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The energy eigenvalues with any 𝑙 ̸= 0 states and mass of heavy quark-antiquark system (quarkonium) are obtained by using
Asymptotic Iteration Method in the view of nonrelativistic quantum chromodynamics, in which the quarks are considered as
spinless for easiness and are bounded by Cornell potential. A semianalytical formula for energy eigenvalues and mass is achieved
via the method in scope of the perturbation theory. The accuracy of this formula is checked by comparing the eigenvalues with the
ones numerically obtained in this study and with exact ones in literature. Furthermore, semianalytical formula is applied to cc, bb,
and cb meson systems for comparing the masses with the experimental data.

1. Introduction

Investigation of an atomic or subatomic system is done by
achieving an energy spectrum of the system. This is carried
out, generally, for the events in which the system is bounded
by a potential function. Besides, the scattering states or reso-
nance states can also be observed in the investigation of the
system.The eigenvalues (or eigenenergies) of Hamiltonian of
this system is obtained for a given potential function. In order
to do this, various mathematical methods are used in quan-
tum mechanics. One of these, named Asymptotic Iteration
Method (AIM), has been commonly used since 2003 [1]. AIM
can be used for analytically aswell as numerically (or approxi-
mately) solvable problems [2–4]. Moreover, it can be used for
obtaining the perturbative energy eigenvalues of the system
without any need of the unperturbative eigenstate [5, 6].

As a subatomic system, a quarkonium that is composed
of a heavy quark-antiquark (qq) pair has attracted attention
of particle physicists since the first half of 1970, and [7–
11] are just a few studies of them. In most of these studies,
for easiness, the system is examined via Schrödinger equa-
tion in nonrelativistic quantum chromodynamics (NRQCD),
assuming that the quarks are spinless [12–15]. Cornell
potential is one of the potential functions that represent

interactions between the quarks in such a qq system. It is
used for obtaining the mass and energy spectrum of the
quarkoniumandobtaining the hadron decaywidths [7–9, 16].
Cornell potential is given as

𝑉 (𝑟) = −𝐴𝑟 + 𝐵2𝑟 (1)

where 𝐴 and 𝐵 are positive constants (𝐵 is in energy
dimension). As is seen in (1), Cornell potential has two parts:
one is the Coulombic term and the other is the linear part.
For obtaining the energy levels and mass of the quarkonium,𝐴 and 𝐵 may be fitted to the first-few states. Therefore, the
full spectrum of the quarkonium can be constructed through
these potential parameters.

In literature, it is possible to find many studies in which
the solutions of Schrödinger equation for Cornell potential
have been obtained. For example, in [17], Hall has found an
approximate energy formula to construct an energy spectrum
of Schrödinger equation for Cornell potential, under some
conditions. Jacobs et al. [13] have compared the eigenvalues
of Schrödinger and spinless Salpeter equations in the cases
of Cornell potential and Wisconsin potential [18]. Vega and
friends have obtained, for l=0 states, the energy spectrum,
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mass, and wavefunctions at the origin for cc, bb, and bc
mesons by using the usual variation method in the scope of
supersymmetric quantum mechanics (SUSYQM) [19, 20], in
[12].Theyhave also compared their results with the exact ones
in literature and with the experimental data.

In this study, we attempted to get the energy eigenvalues
(for any 𝑙 ̸= 0 states) and masses of heavy mesons by using
Asymptotic Iteration Method in the view of NRQCD, in
which the quarks are considered as spinless for easiness and
are bounded by Cornell potential. We achieved a semian-
alytical formula for constructing the energy spectrum and
obtaining the masses of the mesons, using the method in
scope of the perturbation theory.The accuracy of this formula
was cross-checked by comparing the eigenvalues with the
ones numerically obtained in this study and with the exact
ones in literature. Furthermore, semianalytical formula was
applied to cc, bb, and cb heavy mesons for comparing the
masses with the experimental data.

AIM has been firstly applied to Schrödinger equation
for Cornell potential by Hall and Saad in [21]. They have
used Airy function as an asymptotic form of the wave-
function and have got highly-accurate numerical results
in their study. Alternatively, we obtained a semianalytical
mass-energy formula for quarkonium by having differential
equation which gives polynomial solutions for asymptotic
forms of the wavefunction of the system.

