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We study nonlinear cosmological perturbations and their possible non-Gaussian character in an extended nonminimal inflation
where gravity is coupled nonminimally to both the scalar field and its derivatives. By expansion of the action up to the third order,
we focus on the nonlinearity and non-Gaussianity of perturbations in comparison with recent observational data. By adopting
an inflation potential of the form 𝑉(𝜙) = (1/𝑛)𝜆𝜙𝑛, we show that, for 𝑛 = 4, for instance, this extended model is consistent
with observation if 0.013 < 𝜆 < 0.095 in appropriate units. By restricting the equilateral amplitude of non-Gaussianity to the
observationally viable values, the coupling parameter 𝜆 is constrained to the values 𝜆 < 0.1.

1. Introduction

The idea of cosmological inflation is capable of address-
ing some problems of the standard big bang theory, such
as the horizon, flatness, and monopole problems. Also, it
can provide a reliable mechanism for generation of den-
sity perturbations responsible for structure formation and
therefore temperature anisotropies in Cosmic Microwave
Background (CMB) spectrum [1–8]. There are a wide variety
of cosmological inflation models where viability of their
predictions in comparison with observations makes them
acceptable or unacceptable (see, for instance, [9, 10] for this
purpose). The simplest inflationary model is a single scalar
field scenario in which inflation is driven by a scalar field
called the inflaton that predicts adiabatic, Gaussian, and
scale-invariant fluctuations [11]. But recently observational
data have revealed some degrees of scale-dependence in
the primordial density perturbations. Also, Planck team
have obtained some constraints on the primordial non-
Gaussianity [12–14]. Therefore, it seems that extended mod-
els of inflation which can explain or address this scale-
dependence and non-Gaussianity of perturbations are more
desirable. There are a lot of studies in this respect, some

of which can be seen in [15–20] with references therein.
Among various inflationary models, the nonminimal models
have attracted much attention. Nonminimal coupling of the
inflaton field and gravitational sector is inevitable from the
renormalizability of the corresponding field theory (see, for
instance, [21]). Cosmological inflation driven by a scalar field
nonminimally coupled to gravity is studied, for instance, in
[22–29]. There were some issues on the unitarity violation
with nonminimal coupling (see, for instance, [30–32]) which
have forced researchers to consider possible coupling of the
derivatives of the scalar field with geometry [33]. In fact, it has
been shown that amodel with nonminimal coupling between
the kinetic terms of the inflaton (derivatives of the scalar field)
and the Einstein tensor preserves the unitary bound during
inflation [34]. Also, the presence of nonminimal derivative
coupling is a powerful tool to increase the friction of an
inflaton rolling down its own potential [34]. Some authors
have considered the model with this coupling term and have
studied the early time accelerating expansion of the universe
as well as the late time dynamics [35–37]. In this paper we
extend the nonminimal inflation models to the case that
a canonical inflaton field is coupled nonminimally to the
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gravitational sector and in the same time the derivatives of the
field are also coupled to the background geometry (Einstein’s
tensor). This model provides a more realistic framework
for treating cosmological inflation in essence. We study
in detail the cosmological perturbations and possible non-
Gaussianities in the distribution of these perturbations in this
nonminimal inflation. We expand the action of the model up
to the third order and compare our results with observational
data from Planck2015 to see the viability of this extended
model. In this manner, we are able to constrain parameter
space of the model in comparison with observation.

2. Field Equations

We consider an inflationary model where both a canonical
scalar field and its derivatives are coupled nonminimally to
gravity. The four-dimensional action for this model is given
by the following expression:

𝑆 = 12 ∫ 𝑑4𝑥
⋅ √−𝑔 [𝑀2

𝑝𝑓 (𝜙)𝑅 + 1̃
𝑀2

𝐺𝜇]𝜕𝜇𝜙𝜕]𝜙 − 2𝑉 (𝜙)] ,
(1)

where 𝑀𝑝 is a reduced Planck mass, 𝜙 is a canonical scalar
field, 𝑓(𝜙) is a general function of the scalar field, and 𝑀̃ is
a mass parameter. The energy-momentum tensor is obtained
from action (1) as follows:

𝑇𝜇] = 1
2𝑀̃2

[∇𝜇∇] (∇𝛼𝜙∇𝛼𝜙) − 𝑔𝜇]◻ (∇𝛼𝜙∇𝛼𝜙)
+ 𝑔𝜇]𝑔𝛼𝜌𝑔𝛽𝜆∇𝜌∇𝜆 (∇𝛼𝜙∇𝛽𝜙) + ◻ (∇𝜇𝜙∇]𝜙)] − 𝑔𝛼𝛽

𝑀̃2

⋅ ∇𝛽∇𝜇 (∇𝛼𝜙∇]𝜙) − 𝑀2
𝑝∇𝜇∇]𝑓 (𝜙) +𝑀2

𝑝𝑔𝜇]◻𝑓 (𝜙)
+ 𝑔𝜇]𝑉 (𝜙) .

