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A classical solution for a magnetic monopole is found in a specific multivector boson theory. We consider the model whose[𝑆𝑈(2)]�푁+1 gauge group is broken by sigma model fields (à la dimensional deconstruction) and further spontaneously broken
by an adjoint scalar (à la triplet Higgs mechanism). In this multivector boson theory, we find the solution for the monopole whose
mass is𝑀�푁 ∼ (4𝜋V/𝑔)√𝑁 + 1, where 𝑔 is the common gauge coupling constant and V is the vacuum expectation value of the triplet
Higgs field, by using a variational method with the simplest set of test functions.

1. Introduction

The existence of magnetic monopoles (for reviews, see [1–6])
has been discussed for many years, althoughmonopoles have
not yet been observed experimentally.

In 1931, Dirac [7] reconsidered the duality in electro-
magnetism and showed that the quantum mechanics of an
electrically charged particle can be consistently formulated
in the presence of a point magnetic charge, provided that the
magnetic charge𝑔�푚 is related to the electric charge 𝑒 by 𝑒𝑔�푚 =𝑛ℏ𝑐/2with an integer 𝑛. In 1974, ‘t Hooft [8] and Polyakov [9]
found that a nonsingular configuration arises from sponta-
neous symmetry breaking in a certain class of non-Abelian
gauge theory.Their models are based on the Georgi-Glashow
model [10], which uses spontaneous symmetry breaking of𝑆𝑈(2) gauge symmetry by a scalar field in the adjoint rep-
resentation. The ‘t Hooft–Polyakov monopoles are classical
solutions, which are stable for topological reasons. Recently,
the mathematical study of monopoles has focused on not
only topology, but also integrable systems, supersymmetry,
nonperturbative analyses, and so on.

In the present paper, we consider a novel monopole in
a multivector boson theory, which is based on dimensional
deconstruction [11, 12] and the Higgsless theories [13–18].
The Higgsless theory is one of the theories that include

symmetry breaking of the electroweak symmetry. In the
Higgsless theory, for example, the [𝑆𝑈(2)]�푁 ⊗ 𝑈(1) gauge
theory is considered. Such a theory yields 𝑁 sets of massive
vector fields besides one massless photon field.

In ourmodel of themultivector boson theory, [𝑆𝑈(2)]�푁+1
gauge symmetry is assumed. One of the 𝑆𝑈(2) gauge groups
is broken by an adjoint scalar as in the Georgi-Glashow
model. There remains one massless vector field due to the
triplet Higgs mechanism. We can thus construct the ‘t
Hooft–Polyakov-type monopole configuration in the model.
We estimate themonopolemass𝑀 ∼ (4𝜋V/𝑔)√𝑁 + 1, where
V is the vacuum expectation value of the scalar field, and 𝑔 is
the coupling constant of the gauge field.

In Section 2, we briefly review dimensional deconstruc-
tion and the Higgsless theory. Our model of the multivector
boson theory is shown in Section 3, which is a generalization
of the gauge-field part of the Higgsless theory. The mass
spectrum in the multivector boson theories is investigated in
Section 4. In Section 5, we demonstrate the construction of
monopole configurations in the multivector boson theory. In
order to treat many variables, we propose an approximation
scheme by a variational method in this section. In Section 6,
we discuss the magnetic charge of the monopole in the
multivector boson theory. The final section (Section 7) is
devoted to summary and discussion.

Hindawi
Advances in High Energy Physics
Volume 2018, Article ID 2396275, 9 pages
https://doi.org/10.1155/2018/2396275

http://orcid.org/0000-0002-9761-5137
https://doi.org/10.1155/2018/2396275


2 Advances in High Energy Physics

2. Deconstruction and Higgsless Theory

We review the basic idea of dimensional deconstruction [11,
12] and the Higgsless theories [13–18] in this section. We
consider 𝑁 + 1 gauge fields 𝐴1�휇, 𝐴2�휇, . . . 𝐴�푁+1,�휇. The field
strength 𝐺�퐼�휇] (𝐼 = 1, 2, . . . , 𝑁 + 1) is defined as

𝐺�퐼�휇] ≡ 𝜕�휇𝐴�퐼] − 𝜕]𝐴�퐼�휇 − 𝑖𝑔�퐼 [𝐴�퐼�휇, 𝐴�퐼]] , (1)

where 𝑔�퐼 is the 𝐼-th gauge coupling constant. The 𝐼-th field
strength transforms as