This paper is organized as follows: we give a short
summary of AIM in Section 2, while Section 3 includes the
main problem. In Section 4, we give numerical results for
the eigenenergies and obtain semianalytical energy formula
by applying perturbation theory to our problem in the view
of AIM. Furthermore, in Section 4, we compare our energy
spectrum and masses with the exact ones in literature and
with the experimental data. Finally, Section 5 includes some
comments about our results.

2. The Asymptotic Iteration Method (AIM)

According to the organization of the paper, we summed up
AIM in this section, while it is comprehensively introduced
in [1]. The AIM is used to solve second-order homogeneous
linear differential equations in the following form:

𝑦󸀠󸀠 (𝑥) = 𝜆0 (𝑥) 𝑦󸀠 (𝑥) + 𝑠0 (𝑥) 𝑦 (𝑥) (2)

where 𝜆0(𝑥) and 𝑠0(𝑥) have continuous derivatives in the
defined interval of the 𝑥 independent variable. If there is an
asymptotic condition such as

𝑠𝑛𝑠𝑛−1 =
𝜆𝑛𝜆𝑛−1 ≡ 𝛼 (3)

for 𝑛 ∈ Z+, where 𝑛 is large enough, the general solution of
(2) is obtained as

𝑦 (𝑥) = exp(−∫𝑥 𝛼 (𝑡) 𝑑𝑡)
⋅ [𝐶2 + 𝐶1 ∫𝑥 exp(∫𝑡 (𝜆0 (𝜏) + 2𝛼 (𝜏)) 𝑑𝜏) 𝑑𝑡]

(4)

with the functions

𝜆𝑛 = 𝜆󸀠𝑛−1 + 𝑠𝑛−1 + 𝜆0𝜆𝑛−1
𝑠𝑛 = 𝑠󸀠𝑛−1 + 𝑠0𝜆𝑛−1 (5)

As a field of application, AIM can be used to deal
with Schrödinger equation (or energy eigenvalue problem)
in mathematical physics. The eigenvalues can be obtained
through the following quantization condition:

𝛿𝑛 (𝑥, 𝐸) = 𝑠𝑛 (𝑥, 𝐸) 𝜆𝑛−1 (𝑥, 𝐸) − 𝜆𝑛 (𝑥, 𝐸) 𝑠𝑛−1 (𝑥, 𝐸)
= 0 (6)

If the energy eigenvalues (𝐸) can be obtained from (6),
independently from the 𝑥 variable, the problem is exactly
solvable. In this case, the eigenvalue and eigenfunction of𝑛th energy level can be derived in explicit algebraic form via𝑛 iterations. However, there are limited numbers of suitable
potentials for this case.

As for the approximately (or numerically) solvable prob-
lems, 𝛿𝑛 depends on both 𝑥 and𝐸. In this case, an appropriate
value, 𝑥 ≡ 𝑥0, should be determined to solve 𝛿𝑛(𝑥, 𝐸) = 0
with respect to 𝐸 [2, 6]. The energy eigenvalue of an 𝑛th level
is obtained through 𝑞 iterations where 𝑞 ≥ 𝑛.
3. Formulation of the Problem

Consider the following Cornell potential:

𝑉 (𝑟) = −𝐴𝑟 + 𝐵2𝑟 (7)

where 𝐴, 𝐵 are real and positive constants (𝐵 is in energy
dimension) and 𝑟 ∈ (0,∞). If we substitute 𝑉(𝑟) into
Schrödinger equation in three dimensions, we have

{ 𝑑2𝑑𝑟2 + 𝜀 − [−𝛼𝑟 + 𝜌𝑟 + 𝑙 (𝑙 + 1)𝑟2 ]}Ψ (𝑟) = 0 (8)

where 𝜀 = 2𝜇𝐸𝑛, 𝛼 = 2𝜇𝐴, and 𝜌 = 2𝜇𝐵2. 𝐸𝑛 and𝜇 = 𝑚1𝑚2/(𝑚1 + 𝑚2) are energy eigenvalue of 𝑛th level
and reduced mass of the qq system, respectively (𝑚1 and 𝑚2
are quark masses). Besides, we study in natural units (i.e., ℏ,𝑐 = 1) for the system. After changing the variable, in (8), as𝑟 = 𝑢2, then substituting Ψ(𝑢) = 𝑢1/2𝑔(𝑢), we get
𝑔󸀠󸀠 (𝑢) + [4𝜀𝑢2 + 4𝛼 − 4𝜌𝑢4 − 4𝑙 (𝑙 + 1) + 3/4𝑢2 ] 𝑔 (𝑢)
= 0