(2)

On the other hand, variation of the action (1) with respect
to the scalar field gives the scalar field equation of motion as

12𝑀2
𝑝𝑅𝑓󸀠 (𝜙) − 1̃

𝑀2
𝐺𝜇]∇𝜇∇]𝜙 − 𝑉󸀠 (𝜙) = 0, (3)

where a prime denotes derivative with respect to the scalar
field. We consider a spatially flat Friedmann-Robertson-
Walker (FRW) line element as

𝑑𝑠2 = −𝑑𝑡2 + 𝑎2 (𝑡) 𝛿𝑖𝑗𝑑𝑥𝑖𝑑𝑥𝑗, (4)

where 𝑎(𝑡) is scale factor. Now, let us assume that 𝑓(𝜙) =(1/2)𝜙2. In this framework, 𝑇𝜇] leads to the following energy
density and pressure for this model, respectively,

𝜌 = 9𝐻2

2𝑀̃2
̇𝜙2 − 32𝑀2

𝑝𝐻𝜙(2 ̇𝜙 + 𝐻𝜙) + 𝑉 (𝜙) (5)

𝑝 = −32 𝐻
2 ̇𝜙2
𝑀̃2

− ̇𝜙2𝐻̃̇
𝑀2

− 2𝐻̃
𝑀2

̇𝜙 ̈𝜙
+ 12𝑀2

𝑝 [2𝐻̇𝜙2 + 3𝐻2𝜙2 + 4𝐻𝜙 ̇𝜙 + 2𝜙 ̈𝜙 + 2 ̇𝜙]
− 𝑉 (𝜙) ,

(6)

where a dot refers to derivative with respect to the cosmic
time. The equations of motion following from action (1) are

𝐻2 = 13𝑀2
𝑝

[−32𝑀2
𝑝𝐻𝜙(2 ̇𝜙 + 𝐻𝜙) + 9𝐻2

2𝑀̃2
̇𝜙2

+ 𝑉 (𝜙)] ,
(7)

𝐻̇ = − 12𝑀2
𝑝

[ ̇𝜙2 (3𝐻2

𝑀2
− 𝐻̃̇
𝑀2

) − 2𝐻̃
𝑀2

̇𝜙 ̈𝜙
− 32𝑀2

𝑝𝐻𝜙(2 ̇𝜙 + 𝐻𝜙)
+ 12𝑀2

𝑝 ((2𝐻̇ + 3𝐻2) 𝜙2 + 4𝐻𝜙 ̇𝜙 + 2𝜙 ̈𝜙 + 2 ̇𝜙2)]
(8)

− 3𝑀2
𝑝 (2𝐻2 + 𝐻̇) 𝜙 + 3𝐻2

𝑀2
̈𝜙 + 3𝐻(3𝐻2

𝑀̃2
+ 2𝐻̃̇
𝑀2

) ̇𝜙
+ 𝑉󸀠 (𝜙) = 0.

(9)

The slow-roll parameters in this model are defined as

𝜖 ≡ − 𝐻̇𝐻2
,

𝜂 ≡ − 1𝐻 𝐻̇̈
𝐻.

(10)

To have inflationary phase, 𝜖 and 𝜂 should satisfy slow-roll
conditions (𝜖 ≪ 1, 𝜂 ≪ 1). In our setup, we find the following
result:

𝜖 = [1 + 𝜙22 − ̇𝜙2
2𝑀̃2𝑀2

𝑝

]
−1

⋅ [ 3 ̇𝜙2
2𝑀̃2𝑀2

𝑝

+ 𝜙 ̇𝜙2𝐻 + ̈𝜙
𝐻 ̇𝜙 ( 𝜙 ̇𝜙2𝐻 − ̇𝜙2

𝑀̃2𝑀2
𝑝

)]
(11)

and

𝜂 = −2𝜖 − ̇𝜖𝐻𝜖. (12)

Within the slow-roll approximation, (7), (8), and (9) can
be written, respectively, as

𝐻2 ≃ 13𝑀2
𝑝

[−32𝑀2
𝑝𝐻2𝜙2 + 𝑉 (𝜙)] , (13)