𝐺�퐼�휇] 󳨀→ 𝑈�퐼𝐺�퐼�휇]𝑈†�퐼 (1 ≤ 𝐼 ≤ 𝑁 + 1) , (2)

according to the 𝐼-th gauge group transformation 𝑈�퐼 ∈ 𝐺�퐼.
In addition to the gauge fields, we introduce 𝑁 scalar

fields Σ1, Σ2, . . . Σ�푁, which would supply the Nambu-
Goldstone fields as nonlinear-sigma model fields. The scalar
field Σ�퐼 (𝐼 = 1, 2, . . . , 𝑁) transforms as in the bifundamental
representation,Σ�퐼 󳨀→ 𝑈�퐼Σ�퐼𝑈†�퐼+1 (1 ≤ 𝐼 ≤ 𝑁) . (3)

(Here, we show the case of “linear moose”, and the different
assignments of the transformation of Σ�퐼 yield the theory
associated with various other types of moose diagrams [11–
18].)

Now, the Lagrangian density, which is invariant under the
gauge transformation of 𝐺1 ⊗ 𝐺2 ⊗ ⋅ ⋅ ⋅ ⊗ 𝐺�푁+1, is given by

L = −12�푁+1∑
�퐼=1

tr𝐺�퐼�휇]𝐺�휇]�퐼 − �푁∑
�퐼=1

tr (𝐷�휇Σ�퐼)† (𝐷�휇Σ�퐼) , (4)

where the covariant derivative of Σ�퐼 is𝐷�휇Σ�퐼 ≡ 𝜕�휇Σ�퐼 − 𝑖𝑔�퐼𝐴�퐼�휇Σ�퐼 + 𝑖𝑔�퐼+1Σ�퐼𝐴�퐼+1,�휇, (5)

and then its gauge transformation is

𝐷�휇Σ�퐼 󳨀→ 𝑈�퐼 (𝐷�휇Σ�퐼)𝑈†�퐼+1. (6)

In the usual dimensional deconstruction scheme, we
consider that 𝐺1 = 𝐺2 = ⋅ ⋅ ⋅ = 𝐺�푁+1 = 𝐺 and 𝑔1 = 𝑔2 =⋅ ⋅ ⋅ = 𝑔�푁+1 = 𝑔. We also assume that the absolute value of
each nonlinear sigmamodel field |Σ�퐼| has a common vacuum
value, 𝑓. Then, the field Σ�퐼 is expressed as

Σ�퐼 = 𝑓 exp(𝑖𝜋�푎𝑇�푎𝑓 ) , (7)

where 𝑇�푎 is the generator in the adjoint representation of𝐺 and 𝜋�푎 is the Nambu-Goldstone field, which is absorbed
into the gauge fields. Taking the unitary gauge Σ�퐼 = 𝑓 ×(identity matrix), we find that the kinetic terms of Σ�퐼 lead
to the mass terms of the gauge fields as (provided that
tr (𝑇�푎𝑇�푏) = (1/2)𝛿�푎�푏)
�푁∑
�퐼=1

tr (𝐷�휇Σ�퐼)† (𝐷�휇Σ�퐼) = 12𝑔2𝑓2 �푁∑
�퐼=1

(𝐴�푎�퐼�휇 − 𝐴�푎�퐼+1,�휇)2 , (8)

and these produce the mass spectrum of vector bosons. It is
known that a certain continuum limit of this model can be
taken, which corresponds to the 𝐺 gauge theory with one-
dimensional compactification on to 𝑆1/𝑍2 (or an “interval”).

In the Higgsless theories, for example, the gauge group[𝑆𝑈(2)]�푁 ⊗ 𝑈(1) is adopted for explaining the electroweak
sector in the particle theory. Namely, we set 𝐺1 = 𝑈(1) and𝐺2 = ⋅ ⋅ ⋅ = 𝐺�푁+1 = 𝑆𝑈(2). Then, the covariant derivative ofΣ1 is 𝐷�휇Σ1 ≡ 𝜕�휇Σ1 − 𝑖𝑔1𝐴1�휇𝑇3Σ1 + 𝑖𝑔Σ1𝐴2�휇, (9)

where 𝑔1 is the 𝑈(1) gauge coupling constant, 𝑔 is the
common 𝑆𝑈(2) gauge coupling constant, 𝐴1�휇 is the 𝑈(1)
gauge field, and 𝑇3 is the third generator of 𝑆𝑈(2). The
nonzero vacuum expectation value of Σ�퐼 leads to symmetry
breaking [𝑆𝑈(2)]�푁 ⊗ 𝑈(1) → 𝑈(1) [13–18], and we get only
one massless electromagnetic field and 𝑁 sets of massive
weak boson fields.

