 27, T)? — kde? (4k — kd + 87Tr+T)> ,

while another one is the negative pressure branch. After
taking a series expansion, it leads to

d-nT kd-1)(de+d-4)

4r, 32mr?

p

Lo(r). 6)

+

Comparing the above equation with the Van der Waals
equation
T a T bT a

> - +0(7), W)

P= v-b ¥ v
one can easily find the specific volume v oc r+. Therefore
we will just use the horizon radius r, in EOS instead of
the specific volume v and study the P — r+ behavior in the
following paper.

To consider the P — V criticality, we can focus on

op

— =0,
or,

(18)
orr

to find the critical points. As the direct differentiation of P
(see (15)) is too complicated, we prefer to employ the implicit
differentiation on EOS (see (14) ) and the above equations, and
we can derive two simple conditions:

512P’nr) +16(d - 1) (k(d - 2)r, - 6nr2T) P
(19)
~kdd-1y’(1-€)T =0,

96Prr: —12(d - 1)ar,T+(d-1)(d-2)k=0. (20)
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TABLE 1: The critical points of HL AdS spherical black holes.
. . critical relation
Dimensions P, T, €, PrT.
2V3-1 V3 2 6-3
Four prom = 5V +6V3 . =078
. 1 1 2 1
Five 8 2, ig NG 7
_ 1 1 2 1
Six 8nr? 27r, iE V5 4
They lead to the critical points: _ k
c P
k(d—1) (127X +2 - d) 8mry
P = > s (21) k
967ty T =
x < 2mr,’
T.=—, 2
= (22) €=t \5,
by which, the EOS (see (14)) is simplified as an equation of € d=5
and results in the following condition: ’ (26)
26
2(d-5)Xm+2d-7
€ = iZ\j @( d) dﬂ ), (23)  where y = +1. It is easy to find that positive pressure and
3d(d-4) temperature require the conditions (k = 1,y = 1). In four
where dimensions (d = 3), the critical behavior is studied in [29].
V3@-D@d-9 Totally, we conclude that only four-, five-, and six-
X = 3(d-3)+y3d-1)d-5) . (24)  dimensional HL AdS black holes with spherical horizon have

127

It is interesting that there is no critical volume or horizon
radius, but the critical parameter €. To start the physical
discussion, we should firstly calculate the physical critical
points with real and positive pressure and temperature, which
lead to the constraint

1<d<5s. (25)

Namely, there is P — V criticality only in four, five, and six
dimensions. Besides, the physical critical points are simplified
as

, k(2V3y-1)
< 48ar2
3k
T, = V3ky
6rnr,
2
€. = 15\/9 + 6\/3)/,
d=3;
k
P. = ,
¢ 8mr?
T.= K
2mr,
e =22,
3
d =4

physical critical points, as shown in Table 1.

In next sections, we will give the physical discussion
about the critical phenomena, i.e., the infinitely critical points
and continuous second-order phase transitions. Especially
for four-dimensional case, it is reported in [29], which is
called “peculiar critical phenomena”. In Section 4, we will
conclude that they are actually the famous A phase transition
after studying the specific heat C, of HL black holes. We
also present the A phase transition in five dimensions. In
Section 5, it is found that six-dimensional HL AdS black
holes only contain “normal” black hole phase and thus no
similar phase transition. In Sections 6 and 7, we discuss the
critical phenomena and calculate the critical exponents in
different planes, by identifying parameter € as the ordering
field instead of pressure and temperature, respectively.

4. ) Phase Transition in Four and
Five Dimensions

In this section, we discuss phase transitions in four and
five dimensions. Back to the critical points in Table 1, it is
interesting that there is no critical volume or horizon radius,
but the critical parameter €. Moreover, the P — . oscillatory
behavior and the classical “swallow tail” characterizing the
first-order phase transition are controlled by the parameter
€, instead of the temperature T, which is clearly shown
in Figure 1. The P — r, diagrams are plotted at the same
temperature T' and G — T diagrams are plotted at the same
pressure P. When € > ¢, there exist the small/large black
holes phase transition in both four and five dimensions,
which is exactly the same as the liquid/gas phase transition
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P-r, diagram for different € in four dimensions
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P-r, diagram for different € in five dimensions
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FIGURE I: Curves of P—r, at the same temperature T = 1/10 and G —T at the same pressure P = 1/10 in four and five dimensions for different
€. When € > €, there are the P — r, oscillatory behavior and the classical “swallow tail” characterizing the small/large black holes phase
transition. When € = €, the second-order phase transition emerges and the dotted lines highlight the points where the second derivative of

the Gibbs free energy G diverges.

of van der Waals fluid. Especially for € = ¢,, the P —r, curves
become a critical isotherm having an inflection point, and the
second-order phase transition emerges.