𝐻̇ ≃ − 12𝑀2
𝑝

[3𝐻2 ̇𝜙2
𝑀̃2

−𝑀2
𝑝𝐻𝜙 ̇𝜙 +𝑀2

𝑝𝐻̇𝜙2] , (14)

and
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−6𝑀2
𝑝𝐻2𝜙 + 9𝐻3 ̇𝜙

𝑀̃2
+ 𝑉󸀠 (𝜙) ≃ 0. (15)

The number of e-folds during inflation is defined as

N = ∫𝑡𝑒

𝑡ℎ𝑐

𝐻𝑑𝑡, (16)

where 𝑡ℎ𝑐 and 𝑡𝑒 are time of horizon crossing and end
of inflation, respectively. The number of e-folds in the
slow-roll approximation in our setup can be expressed as
follows:

N ≃ ∫𝜙𝑒

𝜙ℎ𝑐

𝑉(𝜙) 𝑑𝜙
𝑀2

𝑝 (1 + (1/2) 𝜙2) [2𝑀2
𝑝𝑀̃2𝜙 −𝑀2

𝑝𝑀̃2 (𝑉󸀠 (𝜙) /𝑉 (𝜙)) (1 + (1/2) 𝜙2)] . (17)

After providing the basic setup of the model, for testing
cosmological viability of this extended model, we treat the
perturbations in comparison with observation.

3. Second-Order Action: Linear Perturbations

In this section, we study linear perturbations around the
homogeneous background solution. To this end, the first step
is expanding the action (1) up to the second order in small
fluctuations. It is convenient to work in the ADM formalism
given by [38]

𝑑𝑠2 = −𝑁2𝑑𝑡2 + ℎ𝑖𝑗 (𝑁𝑖𝑑𝑡 + 𝑑𝑥𝑖) (𝑁𝑗𝑑𝑡 + 𝑑𝑥𝑗) , (18)

where 𝑁𝑖 is the shift vector and 𝑁 is the lapse function. We
expand the lapse function and shift vector to𝑁 = 1+2Φ and𝑁𝑖 = 𝛿𝑖𝑗𝜕𝑗Υ, respectively, where Φ and Υ are three-scalars.
Also, ℎ𝑖𝑗 = 𝑎2(𝑡)[(1+2Ψ)𝛿𝑖𝑗+𝛾𝑖𝑗], whereΨ is spatial curvature
perturbation and 𝛾𝑖𝑗 is shear three-tensor which is traceless
and symmetric. In the rest of our study, we choose 𝛿Φ = 0
and 𝛾𝑖𝑗 = 0. By taking into account the scalar perturbations
in linear-order, the metric (18) is written as (see, for instance,
[39])

𝑑𝑠2 = − (1 + 2Φ) 𝑑𝑡2 + 2𝜕𝑖Υ𝑑𝑡𝑑𝑥𝑖
+ 𝑎2 (𝑡) (1 + 2Ψ) 𝛿𝑖𝑗𝑑𝑥𝑖𝑑𝑥𝑗. (19)

Now by replacing metric (19) in action (1) and expanding
the action up to the second order in perturbations, we find
(see, for instance, [40, 41])

𝑆(2) = ∫𝑑𝑡𝑑𝑥3𝑎3 [−32 (𝑀2
𝑝𝜙2 − ̇𝜙2

𝑀2
) Ψ̇2

+ 1𝑎2 ((𝑀2
𝑝𝜙2 − ̇𝜙2

𝑀2
) Ψ̇

− (𝑀2
𝑝𝐻𝜙2 +𝑀2

𝑝𝜙 ̇𝜙 − 3𝐻 ̇𝜙2
𝑀̃2

)Φ)𝜕2Υ

− 1𝑎2 (𝑀2
𝑝𝜙2 − ̇𝜙2

𝑀̃2
)Φ𝜕2Ψ + 3(𝑀2

𝑝𝐻𝜙2

+𝑀2
𝑝𝜙 ̇𝜙 − 3𝐻 ̇𝜙2

𝑀̃2
)ΦΨ̇ + 3𝐻(−12𝑀2

𝑝𝐻𝜙2

−𝑀2
𝑝𝜙 ̇𝜙 + 3𝐻 ̇𝜙2

𝑀̃2
)Φ2 + 12𝑎2 (𝑀2

𝑝𝜙2 + ̇𝜙2
𝑀̃2

)
⋅ (𝜕Ψ)2] .