The original motivation for the Higgsless theory has
been abandoned after the discovery of the Higgs particles.
Nevertheless, we would like to extend the standard model,
since there might be a lack of unknown extra particles, which
explain the dark matter problem [19, 20]. As a model of dark
matter, the multivector boson theory describes a hidden sec-
tor of dark photons [21, 22] with mutual mixings. Therefore,
we suppose that it is worth considering the theoreticalmodels
whose massive particle contents are rich and governed by
certain symmetries.

3. Multivector Boson Theory from
the Higgsless Theory Incorporating the
Higgs Mechanism

Here, we consider the model whose [𝑆𝑈(2)]�푁 ⊗ 𝑈(1) gauge
group comes from the spontaneous symmetry breaking by
an adjoint scalar [10]: [𝑆𝑈(2)]�푁+1 → [𝑆𝑈(2)]�푁 ⊗ 𝑈(1). The
mechanism is nowgenerally called theHiggsmechanism.The
symmetry is broken into 𝑈(1) by the vacuum expectation
value of the nonlinear sigma model field Σ�퐼 introduced in
the previous section. As a consequence, we have a monopole
configuration; the construction of themonopole solutionwill
be described in the next section. In this section, we define
our model, and in the subsequent section, we show the mass
spectrum of this model.

We consider the following Lagrangian density:

L = −12�푁+1∑
�퐼=1

tr𝐺�퐼�휇]𝐺�휇]�퐼 − �푁∑
�퐼=1

tr (𝐷�휇Σ�퐼)† (𝐷�휇Σ�퐼)
− tr (𝐷�휇𝜙)† (𝐷�휇𝜙) − 𝜆4 (2tr𝜙†𝜙 − V2)2 , (10)

where𝐺�퐼�휇] (𝐼 = 1, . . . , 𝑁+1) is the field strength of the 𝑆𝑈(2)�퐼
gauge field 𝐴�퐼�휇 (𝐼 = 1, . . . , 𝑁 + 1) and Σ�퐼 (𝐼 = 1, . . . , 𝑁)
is the nonlinear sigma model fields in the bifundamental
representation of 𝑆𝑈(2)�퐼 ⊗ 𝑆𝑈(2)�퐼+1, which connect the
gauge fields at neighboring sites, as in the dimensionally
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deconstructed model reviewed in the previous section. For
simplicity, all the coupling constants of the gauge fields are
assumed to be the same 𝑔.

Here, 𝜙 is a scalar field in the adjoint representation of𝑆𝑈(2)1, and the covariant derivative of the scalar field 𝜙 is
given by

𝐷�휇𝜙 ≡ 𝜕�휇𝜙 − 𝑖𝑔 [𝐴1�휇, 𝜙] . (11)

In the last term in the Lagrangian density (10), 𝜆 is a
positive constant and the constant V is the scalar field vacuum
expectation value.

First, we consider the symmetry breaking by the sigma
fields. We choose the unitary gauge Σ1 = ⋅ ⋅ ⋅ = Σ�푁 =𝑓 × (the identity matrix). Then, the Lagrangian density is
represented as follows:

L = −14�푁+1∑
�퐼=1

𝐺�푎�퐼�휇]𝐺�푎�휇]�퐼 − 12𝑔2𝑓2 �푁∑
�퐼=1

(𝐴�푎�퐼�휇 − 𝐴�푎�퐼+1,�휇)2
− 12 (𝐷�휇𝜙�푎) (𝐷�휇𝜙�푎) − 𝜆4 (𝜙�푎𝜙�푎 − V2)2 , (12)

where

𝐺�푎�퐼�휇] ≡ 𝜕�휇𝐴�푎�퐼] − 𝜕]𝐴�푎�퐼�휇 + 𝑔𝜀�푎�푏�푐𝐴�푏�퐼�휇𝐴�푐�퐼]
and 𝐷�휇𝜙�푎 ≡ 𝜕�휇𝜙�푎 + 𝑔𝜀�푎�푏�푐𝐴�푏1�휇𝜙�푐. (13)

Here, we use the component representations 𝐴�퐼�휇 = 𝐴�푎�퐼�휇𝑇�푎,𝐺�퐼�휇] = 𝐺�푎�퐼�휇]𝑇�푎, 𝜙 = 𝜙�푎𝑇�푎, and𝐷�휇𝜙 = 𝐷�휇𝜙�푎𝑇�푎, and 𝜀�푎�푏�푐 is the
totally antisymmetric symbol (𝑎 = 1, 2, 3).