On the other hand, black holes with spherical horizon and
arbitrary mass M always have event horizon r, > 0, which is
arbitrary as well. As a result, four and five dimensional HL
AdS black holes with € = ¢, exhibit infinitely many critical
points with arbitrary temperature T, and horizon radius r, as

(2\/5_ 1)7TT2
4 e’
\3

= b
6rnr,

c

T,

c

d=3;
T2
PC: ETC,
1
¢ 2ar,’
d=4.

(27)

Namely, every isotherm in P — r, diagrams is a critical
isotherm, which has an inflection point at

RERIN

ro=16m (28)
—, d=4
2nT
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P-r, diagram for €, in five dimensions
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FIGURE 2: Curves of P — r, at the different temperature T and G — T at the different pressure P in four and five dimensions for € = €. Every
isotherm in P —r, diagrams is a critical isotherm, and the dotted lines describe the position of all critical points. A line of second-order phase
transitions is shown in G — T diagrams, and the dashed lines describe the position of all phase transition points.

One can find it easily in Figure 2, and the dotted lines in P—r,
diagrams describe the position of all critical points (see (28))
at arbitrary temperature T'. Besides, in G — T' diagrams, there
is no first-order phase transition but rather a line of second-
order phase transitions, for which the phase transition points
are highlighted by the dotted lines in Figure 2. The dashed
lines in G — T diagrams describe the position of all phase
transition points

JL, PR

T = g_i‘ﬁ‘l)” (29)
—— d=4
JT

at arbitrary pressure P, where the second derivative of the
Gibbs free energy G diverges.

To study the continuous second-order phase transitions,
we focus on the specific heat Cp of black holes with € = €.
From the C, — T diagrams in Figure 3, one can obtain that
the specific heat C) always diverges at the critical temperature
(see (29)). This is the classical A line, i.e., the line of second-
order phase transitions, in C, — T diagrams, which was
famous in the discussion of superfluidity of liquid *He.
Similarly, in the P — T parameter space (right two plots of
Figure 3), a line of critical points, i.e., the A line, separates
the two phases of system, which are the “superfluid” black
hole phase and “normal” black hole phase. To determine
the two phases, we consider the S — P diagrams, i.e., the
middle two plots in Figure 3. The dashed lines highlight
the critical pressure (see (27)). One can observe that the
entropy of black holes with pressure smaller than the critical
pressure is bigger, corresponding to the “normal” black hole
phase. Another one is the “superfluid” black hole phase
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S-P diagram in four dimensions

Cp vs T in four dimensions
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FIGURE 3: Curves of Cp, — T and S — P and P — T parameter space of black holes with € = €, in four and five dimensions. The Alinein C, — T
and P — T plots indicates the second-order phase transitions between “superfluid” black hole phase and “normal” black hole phase, which

are distinguished in the S — P plots by the dashed lines.

having smaller entropy and corresponding to black holes with
pressure larger than the critical pressure. Particularly, the
entropy of “superfluid” black hole phase is almost vanishing
in five dimensions, while it seems to be negative in four
dimensions. Note that the positivity of entropy depends on Sy,
which is not clear and could be fixed by counting microscopic
degrees of freedom in quantum theory of gravity as argued in
[23].

Finally, we conclude that this continuous second-order
phase transition between small/large black holes corresponds
to the phase transition between “superfluid” black hole and
“normal” black hole, which is firstly reported in Lovelock
gravity with conformally coupled scalar field [20].