(20)

By variation of action (20) with respect to 𝑁 and 𝑁𝑖 we
find

Φ = 𝑀2
𝑝𝜙2 − ̇𝜙2/𝑀2

𝑀2
𝑝𝐻𝜙2 +𝑀2

𝑝𝜙 ̇𝜙 − 3𝐻 ̇𝜙2/𝑀2
Ψ̇, (21)

𝜕2Υ = 2𝑎23
⋅ (− (9/2)𝑀2

𝑝𝐻2𝜙2 − 9𝑀2
𝑝𝐻𝜙 ̇𝜙 + 27𝐻2 ̇𝜙2/𝑀̃2)

(𝑀2
𝑝𝐻𝜙2 +𝑀2

𝑝𝜙 ̇𝜙 − 3𝐻 ̇𝜙2/𝑀̃2)
+ 3Ψ̇𝑎2 − 𝑀2

𝑝𝜙2 − ̇𝜙2/𝑀̃2

𝑀2
𝑝𝐻𝜙2 +𝑀2

𝑝𝜙 ̇𝜙 − 3𝐻 ̇𝜙2/𝑀̃2
Ψ̇.

(22)

Finally the second-order action can be rewritten as follows:

𝑆(2) = ∫𝑑𝑡𝑑𝑥3𝑎3𝜗𝑠 [Ψ̇2 − 𝑐2𝑠𝑎2 (𝜕Ψ)2] (23)

where by definition

𝜗𝑠 ≡ 6(𝑀2
𝑝𝜙2 − ̇𝜙2/𝑀̃2)2 (− (1/2)𝑀2

𝑝𝐻2𝜙2 −𝑀2
𝑝𝐻𝜙 ̇𝜙 + (3/𝑀̃2)𝐻2 ̇𝜙2)

(𝑀2
𝑝𝐻𝜙2 +𝑀2

𝑝𝜙 ̇𝜙 − (3/𝑀̃2)𝐻 ̇𝜙2)2 + 3(12𝑀2
𝑝𝜙2 − 1

22̃ ̇𝜙2) (24)
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and

𝑐2𝑠 ≡ 32 {(𝑀2
𝑝𝜙2 − ̇𝜙2

𝑀̃2
)2 (𝑀2

𝑝𝐻𝜙2 +𝑀2
𝑝𝜙 ̇𝜙

− 3𝐻 ̇𝜙2
𝑀2

)𝐻 − (𝑀2
𝑝𝐻𝜙2 +𝑀2

𝑝𝜙 ̇𝜙 − 3𝐻 ̇𝜙2
𝑀2

)2

⋅ (𝑀2
𝑝𝜙2 − ̇𝜙2

𝑀2
)4(𝑀2

𝑝𝜙2 − ̇𝜙2
𝑀2

)(𝑀2
𝑝𝜙 ̇𝜙

− ̇𝜙 ̈𝜙̃
𝑀2

)(𝑀2
𝑝𝐻𝜙2 +𝑀2

𝑝𝜙 ̇𝜙 − 3𝐻 ̇𝜙2
𝑀̃2

) − (𝑀2
𝑝

− ̇𝜙2
𝑀̃2

)2 (𝑀2
𝑝𝐻̇𝜙2 + 2𝑀2

𝑝𝐻𝜙 ̇𝜙𝑀2
𝑝

̇𝜙2 +𝑀2
𝑝𝜙 ̈𝜙

− 3𝐻̇ ̇𝜙2
𝑀2

− 6̃
𝑀2

𝐻 ̇𝜙 ̈𝜙)}{9[12𝑀2
𝑝𝜙2 − ̇𝜙2

2𝑀̃2
]

⋅ [4(12𝑀2
𝑝𝜙2 − ̇𝜙2

2𝑀̃2
)

⋅ (−12𝑀2
𝑝𝐻2𝜙2 −𝑀2

𝑝𝐻𝜙 ̇𝜙 + 3
𝑀2̃𝐻2 ̇𝜙2)

+ (𝑀2
𝑝𝐻𝜙2 +𝑀2

𝑝𝜙 ̇𝜙 − 3𝐻 ̇𝜙2
𝑀̃2

)2]}
−1

.