(9)

If one puts 𝑔(𝑧) = 𝑧𝛾+1𝑒−𝑧3/3𝑓(𝑧) into (9), in accordance
with the domain of the problem, we have

𝑓󸀠󸀠 (𝑧) = 2 [𝑧2 − 𝛾 + 1𝑧 ]𝑓󸀠 (𝑧)
+ [2 (𝛾 + 2) 𝑧 − 𝜎𝑧2 − 𝜔]𝑓 (𝑧)

(10)
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Table 1: Comparisons of the perturbative energy eigenvalues (𝐸𝑝𝑒𝑟𝑡)
(in GeV) with those obtained by direct application of AIM (𝐸𝑛𝑙) for
the potential parameters 𝐴 = 1 and 𝐵 = 1 GeV, and for the reduced
mass 𝜇 = 1/2 GeV.
𝑛 En0 Epert 𝑙 E0l Epert

0 1.39788 1.41015 0 1.39788 1.41015
1 3.47509 3.47509 1 2.82565 2.82690
2 5.03291 5.03224 2 3.85058 3.85089
3 6.37015 6.36948 3 4.72675 4.72687
4 7.57493 - 4 5.51698 -
5 8.68791 - 5 6.24840 -

where 𝜔 = 4𝛼/(4𝜌)1/3, 𝜎 = 4𝜀/(4𝜌)2/3, 𝛾 = 2𝑙 + 1/2, and𝑧 = (4𝜌)1/6𝑢. The final equation is suitable for applying
AIM. After this point, we can apply AIM to the problem in
two different ways: one is direct application (i.e., approximate
solution) to get the numerical results and the other is usage
of the method in scope of perturbation theory to obtain
perturbative energies through a perturbation expansion as
follows:

𝜎 = 𝜎0 + 𝜔𝜎1 + 𝜔2𝜎2 + . . . (11)

where 𝜎0, 𝜎1, 𝜎2,. . . are perturbation expansion coefficients.
These can be obtained independently from the potential
parameters.Thus, we can get a semianalytical formula for the
energy eigenvalues. One can also achieve the mass-energy of
the system by using this formula, as given in Section 4.

3.1. Numerical Results. In this section, we directly apply AIM
to (10) to get the energy eigenvalues for different potential
parameters, andwe compare our results with the perturbative
energies, for which (28) in the next section has been used.

𝑓󸀠󸀠 (𝑧) = 2 [𝑧2 − 𝛾 + 1𝑧 ]𝑓󸀠 (𝑧)
+ [2 (𝛾 + 2) 𝑧 − 𝜎𝑧2 − 𝜔]𝑓 (𝑧)

(12)

From (12), it is easily seen that 𝜆0(𝑧) = 2[𝑧2 − (𝛾 + 1)/𝑧]
and 𝑠0(𝑧) = 2(𝛾 + 2)𝑧 − 𝜎𝑧2 − 𝜔 according to (2). We tabulate
the results of direct application of AIM in Tables 1, 2, and 3.
For simplicity, in the calculations, the reduced mass has been
considered 𝜇 = 1/2 GeV. In Table 1 the potential parameters
have been chosen as 𝐴 = 1 and 𝐵 = 1 GeV while 𝐴 = 1,𝐵 = 0.1 GeV in Table 2, and 𝐴 = 1, 𝐵 = 10 GeV in Table 3.𝐸𝑝𝑒𝑟𝑡, seen in the tables, is for the comparison and has been
obtained by using (28).

As can be seen from Tables 1–3, the perturbative energy
eigenvalues are in very good agreement with the numerically
obtained ones, even for small values of the parameter 𝐵.
Furthermore, they are in accordance with each other for 𝐵 ≥1 GeV, while 𝐴 = 1 (see in Tables 1 and 3). Additionally,
this agreement is much better for higher quantum states. The
perturbative eigenvalues are a little bit different from that
obtained as numerically, for 𝐵 < 1 GeV, 𝐴 = 1, and the
lower quantum states (see in Table 2). However, they are in
agreement for the higher levels.