Next, we consider the symmetry breakdown by the Higgs
mechanism with respect to the adjoint scalar field 𝜙. We

express the third component of the scalar field as 𝜙3 = V + 𝜑.
Then, the Lagrangian density is denoted by

L = −14�푁+1∑
�퐼=1

𝐺1�퐼�휇]𝐺1�휇]�퐼 − 12𝑔2𝑓2 �푁∑
�퐼=1

(𝐴1�퐼�휇 − 𝐴1�퐼+1,�휇)2
− 12𝑔2V2𝐴11�휇𝐴1�휇1 − 14�푁+1∑

�퐼=1

𝐺2�퐼�휇]𝐺2�휇]�퐼
− 12𝑔2𝑓2 �푁∑

�퐼=1

(𝐴2�퐼�휇 − 𝐴2�퐼+1,�휇)2 − 12𝑔2V2𝐴21�휇𝐴2�휇1
− 14�푁+1∑
�퐼=1

𝐺3�퐼�휇]𝐺3�휇]�퐼 − 12𝑔2𝑓2 �푁∑
�퐼=1

(𝐴3�퐼�휇 − 𝐴3�퐼+1,�휇)2
− 12𝜕�휇𝜑𝜕�휇𝜑 − 𝜆V2𝜑2 + (interaction terms) ,

(14)

where the labels 𝑎 are explicitly represented.Wehave only one
massless𝑈(1) symmetric gauge field in the third component.
Therefore, we have obtained the symmetry breaking 𝑆𝑈(2) →𝑈(1) by using the Higgs mechanism. This type of symmetry
breaking gives rise to the ‘t Hooft–Polyakov monopole
configuration.

It should be noted that we do not discuss which sequences
of symmetry breaking, that is, [𝑆𝑈(2)]�푁+1 → [𝑆𝑈(2)]�푁 ⊗𝑈(1) → 𝑈(1) or [𝑆𝑈(2)]�푁+1 → 𝑆𝑈(2) → 𝑈(1), occurred
in the universe, although the order may have an effect on the
process of creation of monopoles in the early universe.

4. Mass Spectrum of Vector Bosons

In the Lagrangian density (14), the mass term of gauge fields
for 𝑎 = 1 is

L�푚�푎�푠�푠 �푡�푒�푟�푚 �푎=1 = −12𝑔2𝑓2 �푁∑
�퐼=1

(𝐴1�퐼�휇 − 𝐴1�퐼+1,�휇)2 − 12𝑔2V2𝐴11�휇𝐴1�휇1
= −12𝑔2𝑓2

× (𝐴1�휇1 𝐴1�휇2 𝐴1�휇3 ⋅ ⋅ ⋅ 𝐴1�휇�푁−1 𝐴1�휇�푁 𝐴�휇�푁+1)
(((((((((((((
(

1 + V2𝑓2 −1−1 2 −1−1 2 −1
d d d−1 2 −1−1 2 −1−1 1

)))))))))))))
)

((((((((((((((
(

𝐴11�휇𝐴12�휇𝐴13�휇...𝐴1�푁−1,�휇𝐴1�푁�휇𝐴1�푁+1,�휇

))))))))))))))
)

.
(15)
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Therefore, for 𝑎 = 1, the mass-squaredmatrix (𝑚𝑎𝑠𝑠1)2 of the
vector bosons is

(𝑚𝑎𝑠𝑠1)2

= 𝑔2𝑓2
(((((((((
(

1 + V2𝑓2 −1−1 2 −1−1 2 −1
d d d−1 2 −1−1 2 −1−1 1

)))))))))
)≡ 𝑔2𝑓2 (𝑀1)2 .

(16)

We consider the eigenvalue equation

(𝑀1)2 A1 = (𝑀1�퐸)2 A1, (17)

where A1 is the eigenvector

A1 ≡
((((((((((
(

𝐴11�휇𝐴12�휇𝐴13�휇...𝐴1�푁−1,�휇𝐴1�푁�휇𝐴1�푁+1,�휇

))))))))))
)

, (18)

and (𝑀1�퐸)2 is the eigenvalue.
We show the 𝑀1�퐸-V/𝑓 graphs in Figure 1. The highest

eigenvalue behaves differently from the other eigenvalues.
When V/𝑓 → ∞, the highest eigenvalue becomes𝑀1�퐸 ∼ V/𝑓,
but the other eigenvalues asymptotically approach constant
values that are less than two.

The mass term of gauge fields for 𝑎 = 2 is the same as for𝑎 = 1, but the mass term is different for 𝑎 = 3. The mass-
squared matrix of gauge fields for 𝑎 = 3 is

(𝑚𝑎𝑠𝑠3)2 = 𝑔2𝑓2((((((((
(

1 −1−1 2 −1−1 2 −1
d d d−1 2 −1−1 2 −1−1 1

))))))))
)≡ 𝑔2𝑓2 (𝑀3)2 .