(25)

In order to obtain quantum perturbations Ψ, we can find
equation of motion of the curvature perturbation by varying
action (23) which follows

Ψ̈ + (3𝐻 + ̇𝜗𝑠𝜗𝑠) + 𝑐2𝑠 𝑘2𝑎2 Ψ = 0. (26)

By solving the above equation up to the lowest order in slow-
roll approximation, we find

Ψ = 𝑖𝐻 exp (−𝑖𝑐𝑠𝑘𝜏)2𝑐3/2𝑠
√𝑘3𝜗𝑠 (1 + 𝑖𝑐𝑠𝑘𝜏) . (27)

By using the two-point correlation functions, we can study
power spectrum of curvature perturbation in this setup. We
find two-point correlation function by obtaining vacuum
expectation value at the end of inflation. We define the power
spectrum 𝑃𝑠, as

⟨0 | Ψ (0, k1) Ψ (0, k2) | 0⟩
= 2𝜋2𝑘3 𝑃𝑠 (2𝜋)3 𝛿3 (k1 + k2) ,

(28)

where

𝑃𝑠 = 𝐻2

8𝜋2𝜗𝑠𝑐3𝑠 . (29)

The spectral index of scalar perturbations is given by (see
[42–44] for more details on the cosmological perturbations
in generalized gravity theories and also inflationary spectral
index in these theories)

𝑛𝑠 − 1 = 𝑑 ln𝑃𝑠𝑑 ln 𝑘
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑐𝑠𝑘=𝑎𝐻 = −2𝜖 − 𝛿𝐹 − 𝜂𝑠 − 𝑆 (30)

where by definition

𝛿𝐹 = ̇𝑓
𝐻 (1 + 𝑓) ,

𝜂𝑠 = ̇𝜖𝑠𝐻𝜖𝑠 ,
𝑆 = ̇𝑐𝑠𝐻𝑐𝑠

(31)

also

𝜖𝑠 = 𝜗𝑠𝑐2𝑠𝑀2
𝑝𝑙
(1 + 𝑓) . (32)

We obtain finally

𝑛𝑠 − 1 = −2𝜖 − 1𝐻 𝑑 ln 𝑐𝑠𝑑𝑡
− 1𝐻

𝑑 ln [2𝐻 (1 + 𝜙2/2) 𝜖 + 𝜙 ̇𝜙]
𝑑𝑡 ,

(33)

which shows the scale-dependence of perturbations due to
deviation of 𝑛𝑠 from 1.

Now we study tensor perturbations in this setup. To this
end, we write the metric as follows:

𝑑𝑠2 = −𝑑𝑡2 + 𝑎 (𝑡)2 (𝛿𝑖𝑗 + 𝑇𝑖𝑗) 𝑑𝑥𝑖𝑑𝑥𝑗, (34)

where 𝑇𝑖𝑗 is a spatial shear 3-tensor which is transverse
and traceless. It is convenient to write 𝑇𝑖𝑗 in terms of two
polarization modes, as follows:

𝑇𝑖𝑗 = 𝑇+𝑒+𝑖𝑗 + 𝑇×𝑒×𝑖𝑗, (35)

where 𝑒+𝑖𝑗 and 𝑒×𝑖𝑗 are the polarization tensors. In this case, the
second-order action for the tensor mode can be written as

𝑆𝑇 = ∫𝑑𝑡𝑑𝑥3𝑎3𝜗𝑇 [𝑇̇2
(+,×) − 𝑐2𝑇𝑎2 (𝜕𝑇(+,×))2] , (36)

where by definition

𝜗𝑇 ≡ 18 (𝑀2
𝑝𝜙2 − ̇𝜙2

𝑀̃2
) (37)

and

𝑐2𝑇 ≡ 𝑀̃2𝑀2
𝑝𝜙2 + ̇𝜙2

𝑀̃2𝑀2
𝑝𝜙2 − ̇𝜙2 . (38)
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Now, the amplitude of tensor perturbations is given by

𝑃𝑇 = 𝐻2

2𝜋2𝜗𝑇𝑐3𝑇 , (39)

where we have defined the tensor spectral index as

𝑛𝑇 ≡ 𝑑 ln𝑃𝑇𝑑 ln 𝑘
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑐𝑇𝑘=𝑎𝐻 = −2𝜖 − 𝛿𝐹. (40)

By using above equations, we get finally

𝑛𝑇 = −2𝜖 − 𝜙 ̇𝜙
𝐻 (1 + 𝜙2/2) . (41)

The tensor-to-scalar ratio as an important observational
quantity in our setup is given by

𝑟 = 𝑃𝑇𝑃𝑠 = 16𝑐𝑠 (𝜖 + 𝜙 ̇𝜙
2𝐻 (1 + 𝜙2/2) + 𝑂 (𝜖2))

≃ −8𝑐𝑠𝑛𝑇
(42)

which yields the standard consistency relation.