Table 2: Comparisons of the perturbative energy eigenvalues (𝐸𝑝𝑒𝑟𝑡)
(in GeV) with those obtained by direct application of AIM (𝐸𝑛𝑙)
for the potential parameters, 𝐴 = 1 and 𝐵 = 0.1 GeV, and for the
reduced mass 𝜇 = 1/2 GeV.
𝑛 En0 Epert l E0l Epert

0 -0.221031 -0.164433 0 -0.221031 -0.164433
1 0.0347222 0.033627 1 0.0174006 0.023501
2 0.141913 0.138477 2 0.102472 0.104008
3 0.220287 0.217229 3 0.159831 0.160406
4 0.286111 - 4 0.206238 -
5 0.344602 - 5 0.246681 -

Table 3: Comparisons of the perturbative energy eigenvalues (𝐸𝑝𝑒𝑟𝑡)
(in GeV) with those obtained by direct application of AIM (𝐸𝑛𝑙) for
the potential parameters,𝐴 = 1 and𝐵 = 10GeV, and for the reduced
mass 𝜇 = 1/2 GeV.
n En0 Epert l E0l Epert

0 46.4022 46.4047 0 46.4022 46.4047
1 85.3393 85.3394 1 70.0161 70.0165
2 116.729 116.729 2 89.7154 89.7154
3 144.315 144.315 3 107.334 107.334
4 169.461 - 4 123.562 -
5 192.851 - 5 138.761 -

4. Perturbation Theory

Although the usage of perturbation method in the frame
of AIM is comprehensively introduced in [5], we give a
summary about the methodology in this section, assuming
that the potential of a system is written as

𝑉 (𝑥) = 𝑉0 (𝑥) + 𝜂𝑉𝑝 (𝑥) (13)

where𝑉0(𝑥) is solvable (unperturbedHamiltonian) potential.𝑉𝑝(𝑥) and 𝜂 are potential of the perturbed Hamiltonian
and perturbation expansion parameter, respectively. The
Schrödinger equation then reads

(− 𝑑2𝑑𝑥2 + 𝑉0 (𝑥) + 𝜂𝑉𝑝 (𝑥))Ψ (𝑥) = 𝐸Ψ (𝑥) (14)

where 𝐸𝑛 eigenvalues are written as a series expansion of 𝑗th-
order correction 𝐸(𝑗)𝑛 as follows:

𝐸𝑛 = 𝐸(0)𝑛 + 𝜂𝐸(1)𝑛 + 𝜂2𝐸(2)𝑛 + . . . =
∞∑
𝑗=0

𝜂𝑗𝐸(𝑗)𝑛 (15)

After substituting 𝜓(𝑥) = 𝜓0(𝑥)𝑓(𝑥) in (14), one can
obtain the following equation for 𝑓(𝑥):

𝑓󸀠󸀠 (𝑥) = 𝜆0 (𝑥, 𝜂, 𝐸) 𝑓󸀠 (𝑥) + 𝑠0 (𝑥, 𝜂, 𝐸) 𝑓 (𝑥) (16)

and the termination condition in this case can be written as

𝛿𝑛 (𝑥, 𝜂, 𝐸) = 𝑠𝑛 (𝑥, 𝜂, 𝐸) 𝜆𝑛−1 (𝑥, 𝜂, 𝐸)
− 𝜆𝑛 (𝑥, 𝜂, 𝐸) 𝑠𝑛−1 (𝑥, 𝜂, 𝐸) = 0 (17)
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Once 𝛿𝑛(𝑥, 𝜂, 𝐸) is expanded about 𝜂 = 0, we obtain
𝛿𝑛 (𝑥, 𝜂, 𝐸) = 𝛿𝑛 (𝑥, 0, 𝐸) + 𝜂1!

𝜕𝛿𝑛 (𝑥, 𝜂, 𝐸)𝜕𝜂
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜂=0

+ 𝜂22!
𝜕2𝛿𝑛 (𝑥, 𝜂, 𝐸)𝜕𝜂2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜂=0 + . . .

= ∞∑
𝑘=0

𝜂𝑘𝛿(𝑘)𝑛 (𝑥, 𝐸) = 0

(18)

where 𝛿(𝑘)𝑛 (𝑥, 𝐸) = (1/𝑘!)(𝜕𝑘𝛿𝑛(𝑥, 𝜂, 𝐸)/𝜕𝜂𝑘)|𝜂=0.
According to perturbation method in the framework of