(19)

The eigenvalues𝑀3�퐸 can be analytically obtained [13] as

(𝑀3�퐸)�푛 = 2 sin 𝑛𝜋2 (𝑁 + 1) (𝑛 = 0, . . . , 𝑁) . (20)

Obviously, there is a zero mode, and we have only one
massless vector field in the theory after symmetry breakdown.

5. Energy and Equations of Motion of the
Monopole in the Multivector Boson Theory

In the multivector boson theory defined by the Lagrangian
density (14), the ‘t Hooft–Polyakov-type monopole is
expected.

Similar to the ‘t Hooft–Polyakovmonopole, the static and
spherically symmetric monopole solution in the multivector
boson theory is considered to be specified by the following
ansatz:

𝜙�푎 = 𝛿�푖�푎 𝑥�푖𝑔𝑟2𝐻(𝑟) , (21)

𝐴�푎�퐼0 = 0, (22)

𝐴�푎�퐼�푖 = 𝜀�푎�푖�푗 𝑥�푗𝑔𝑟2 [1 − 𝐾�퐼 (𝑟)] , (23)

and the boundary conditions on the function of the radial
coordinate 𝑟 are

lim
�푟→0

𝐻(𝑟)𝑟 = 0,
lim
�푟→∞

𝐻(𝑟)𝑟 = 𝑔V,
lim
�푟→0

𝐾�퐼 (𝑟) = 1,
lim
�푟→∞

𝐾�퐼 (𝑟) = 0.
(24)

The common form of 𝐴�푎�퐼�푖 is due to the requirement of finite
energy of the monopole, i.e., the contribution of the term (8)
to the energy density vanishes at spatial infinity.

For the static case, the energy density is given by −L.
Substituting the ansatz, we obtain the expression for total
energy

𝐸�푁 = 4𝜋V𝑔 ∫∞
0

𝑑𝜉 [�푁+1∑
�퐼=1

{(𝐾�耠�퐼)2 + 12𝜉2 (1 − 𝐾2�퐼)2}
+ 𝑓2

V2
�푁∑
�퐼=1

(𝐾�퐼 − 𝐾�퐼+1)2 + 12 (𝐻�耠 − 𝐻𝜉 )2 + 1𝜉2𝐾21𝐻2
+ 𝜆𝜉24𝑔2 (𝐻2𝜉2 − 1)2]

(25)

where we set 𝜉 ≡ 𝑔V𝑟 and the prime (�耠) denotes the derivative
with respect to 𝜉.
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Figure 1: The eigenvalues𝑀1�퐸 are shown as functions of V/𝑓 in the cases of𝑁 = 10, 5, 1, and 0.
From this expression, we can obtain the following equa-

tions of motion by the variational principle:

𝜉2𝐾�耠�耠1 = 𝐾1 (𝐾21 − 1) + 𝐻2𝐾1 + 𝑓2
V2

𝜉2 (𝐾1 − 𝐾2) , (26)

𝜉2𝐾�耠�耠�퐼 = 𝐾�퐼 (𝐾2�퐼 − 1) + 𝑓2
V2

𝜉2 (2𝐾�퐼 − 𝐾�퐼−1 − 𝐾�퐼+1)(2 ≤ 𝐼 ≤ 𝑁) , (27)

𝜉2𝐾�耠�耠�푁+1 = 𝐾�푁+1 (𝐾2�푁+1 − 1) + 𝑓2
V2

𝜉2 (𝐾�푁+1 − 𝐾�푁) , (28)

𝜉2𝐻�耠�耠 = 2𝐻𝐾1 + 𝜆𝑔2𝐻(𝐻2 − 𝜉2) . (29)

Analytical and semianalytical studies of the single ‘t
Hooft–Polyakov monopole are found in [23–25]. Because it
is hard to find a set of solutions for these coupled equations

for large 𝑁 and because we are presently considering a
simple toy model, we adopt a simple variational method
to obtain approximate solutions in this paper. We have
confirmed that this approach obtains a good solution for the
‘t Hooft–Polyakov monopole in the BPS limit.