4. Third-Order Action: Non-Gaussianity

Since a two-point correlation function of the scalar pertur-
bations gives no information about possible non-Gaussian
feature of distribution, we study higher-order correlation
functions. A three-point correlation function is capable of
giving the required information. For this purpose, we should
expand action (1) up to the third order in small fluctuations
around the homogeneous background solutions. In this
respect, we obtain

𝑆(3) = ∫𝑑𝑡𝑑𝑥3𝑎3 {3Φ3 [𝑀2
𝑝𝐻2 (1 + 𝜙22 )

+𝑀2
𝑝𝐻𝜙 ̇𝜙 − 5̃

𝑀2
𝐻2 ̇𝜙2]

+ Φ2 [9Ψ(−12𝑀2
𝑝𝜙2 −𝑀2

𝑝𝐻𝜙 ̇𝜙 + 3̃
𝑀𝐻2 ̇𝜙2)

+ 6Ψ̇(−𝑀2
𝑝𝐻(1 + 𝜙22 ) − 12𝑀2

𝑝𝜙 ̇𝜙 3̃
𝑀2

𝐻 ̇𝜙2)
− ̇𝜙2
𝑀̃2𝑎2 𝜕2Ψ − 2𝑎2

⋅ 𝜕2Υ(−𝑀2
𝑝𝐻(1 + 𝜙22 ) − 12𝑀2

𝑝𝜙 ̇𝜙 3̃
𝑀2

𝐻 ̇𝜙2)]
+ Φ[ 1𝑎2 (−𝑀2

𝑝𝐻𝜙2 −𝑀2
𝑝𝜙 ̇𝜙 + 3𝐻 ̇𝜙2

𝑀̃2
)𝜕𝑖Ψ𝜕𝑖Υ

− 9(−𝑀2
𝑝𝐻𝜙2 −𝑀2

𝑝𝜙 ̇𝜙 + 3𝐻 ̇𝜙2
𝑀̃2

) Ψ̇Ψ

+ 12𝑎4 (𝑀2
𝑝 (1 + 𝜙22 ) + 32

̇𝜙2
𝑀2

)
⋅ (𝜕𝑖𝜕𝑗Υ𝜕𝑖𝜕𝑗Υ − 𝜕2Υ𝜕2Υ)
+ 1𝑎2 (−𝑀2

𝑝𝐻𝜙2 −𝑀2
𝑝𝜙 ̇𝜙 + 3𝐻 ̇𝜙2

𝑀̃2
)Ψ𝜕2Υ

+ 42𝑎2 (𝑀2
𝑝 (1 + 𝜙22 ) + 32

̇𝜙2
𝑀2

) Ψ̇𝜕2Υ
+ 1𝑎2 (−𝑀2

𝑝𝜙2 + ̇𝜙̃
𝑀2

)Ψ𝜕2Ψ
+ 12𝑎2 (−𝑀2

𝑝𝜙2 + ̇𝜙̃
𝑀2

) (𝜕Ψ)2

− 6(𝑀2
𝑝 (1 + 𝜙22 ) + 32

̇𝜙2
𝑀̃2

) Ψ̇2] + 12𝑎2 (𝑀2
𝑝𝜙2

+ ̇𝜙2
𝑀̃2

)Ψ (𝜕Ψ)2 + 92 (−𝑀2
𝑝𝜙2 + ̇𝜙̃

𝑀2
) ̇Ψ2Ψ

− 1𝑎2 (−𝑀2
𝑝𝜙2 + ̇𝜙̃

𝑀2
) Ψ̇𝜕𝑖Ψ𝜕𝑖Υ − 1𝑎2 (−𝑀2

𝑝𝜙2

+ ̇𝜙̃
𝑀2

) Ψ̇Ψ𝜕2Υ − 34𝑎4Ψ(−𝑀2
𝑝𝜙2 + ̇𝜙̃

𝑀2
)

⋅ (𝜕𝑖𝜕𝑗Υ𝜕𝑖𝜕𝑗Υ − 𝜕2Υ𝜕2Υ) + 1𝑎4 (−𝑀2
𝑝𝜙2 + ̇𝜙̃

𝑀2
)

⋅ 𝜕𝑖Ψ𝜕𝑖Υ𝜕2Υ}
(43)

We use (21) and (22) for eliminating Φ and Υ in this
relation. For this end, we introduce the quantity 𝜒 as follows:

Υ = 𝑀2
𝑝𝑀̃2𝜙2 − ̇𝜙2

𝑀̃2𝑀2
𝑝 (𝐻𝜙2 + 𝜙 ̇𝜙) − 3𝐻 ̇𝜙2Ψ

+ 2𝑀2𝑎2𝜒
𝑀2

𝑝𝑀̃2𝜙2 − ̇𝜙2 ,
(44)

where

𝜕2𝜒 = 𝜗𝑠Ψ̇. (45)
Now the third-order action (43) takes the following form:

𝑆(3) = ∫𝑑𝑡 𝑑𝑥3𝑎3 {[−3𝑀2
𝑝𝑐−2𝑠 Ψ ̇Ψ2 +𝑀2

𝑝𝑎−2Ψ (𝜕Ψ)2

+𝑀2
𝑝𝑐−2𝑠 𝐻−1Ψ̇3] [(1 + 14𝜙2) 𝜖 + 58 𝜙

̇𝜙𝐻 ] − 2 (1
+ 14𝜙2)

−1 (58 𝜙 ̇𝜙𝑐2𝑠𝐻)Ψ̇𝜕𝑖Ψ𝜕𝑖𝜒} .