AIM, solving the equation 𝛿𝑛(𝑥, 0, 𝐸) = 0 with respect to
(unknown) 𝐸 gives 𝐸(0)𝑛 (eigenvalues of unperturbed Hamil-
tonian), equation 𝛿(1)𝑛 (𝑥, 𝐸) = 0 gives 𝐸(1)𝑛 (first-order correc-
tion to 𝐸𝑛), 𝛿(2)𝑛 (𝑥, 𝐸) gives 𝐸(2)𝑛 (second-order correction to𝐸𝑛), and so on. Besides, the perturbative eigenfunctions can
be achieved in the same vein with the eigenvalues. This is an
alluring feature of the AIM usage in the perturbation theory
for obtaining the eigenfunctions 𝑓𝑛(𝑥) given as follows:

𝑓𝑛 (𝑥) = exp(−∫𝑥 𝛼𝑛 (𝑡, 𝜂) 𝑑𝑡) (19)

where 𝛼𝑛(𝑡, 𝜂) ≡ 𝑠𝑛(𝑡, 𝜂)/𝜆𝑛(𝑡, 𝜂). 𝛼𝑛(𝑡, 𝜂) is expanded about𝜂 = 0 in a similarmanner, done for obtaining the eigenvalues.
So,

𝛼𝑛 (𝑡, 𝜂) = ∞∑
𝑘=0

𝜂𝑘𝛼(𝑘)𝑛 (𝑡) (20)

where 𝛼(𝑘)
𝑛(𝑥)
= (1/𝑘!)(𝜕𝑘𝛼𝑛(𝑥,𝜂)/𝜕𝜂𝑘)|𝜂=0. Thus, perturbation

expansion of 𝑓𝑛(𝑥) is written as follows:

𝑓𝑛 (𝑥) = exp[∞∑
𝑘=0

𝜂𝑘 (−∫𝑥 𝛼(𝑘)𝑛 (𝑡) 𝑑𝑡)]

= ∞∏
𝑘=0

𝑓(𝑘)𝑛 (𝑥)
(21)

where 𝑘th-order correction 𝑓(𝑘)𝑛 (𝑥) to 𝑓𝑛(𝑥) is
𝑓(𝑘)𝑛 (𝑥) = 𝜂𝑘 (−∫𝑥 𝛼(𝑘)𝑛 (𝑡) 𝑑𝑡) (22)

4.1. Perturbation Theory for the Cornell Potential. For our
problem, we may apply the perturbation expansion which
has been elucidated in previous section to the following
differential equation:

𝑓󸀠󸀠 (𝑧) = 2 [𝑧2 − 𝛾 + 1𝑧 ]𝑓󸀠 (𝑧)
+ [2 (𝛾 + 2) 𝑧 − 𝜎𝑧2 − 𝜔]𝑓 (𝑧)

(23)

Suppose that 𝜎 is written as follows:

𝜎 (𝑛, 𝑙) = 𝜎0 (𝑛, 𝑙) + 𝜎1 (𝑛, 𝑙) 𝜔 + 𝜎2 (𝑛, 𝑙) 𝜔2 + . . . (24)

where 𝜔 is the perturbation expansion parameter. So, the
energy eigenvalue is yielded as

𝐸𝑝𝑒𝑟𝑡 = ((4𝜌)
2/3

8𝜇 )
2/3

𝜎 (𝑛, 𝑙) (25)

and more clearly

𝐸𝑝𝑒𝑟𝑡 = (4𝜌)
2/3

8𝜇 𝜎0 (𝑛, 𝑙) + (4𝜌)
1/3

2𝜇 𝛼𝜎1 (𝑛, 𝑙)
+ 2𝛼2𝜇 𝜎2 (𝑛, 𝑙) + . . .

(26)

In the above expansion, the general form of the zeroth-
order correction 𝜎0 is obtained via

𝛿(0) (𝑧, 0, 𝜎0) = 0 (27)

The first-order correction, 𝜎1, is obtained by using the
equation 𝛿(1)(𝑧, 0, 𝜎1) = 0 in the same manner with 𝜎0, while𝛿(2)(𝑧, 0, 𝜎2) = 0 is used for 𝜎2. Numerical results of 𝜎0, 𝜎1,
and 𝜎2 coefficients, obtained by AIM, are reported in Table 4
for some energy levels. Besides, for𝜇 = 1/2GeV, comparisons
of the perturbative energy eigenvalues with the ones obtained
by direct application of AIM have been given in Tables 1, 2,
and 3, in previous section. We emphasize, in Table 4, that
corrections to the perturbation expansion do not depend on
the potential parameters.