For the approximation, we assume that the solutions take
the following forms:

𝐾�퐼 (𝜉) = (1 + 𝑎�퐼𝜉) exp (−𝑎�퐼𝜉) (1 ≤ 𝐼 ≤ 𝑁 + 1) , (30)𝐻(𝜉)𝜉 = 1 − exp (−𝛼𝜉) , (31)

where both 𝑎�퐼 (1 ≤ 𝐼 ≤ 𝑁 + 1) and 𝛼 are variational parame-
ters. The functions 𝐾�퐼(𝜉) and 𝐻(𝜉) with minimal number of
parameters apparently satisfy the boundary conditions and
are similar to those of the solutions in the ‘t Hooft–Polyakov
monopole.This is the reason why we assume the simple form
of solutions as shown above.
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Figure 2: 𝐾�퐼 and𝐻/𝜉 are shown for𝑁 = 10, 𝜆 = 0. In each graph, 𝐾�퐼 < 𝐾�퐼+1 (1 ≤ 𝐼 ≤ 𝑁 = 10) at any 𝜉. The three graphs correspond to the
cases of 𝑓/V = 0.5, 𝑓/V = 1, and 𝑓/V = 2, respectively.

We substitute the expressions (30) and (31) into the energy𝐸�푁 and calculate the minimum value of the energy 𝐸�푁 by
varying the parameters 𝑎�퐼 and 𝛼.

Each term is separately integrated as follows:

∫∞
0

𝑑𝜉 {(𝐾�耠�퐼)2 + 12𝜉2 (1 − 𝐾2�퐼)2} = 4164𝑎�퐼, (32)

∫∞
0

𝑑𝜉 (𝐾�퐼 − 𝐾�퐼+1)2
= 54𝑎�퐼 + 54𝑎�퐼+1 − 4 (𝑎2�퐼 + 3𝑎�퐼𝑎�퐼+1 + 𝑎2�퐼+1)(𝑎�퐼 + 𝑎�퐼+1)3 , (33)

∫∞
0

𝑑𝜉(𝐻�耠 − 𝐻𝜉 )2 = 14𝛼 , (34)

∫∞
0

𝑑𝜉 1𝜉2𝐾21𝐻2
= 𝛼2 (56𝑎41 + 132𝑎31𝛼 + 111𝑎21𝛼2 + 39𝑎1𝛼3 + 5𝛼4)4𝑎1 (𝑎1 + 𝛼)3 (2𝑎1 + 𝛼)3 , (35)

∫∞
0

𝑑𝜉𝜉2 (𝐻2𝜉2 − 1)2 = 635864𝛼3 . (36)

Therefore, the energy expressed by the variational parameters
becomes

𝐸�푁 = 4𝜋V𝑔 [4164�푁+1∑
�퐼=1

𝑎�퐼 + 𝑓2
V2

⋅ �푁∑
�퐼=1

{ 54𝑎�퐼 + 54𝑎�퐼+1 − 4 (𝑎2�퐼 + 3𝑎�퐼𝑎�퐼+1 + 𝑎2�퐼+1)(𝑎�퐼 + 𝑎�퐼+1)3 }
+ 18𝛼
+ 𝛼2 (56𝑎41 + 132𝑎31𝛼 + 111𝑎21𝛼2 + 39𝑎1𝛼3 + 5𝛼4)4𝑎1 (𝑎1 + 𝛼)3 (2𝑎1 + 𝛼)3
+ 635𝜆3456𝑔2𝛼3] .

(37)

We evaluate theminimum value of this energy by numer-
ical calculation with Mathematica [26]. Thus, we get the
approximate solution of 𝐾�퐼(𝜉) and 𝐻(𝜉)/𝜉, and the case of𝑁 = 10 and 𝜆 = 0 is shown in Figure 2.

The region of nonvanishing 𝐾�퐼 can be interpreted as the
region where the 𝐼-th massive vector bosons (𝑎 = 1, 2)
condensate. For larger values of 𝑓/V, the ranges of finite 𝐾�퐼
become narrower and degenerate, while the distance where𝐻/𝜉 ∼ 1 becomes larger.
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We obtain the energy of themonopole in the limiting case𝜆/𝑔2 = 0 for the cases where 𝑁 = 0, 1, 5, and 10 and 𝑓/V =0.5, 1, and 2.
𝐸0 = 4𝜋V𝑔 × 1.05 ⋅ ⋅ ⋅ , (BPS monopole) (38)

𝐸1 = 4𝜋V𝑔 × 1.41 ⋅ ⋅ ⋅ , (𝑓
V

= 0.5) (39)

𝐸1 = 4𝜋V𝑔 × 1.47 ⋅ ⋅ ⋅ , (𝑓
V

= 1) (40)

𝐸1 = 4𝜋V𝑔 × 1.48 ⋅ ⋅ ⋅ , (𝑓
V

= 2) (41)

𝐸5 = 4𝜋V𝑔 × 2.07 ⋅ ⋅ ⋅ , (𝑓
V

= 0.5) (42)