(46)
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By calculating the three-point correlation function, we
can study non-Gaussianity feature of the primordial per-
turbations. For the present model, we use the interaction
picture in which the interaction Hamiltonian,𝐻𝑖𝑛𝑡, is equal to
the Lagrangian third-order action. The vacuum expectation
value of curvature perturbations at 𝜏 = 𝜏𝑓 is

⟨Ψ (k1) Ψ (k2)Ψ (k3)⟩ = −𝑖 ∫𝜏𝑓

𝜏𝑖

𝑑𝜏 ⟨0 |
[Ψ (𝜏𝑓, k1)Ψ (𝜏𝑓, k2)Ψ (𝜏𝑓, k3) ,𝐻𝑖𝑛𝑡 (𝜏)] | 0⟩ .

(47)

By solving the above integral in Fourier space, we find

⟨Ψ (k1) Ψ (k2) Ψ (k3)⟩
= (2𝜋)3 𝛿3 (k1 + k2 + k3) 𝑃2

𝑠 𝐹Ψ (k1, k2, k3) , (48)

where

𝐹Ψ (k1, k2, k3) = (2𝜋)2
∏3

𝑖=1𝑘3𝑖 𝐺Ψ, (49)

𝐺Ψ = [34 ( 2𝐾Σ𝑖>𝑗𝑘2𝑖 𝑘2𝑗 − 1𝐾2
Σ𝑖 ̸=𝑗𝑘2𝑖 𝑘3𝑗)

+ 14 (12Σ𝑖𝑘3𝑖 + 2𝐾Σ𝑖>𝑗𝑘2𝑖 𝑘2𝑗 − 1𝐾2
Σ𝑖 ̸=𝑗𝑘2𝑖 𝑘3𝑗)

− 32 ((𝑘1𝑘2𝑘3)2𝐾3
)](1 − 1𝑐2𝑠 ) ,

(50)

and 𝐾 = ∑𝑖 𝑘𝑖. Finally the nonlinear parameter 𝑓𝑁𝐿 is
defined as follows:

𝑓𝑁𝐿 = 103 𝐺Ψ∑3
𝑖=1 𝑘𝑖 . (51)

Here we study non-Gaussianity in the orthogonal and the
equilateral configurations [45, 46]. Firstly we should account𝐺Ψ in these configurations. To this end, we follow [19, 47, 48]
to introduce a shape 𝜁𝑒𝑞𝑢𝑖∗ as 𝜁𝑒𝑞𝑢𝑖∗ = −(12/13)(3𝜁1−𝜁2). In this
manner we define the following shape which is orthogonal to𝜁𝑒𝑞𝑢𝑖∗

𝜁𝑜𝑟𝑡ℎ𝑜∗ = − 1214 − 13𝛽 [𝛽 (3𝜁1 − 𝜁2) + 3𝜁1 − 𝜁2] , (52)

where𝛽 ≃ 1.1967996. Finally, bispectrum (48) can be written
in terms of 𝜁𝑒𝑞𝑢𝑖∗ and 𝜁𝑜𝑟𝑡ℎ𝑜∗ as follows:

𝐺Ψ = 𝐺1𝜁𝑒𝑞𝑢𝑖∗ + 𝐺2𝜁𝑜𝑟𝑡ℎ𝑜∗ , (53)

where

𝐺1 = 1312 [ 124 (1 − 1𝑐2𝑠 )] (2 + 3𝛽) (54)

and

𝐺2 = 14 − 13𝛽12 [18 (1 − 1𝑐2𝑠 )] . (55)

Now, by using (50)-(55) we obtain the amplitude of non-
Gaussianity in the orthogonal and equilateral configurations,
respectively, as

𝑓𝑒𝑞𝑢𝑖
𝑁𝐿 = 130

36∑3
𝑖=1 𝑘3𝑖 [

124 ( 11 − 𝑐2𝑠 )] (2 + 3𝛽) 𝜁𝑒𝑞𝑢𝑖∗ , (56)

and

𝑓𝑜𝑟𝑡ℎ𝑜
𝑁𝐿 = 140 − 130𝛽

36∑3
𝑖=1 𝑘3𝑖 [18 (1 − 1𝑐2𝑠 )] 𝜁

𝑜𝑟𝑡ℎ𝑜
∗ . (57)