5. “Normal” Black Hole Phase in
Six Dimensions

In six dimensions, there are critical points in P — r, plane as
presented in Table 1. Actually, they describe infinitely many
critical points with arbitrary temperature T, and horizon

radius r, for HL black holes with ¢ = €. = +(2/5)V5;
ie.,
T, 2
PC = ETC 5
. (30)
T. = ,
2mr,

which is exactly the same as the one in five dimensions.
However, from Figure 4, it is strange that there is no P — r,
oscillatory behavior and classical “swallow tail” for different
€; especially for € = €., one can never find the second-order
phase transitions. This is different from the cases in four and
five dimensions, and six-dimensional black holes seem to
have no phase transition.

To interpret the strange critical point, we could study the
specific heat Cp. One can look at the Cp — T curve in the right
plot of Figure 5. The specific heat Cp diverges at the critical
point (phase transition point)

oy
s

(31)



P-r, diagram for different € in six dimensions

0.02 |

0.01 |

-0.01 -

0.03 -

0.02 1

0.01 A

—T=01
---T=0.09

--- T=0.11
Critical points

Advances in High Energy Physics

G-T diagram in six dimensions for different e
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FIGURE 4: Curves of P —r, and G - T in six dimensions for different € and € = ¢,. There is no P —r, oscillatory behavior and phase transition.

while the dashed line highlighting a lower bound of temper-
ature destroys the A line. It is easy to calculate the minimal
temperature of six-dimensional HL AdS spherical black holes
with € = €, for which the temperature is reduced to

64P2n2rf + 48Pnrf +1

T = 32
() 8nr, (1 + 8Pnr?) (32)
Considering the first-order derivative
(8P7'[r2 - 1)3
T = . (33)

- 8mr2 (1 + SPmﬁ)z’

it leads to the minima at v, = 1/V8nP;i.e.,

2P
T.:—’

min T (34)
which is exactly the phase transition point (see (31)). This
temperature bound could be treated as a physical temperature
constraint, which cancels the “superfluid” black hole phase.
This physical temperature constraint is equivalent to a upper
bound of pressure, i.e., P < nT? /2, for arbitrary temperature.
Then in the S — P diagram in the middle one of Figure 5,
one can also observe that there are no (“superfluid”) black
holes for P > 7T%/2, which correspond to the exact A line
in P — T parameter space as shown in the right plot in
Figure 5. Therefore, even six-dimensional HL AdS black holes
exhibit infinitely many critical points in P — v plane and the
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Cp vs T in six dimensions

S-P diagram in six dimensions

P-T diagram in six dimensions
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FIGURE 5: Curves of Cp, — T and S — P and P — T parameter space of black holes with € = €. in six dimensions. The dashed lines highlight the
minimal temperature, which could be treated as a physical temperature constraint and cancel the “superfluid” black hole phase. Therefore
there is no A phase transition in six dimensions even when the specific heat diverges.

divergent points for specific heat; there does not exist A phase
transition, as they only contain the “normal” black hole phase
and the “superfluid” black hole phase disappears in the P - T
parameter space due to the physical temperature constraint
(see (34)).

6. Critical Phenomena in € -, Plane

Because of the existence of infinite critical points, it is
not able to calculate the critical exponents. Actually, to
study the critical exponents for A phase transitions of liquid
*He, thermodynamic pressure is no longer the appropriate
ordering field [32]. For the “superfluid” black hole, pressure
should be instead of other parameters [20]. As for HL AdS
black holes, there is only one option for the appropriate
ordering field, i.e., parameter €. Though € is a dimensionless
quantity, it does characterize the critical phenomena for four-
and five-dimensional HL AdS black holes as shown later.

Firstly, we study the critical points in € — r, plane, for
which the thermodynamic variables of EOS should be ¢,
r.(i.e., v), T. Thus, we should firstly rewrite the EOS by
rearranging the expression for temperature Eq. (10) for the
chosen ordering field €, which behaves as

e(T,r,)
(d(d-1)k+321Pr?) ; 321Pr? (35)
- d(d-17k <( _1)_8nr+T—(d—4)k>'
We follow the conditions
%,
or,
(36)
e _,
or? o

to find the critical points. However, the direct differentiation
of € is too complicated; we also prefer to employ the implicit

differentiation on EOS (see (14)) and the above equations.
After a careful calculation, we obtain the same two conditions
(19) and (20). Thus, one can easily get the critical point:

__|e@-5Xr+2d-7)
eC—J_r2\/ 3G9 , (37)
. =l\lk(d—1)(12nX+2—d)’ (38)
4 6mP

6mP
L. =4kX\jk(d— (127X +2-d)’ (39)

where X has the value as (24) and P is a positive constant
indicating AdS space-time.