𝐸5 = 4𝜋V𝑔 × 2.37 ⋅ ⋅ ⋅ , (𝑓
V

= 1) (43)

𝐸5 = 4𝜋V𝑔 × 2.51 ⋅ ⋅ ⋅ , (𝑓
V

= 2) (44)

𝐸10 = 4𝜋V𝑔 × 2.47 ⋅ ⋅ ⋅ , (𝑓
V

= 0.5) (45)

𝐸10 = 4𝜋V𝑔 × 2.99 ⋅ ⋅ ⋅ , (𝑓
V

= 1) (46)

𝐸10 = 4𝜋V𝑔 × 3.32 ⋅ ⋅ ⋅ , (𝑓
V

= 2) (47)

From these results, we roughly estimate that the energy of the
monopole (𝜆 = 0) is

𝐸�푁 ∼ 4𝜋V𝑔 √𝑁 + 1 (𝜆 = 0) , (48)

since the difference that appears due to different 𝑓/V is
smaller than that due to different 𝑁. We find that our
approximate values of the static energies for 𝜆 = 0 are well
fitted to 𝐸�푁 ≈ (4𝜋V/𝑔) × 1.94 × 𝑊(0.62𝑁 + 0.96), where𝑊(𝑥) is the Lambert 𝑊-function, which is slightly smaller
than (4𝜋V/𝑔)√1 + 𝑁 for large 𝑁. This is in contrast to the
rather large dependence of the profiles of solutions for𝐾�퐼 and𝐻/𝜉 on 𝑓/V (Figure 2).

On the other hand, we know the exact value of the energy
of the BPS limit [27, 28] for the ‘t Hooft–Polyakov monopole,
which corresponds to 𝐸0 for 𝜆 = 0, as

𝐸 (𝜆 = 0) = 4𝜋V𝑔 . (49)

Comparing these values, we find that the energy of the BPS
monopole in the multivector boson theory is obtained by
replacing 𝑔 → 𝑔/√𝑁 + 1 in that of the usual BPS monop-
ole.

Note that we only show the case of 𝜆 → 0. However, we
confirmed that the energy of the monopole changes at most
factor two for a finite value of 𝜆/𝑔2 in general.

6. Magnetic Charge of the Monopole

In this section, we specify the magnetic charge of the
monopole in the multivector boson theory obtained in the
previous section. First of all, we should discuss the definition
of electric charge. As in Section 3, if we choose 𝜙3 = V, the
massless gauge field satisfies

𝐴31�휇 = 𝐴31�휇 = ⋅ ⋅ ⋅ = 𝐴3�푁+1,�휇 ≡ 1√𝑁 + 1𝐴3�휇. (50)

Thenormalization factor is determined by the canonical form
of the Lagrangian density of this zero-mode field. Therefore,
if the charged matter field is virtually coupled only to 𝐴1�휇,
similar to that in the triplet Higgs field, the electric charge of
the matter field 𝑒 becomes𝑒 = 𝑔√𝑁 + 1 , (51)

and the field strength satisfies 𝐺31�휇] = 𝐺31�휇] = ⋅ ⋅ ⋅ = 𝐺3�푁+1,�휇] ≡(1/√𝑁 + 1)𝐺3�휇].
Now, we consider the magnetic field far from the

monopole. The projection of the vacuum expectation values
of the field strength [1, 3, 6] is

lim
�푟→∞

𝐹�푖�푗 = lim
�푟→∞

𝜙�푎𝐺�푎�푖�푗 = lim
�푟→∞

1√𝑁 + 1�푁+1∑
�퐼=1

𝜙�푎𝐺�푎�퐼�푖�푗
= √𝑁 + 1𝑔 (−𝜀�푎�푖�푗 𝑥�푎𝑟3 ) , (52)

where𝜙�푎 = 𝜙�푎/V.Then, themagnetic field𝐵�푖 is asymptotically

𝐵�푖 = −√𝑁 + 1𝑔 𝑥�푖𝑟3 = − 𝑥�푖𝑒𝑟3 . (53)

Comparing this magnetic field representation with the mag-
netic field created by a point magnetic charge 𝑔�푚

𝐵�푖 = 𝑔�푚4𝜋 𝑥�푖𝑟3 , (54)

the magnetic charge 𝑔�푚 of our monopole is

𝑔�푚 = −4𝜋𝑔 √𝑁 + 1 = −4𝜋𝑒 . (55)

This relation is the same as that for the ‘t Hooft–Polyakov
monopole.