The equilateral and the orthogonal shape have a negative
and a positive peak in 𝑘1 = 𝑘2 = 𝑘3 limit, respectively [49].
Thus, we can rewrite the above equations in this limit as

𝑓𝑒𝑞𝑢𝑖
𝑁𝐿 = 32518 [ 124 ( 1𝑐2𝑠 − 1)] (2 + 3𝛽) , (58)

and

𝑓𝑜𝑟𝑡ℎ𝑜
𝑁𝐿 = 109 [18 (1 − 1𝑐2𝑠 )](

76 + 654 𝛽) , (59)

respectively.

5. Confronting with Observation

The previous sections were devoted to the theoretical frame-
work of this extended model. In this section, we compare
ourmodel with observational data to find some observational
constraints on the model parameter space. In this regard,
we introduce a suitable candidate for potential term in the
action. (Note that in general 𝜆 has dimension related to
the Planck mass. This can be seen easily by considering the
normalization of 𝜙 via𝑉(𝜙) = (1/𝑛)𝜆(𝜙/𝜙0)𝑛 which indicates
that 𝜆 cannot be dimensionless in general. When we consider
some numerical values for 𝜆 in our numerical analysis, these
values are in “appropriate units”.) We adopt 𝑉(𝜙) = (1/𝑛)𝜆𝜙𝑛
which contains some interesting inflation models such as
chaotic inflation. To be more specified, we consider a quartic
potential with 𝑛 = 4. Firstly we substitute this potential into
(11) and then by adopting 𝜖 = 1 we find the inflaton field’s
value at the end of inflation. Then by solving the integral
(17), we find the inflaton field’s value at the horizon crossing
in terms of number of e-folds, 𝑁. Then we substitute 𝜙ℎ𝑐
into (33), (42), (58), and (59). The resulting relations are the
basis of our numerical analysis on the parameter space of the
model at hand. To proceed with numerical analysis, we study
the behavior of the tensor-to-scalar ratio versus the scalar
spectral index. In Figure 1, we have plotted the tensor-to-
scalar ratio versus the scalar spectral index for 𝑁 = 60 in
the background of Planck2015 data. The trajectory of result
in this extended nonminimal inflationary model lies well in
the confidence levels of Planck2015 observational data for
viable spectral index and 𝑟. The amplitude of orthogonal
configuration of non-Gaussianity versus the amplitude of
equilateral configuration is depicted in Figure 2 for 𝑁 =60. We see that this extended nonminimal model, in some
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Figure 1: Tensor-to-scalar ratio versus the scalar spectral index in
the background of Planck2015 TT,TE, and EE+lowP data.
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Figure 2:The amplitude of the orthogonal configuration versus the
amplitude of the equilateral configuration of non-Gaussianity in the
background of Planck2015 TTT, EEE, TTE, and EET data.

ranges of the parameter 𝜆, is consistent with observation. If
we restrict the spectral index to the observationally viable
interval 0.95 < 𝑛𝑠 < 0.97, then 𝜆 is constrained to be in
the interval 0.013 < 𝜆 < 0.095 in appropriate units. If we
restrict the equilateral configuration of non-Gaussianity to
the observationally viable condition−147 < 𝑓𝑒𝑞𝑢𝑖

𝑁𝐿 < 143, then
we find the constraint 𝜆 < 0.1 in our setup.

6. Summary and Conclusion

We studied an extended model of single field inflation where
the inflaton and its derivatives are coupled to the background
geometry. By focusing on the third-order action and nonlin-
ear perturbations, we obtained observables of cosmological
inflation, such as tensor-to-scalar ratio and the amplitudes of
non-Gaussianities in this extended setup. By confronting the
model’s outcomes with observational data from Planck2015,
we were able to constrain parameter space of the model.
By adopting a quartic potential with 𝑉(𝜙) = (1/4)𝜆𝜙4,
restricting themodel to realize observationally viable spectral

index (or tensor-to-scalar ratio) imposes the constraint on
coupling 𝜆 as 0.013 < 𝜆 < 0.095. Also restricting the
amplitude of equilateral amplitude of non-Gaussianity to the
observationally supported value of −147 < 𝑓𝑒𝑞𝑢𝑖

𝑁𝐿 < 143
results in the constraint 𝜆 < 0.1 in appropriate units.
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