Following the discussions in Section 3, it is shown that
only four-, five-, and six-dimensional HL AdS black holes
with spherical horizon have physical critical point, as shown
in Table 2. Besides, in four and five dimensions, there exist the
€ — r, oscillatory behavior when T' > T, as shown in Figure 6
and the classical “swallow tail” characterizing the small/large
black holes phase transition when € > €, as shownin G — T
diagrams of Figure 1. In six dimensions, it is easy to check that
the critical point leads to B%/Brfr = 0. As a result, one can
never find the e—r, oscillatory behavior as shown in Figure 6,
and no first-order phase transition exists as shown in G = T'
diagrams of Figure 4.

Finally, we consider the critical exponents in four and five
dimensions. After introducing the dimensionless quantities

o _ €
==
ry
w=—-1,
. (40)
T
t=—-1,
TC
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TaBLE 2: The critical point of HL AdS spherical black holes in € — 7, plane.
Dimensions €, T, T.
2 - 4P
Four +— \/ 9+6V3 m —_—
9 487P 2V3-n
2 1 2P
Five +242 — =
3 8P T
2 1 2P
Six +24/5 _— il
5 8nP Ui
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FIGURE 6: Curves of € — r, with P = 1/10 in four, five, and six dimensions for different temperature. In four and five dimensions, one can
observe the € — r, oscillatory behavior when T' > T, while no oscillatory behavior for six dimensions is observed.

the ordering field can be expanded near the critical point as

(11

1+0.115¢ +0.234tw — 0.0420° + O (tw’, "), d =3, (41)
= 13 1
1+—t+—tw——w3+@(ta)2,w4), d=4,
48 16

where the coefficients for four-dimensional case all have
complicated forms, and their approximate values are given.
The above expansions both have the same form as that for
the van der Waals fluid and the RN-AdS black hole [15]. As
the system can be characterized by the critical exponents

C, o [t

w o< |t|ﬁ,

(42)

one can obtain that

a=0,
1
=z (43)
y=1
5=3

Particularly, w oc V't indicates that phase transition appears
when T > T,. Moreover, it is easy to check that they obey the
scaling symmetry like the ordinary thermodynamic systems
and in particular coincide with those for a superfluid [32].

7. Critical Phenomena in P — r, Plane with
“Temperature” ¢

It is interesting to find that the parameter € controls the P—r,
oscillatory behavior instead of the temperature T', other than
the pressure P, as shown in P — r, diagrams of Figure 1. This
indicates that there is still a critical phenomenon in P — r,
plane. For this case, pressure could still be treated as the
ordering field, while € should be considered as “temperature”.
This is different from that for the first “superfluid” black holes
[20].
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TaBLE 3: The critical point of HL AdS spherical black holes in P — r, plane with “temperature”e.
Dimensions P. T, €,
- 2 2 [ =
Four M ﬁ +—19+6 ‘\/§
4 6nT 9
nT? 1 2
. T L +242
Five 5 T 3 \2
nT? 1 2
. nT” L +245
Six 5 wT 5 \5

To study the corresponding critical phenomena, we can
still follow the procedure studying P — r, criticality in
Section 3, which leads to the same three critical equations:
(14), (19), and (20). As the thermodynamic variables of EOS
for this case should be P, r, (ie., v), €, we can find the
following critical point:

d-1(12nX+2-4d),,
P = T2, 44
‘ 967k X? (44

kX
re= T, (45)
with the critical “temperature”
(2(d-5)Xm+2d-7)

“ \] 3d(d—4) (46)

where X takes the value as (24) and T is a positive constant.
As similar as the discussions in Section 3, one can find
that only four-, five-, and six-dimensional HL AdS black holes
with spherical horizon have physical critical point, as shown
in Table 3. In four and five dimensions, when “temperature”
€ > €, there exist the P — r, oscillatory behavior (Figure 1)

and the classical “swallow tail” characterizing the small/large
black holes phase transition as shown in G — P diagrams of
Figure 7. As for the case of six dimensions, it is easy to find
that the critical point leads to 83P/Bri = 0. Therefore, one
can not observe the P — r, oscillatory behavior as shown in
Figure 4, and no first-order phase transition exists as shown
in Figure 7.