The static energy of the monopole in the multivector
boson theory that was described in the previous section can
be rewritten as

𝐸�푁 ∼ 4𝜋V𝑔 √𝑁 + 1 = 4𝜋V𝑒 , (56)
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which is the same as the mass of the ‘t Hooft–Polyakov
monopole (or, the case of𝑁 = 0).
7. Summary and Discussion

In this paper, we studied the static, spherically symmetric
monopole solutions in the multivector boson theory with𝑁 + 1 sets of vector bosons with the gauge coupling 𝑔. The
theory includes twomass scales𝑓 and V.We found that 3𝑁+2
massive vector bosons and a single massless vector boson
(of the electromagnetic field) appear according to the theory
described in Section 4. We used a simple variational method
to obtain approximate solutions in Section 5. The solution
of 𝐾�퐼 shows that the regions of existence of massive vector
fields have a multilayer structure, where massive bosons
“stratify”. Although the profile of condensation of themassive
degrees of freedom is sensitive with respect to both 𝑁 and𝑓/V, the mass of the monopole is approximately 𝐸�푁 ∼(4𝜋V/𝑔)√𝑁 + 1 = 4𝜋V/𝑒, where 𝑒 is the electric charge
defined in the theory. It is necessary to conduct a more
accurate investigation for obtaining the precise dependence
of mass of the monopole on𝑁.

Themodel used in this study is the simplest one; therefore,
we would like to investigatemore general models, which have
different coupling constants for different gauge fields or have
complicated mass matrices as in the clockwork theory [29–
34].

Another possible connection to a phenomenological
model can be considered in a model with symmetry break-
down by a Higgs doublet, as in the standard model. In 1997,
Cho and Maison [35] found an electroweak monopole solu-
tion in the standard model. The Cho–Maison monopole and
its generalization have been studied further [36, 37], and an
experimental search for them is going on [38, 39]. We wish to
investigate themultivector boson theorywith a doubletHiggs
field and compare the properties of its monopoles with those
of the Cho–Maison monopoles.

We also wish to study a scenario in which the monopoles
in the multivector boson theory represent the dark matter in
the universe. Since the present model of multivector boson
theory has two symmetry breaking scales 𝑓 and V and there
can be various mass spectra of massive vector bosons as
seen in Section 4, we need to perform a detailed study on
the process of symmetry breaking and (time-dependent)
monopole production.

Data Availability

No data were used to support this study.

Conflicts of Interest

The authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

The authors thank Hideto Manjo for useful comments on
numerical estimations.

References

[1] P. Goddard and D. I. Olive, “Magnetic monopoles in gauge field
theories,” Reports on Progress in Physics, vol. 4, no. 9, p. 1357,
1978.

[2] R. Rajaraman, Solitons and Instantons, North-Holland, New
York, NY, USA, 1987.

[3] V. Rubakov, Classical Theory of Gauge Fields, Princeton Univ.
Press, Princeton, NJ, USA, 2002.

[4] N. Manton and P. Sutcliffe, Topological Solitons, Cambridge
University Press, Cambridge, UK, 2004.

[5] Y. M. Shnir, Magnetic Monopoles, Springer, Berlin, Germany,
2005.

[6] E. J. Weinberg, Classical Solutions in Quantum Field Theory,
Cambridge Univ. Press, Cambridge, UK, 2012.

[7] P. A. M. Dirac, “Quantised singularities in the electromagnetic
field,” Proceedings of the Royal Society, vol. 133, p. 60, 1931.

[8] G. ’t Hooft, “Magnetic monopoles in unified gauge theories,”
Nuclear Physics B, vol. 79, pp. 276–284, 1974.

[9] A. M. Polyakov, “Particle spectrum in quantum field theory,”
JETP Letters, vol. 20, no. 6, pp. 194-195, 1974.

[10] H. Georgi and S. L. Glashow, “Unity of all elementary-particle
forces,” Physical Review Letters, vol. 32, no. 8, pp. 438–441, 1974.

[11] N. Arkani-Hamed, A. G. Cohen, and H. Georgi, “(De)con-
structing dimensions,” Physical Review Letters, vol. 86, no. 21,
pp. 4757–4761, 2001.

[12] C. T. Hill, S. Pokorski, and J. Wang, “Gauge invariant effective
Lagrangian for Kaluza-Klein modes,” Physical Review D: Parti-
cles, Fields, Gravitation and Cosmology, vol. 64, no. 10, 2001.

[13] H.-C. Cheng, C. T. Hill, S. Pokorski, and J. Wang, “Standard
model in the latticized bulk,” Physical Review D, vol. 2001,
Article ID 065007, 64.
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