Then, we can also calculate the critical exponents in four
and five dimensions near the critical point. Similarly, we
begin with the following dimensionless quantities:

_ P
P—PC’
w="t_1, (47)
rC
=<1
€

The EOS can be reduced to the dimensionless case, for which
its Taylor series expansion at the critical point takes the
following forms:

563 + 94
1- gr+(10\/§+ 18)Tw— (\/5— l)w3 + @(Twz,w4), d =3,
_ 11 48)
p . (
1—8T+121w—5w3+@(rw2,w4), d=4.
They still both have the same form as that for the van der  itis easy to find
Waals fluid and the RN-AdS black hole [15]. After introducing =0
the critical exponents -
1
(%1 ﬁ = -,
C, o |t 7, 2 (50)
w o |7lf, y=1
L <aw> o (49) 8=3,
K,=—-w |(=— ]| olt|",
ap /1, which satisfy the scaling laws of the ordinary thermodynamic
s systems. Besides, w o /T indicates that phase transition
p ool appears when € > €..
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FIGURE 7: Curves of G — P with T' = 1/10 in four, five, and six dimensions for different “temperature” €. In four and five dimensions, one can
observe the classical “swallow tail” characterizing the small/large black holes phase transition when “temperature” € > €., while no “swallow

tail” exists for six dimensions.

8. Discussion

In this paper, we study the extended thermodynamics of
general dimensional HL AdS black holes and present another
example of “superfluid” black holes. It is found that only
four- and five-dimensional HL AdS black holes with spherical
horizon have the A phase transition, which correspond to
the phase transition between “superfluid” black hole and
“normal” black hole. After considering the behavior of
entropy, the “superfluid” black hole phase and “normal” black
hole phase are distinguished. Particularly, six-dimensional
HL AdS black holes exhibit infinitely many critical points
in P — v plane and the divergent points for specific heat,
for which they only contain the “normal” black hole phase
and the “superfluid” black hole phase disappears due to the
physical temperature constraint; therefore there is no similar
phase transition. In more than six dimensions, there is no
P — V critical behavior. After identifying parameter € as the
ordering field instead of pressure and temperature, we study

the critical phenomena in different planes of thermodynami-
cal phase space. We also obtain the critical exponents in both
planes, which are the same as the van der Waals fluid.

The “superfluid” black hole is firstly reported in Lovelock
gravity with conformally coupled scalar field [20], which
contains at least four free parameters in the action of theory.
Comparing with it, the one in Horava gravity has only one
free parameter e. It is interesting to consider the necessary
and sufficient conditions for general “superfluid” black hole;
ie., a black hole EOS must satisfy to display similar A
phase transition, which is still unclear. Besides, could the
“superfluid” black holes appear in Einstein gravity? These are
all interesting and left to be the future tasks.

Appendix

Gibbs Free Energy and Capacity
The Gibbs free energy is

G
3k (1-€) wakr+ S (1024P°%r} + 128kPrr} — 127 (1 - €))
16Pnr, 3 167r, (32Pnr? + 6k (1 — €2))
3k(1 —ez)ln(nr)
2 — 3.
e () ) e
T artt(1-€) akr2 64Pmr’ 1024P*7°r} + 64k (d = 1) (d = 2) P’ + Kd (d - 1)° (d - 4) (1 - €)
16@d-2Pr  @-1@d-2) dd-1"Wd-2) 8(d—1)rr, (32Pnr + kd(d— 1) (1 - €2))
167797 kd(d-1)*(d-2)(1-¢€) )
* (d-17*(d-2) b 32(d-2)(d-3)Pnrt o ) =4
The specific heat is + 64k (d —1)(d - 2) ngzr
d-3
-
Cp=—F—(32Pnr? 2dd-1)°*d- pe 330
= s E@T @ P +K2d(d-1) (@d-4) (1-¢")) x (32768P° 77

+kd(d-1)(1-¢))" x (1024P7%

— 1024k (d - 1) (3de’ — d - 4) P’n’r}
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- 32k*d (d - 1)* (d - 8) Prr} (1 - €%)

~KRdd-1) d-4)(1- 62)2)_1 .
(A.2)
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