As a practice, we have applied our perturbation expansion
formula (up to second-order correction) to get the ground-
state energies of quarkonium in Table 5, for various values
of the parameter 𝐴, while 𝐵 = 1 GeV and 𝜇 = 1/2 GeV.
In Table 5, we also report comparisons of the perturbative
energy eigenvalues with the ones of s-wave heavy quarko-
nium from [10, 21].

As is seen from Table 5, the results for which our
perturbation expansion (up to second-order correction) has
been used are in very good agreement with [10, 21] for
small values of 𝐴. However, our analytical results are a little
bit different from the exact ones as 𝐴 gets larger values. It
seems that the perturbation expansion, which includes third-
order correction, may give more accurate results. The more
correction term we add to the perturbative expansion, the
more compatible results we get. Nevertheless, we can say that
(26) can be used as an eigenvalue formula of the Schrödinger
equation in case of Cornell potential, for practical purposes.
So, one can use the following formula:

𝐸𝑝𝑒𝑟𝑡 = (4𝜌)
2/3

8𝜇 𝜎0 (𝑛, 𝑙) + (4𝜌)
1/3

2𝜇 𝛼𝜎1 (𝑛, 𝑙)
+ 2𝛼2𝜇 𝜎2 (𝑛, 𝑙)

(28)

for obtaining the eigenvalues and mass of the quarkonium
for Cornell potential. Besides, it can be fit to mass formula of
experimental values for determining the potential parameters𝐴 and 𝐵. The advantage of (28) is that the coefficients 𝜎0, 𝜎1,
and 𝜎2 are independent of the potential parameters.
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Table 4: Perturbation coefficients of the expansion given as (24) and (26). Notice that corrections to the perturbation expansion do not
depend on the potential parameters.

l n 𝜎0(n,l) 𝜎1(n,l) 𝜎2(n,l)
0

0 3.71151 -0.525933 -0.0232729
1 6.48922 -0.366743 -0.00767365
2 8.76334 -0.297538 -0.00400191
3 10.7732 -0.256486 -0.00251618

1

0 5.33566 -0.322683 -0.00554189
1 7.75358 -0.258925 -0.00282569
2 9.85399 -0.222298 -0.00176295
3 11.7558 -0.197751 -0.00122526

2

0 6.74357 -0.244191 -0.00241586
1 8.93661 -0.208300 -0.00148846
2 10.9037 -0.184664 -0.00102765
3 12.7146 -0.167585 -0.000761053

3

0 8.01784 -0.200753 -0.00134507
1 10.0516 -0.177251 -0.000921458
2 11.9129 -0.160449 -0.000679139
3 13.6471 -0.147666 -0.000525832

Table 5: Comparisons of energy eigenvalues (in GeV) obtained by using the perturbation expansion formula in (26) (𝐸𝑝𝑒𝑟𝑡) with the ones of
s-wave heavy quarkonium from [10, 21]. The potential parameter 𝐵 is taken as 𝐵 = 1GeV, while the reduced mass is 𝜇 = 1/2GeV in this case.
The eigenvalues of [10, 21] are exact results.

A E00 (Ref. [10]) E00 (Ref. [21]) Epert A E00 (Ref. [10]) E00 (Ref. [21]) Epert

0.2 2.16732 2.16732 2.16741 0.1 2.25368 2.25368 2.25369
0.4 1.98850 1.98850 1.98923 0.3 2.07895 2.07895 2.07927
0.6 1.80107 1.80107 1.80367 0.5 1.89590 1.89590 1.89740
0.8 1.60441 1.60441 1.61063 0.7 1.70394 1.70393 1.70808
1 1.39788 1.39788 1.41015 0.9 1.50242 1.50242 1.51132
1.2 1.18084 1.18083 1.20221 1.1 1.29071 1.29071 1.30711
1.4 0.95264 0.95264 0.98683 1.3 1.06817 1.06817 1.09545
1.6 0.71266 0.71266 0.76400 1.5 0.83416 0.83416 0.87635
1.8 0.46027 0.46026 0.53373 1.7 0.58805 0.58805 0.64980

4.2. Energy Eigenvalues andMass Spectrum forHeavyQuarko-
nium. In this section, we tested our formula through cross-
checking with the exact results in literature and with the
experimental data. For comparing our energy eigenvalues
with the exact ones, the parameters of Cornell potential have
been considered𝐴 = 0.52 and𝐵 = 0.43GeV. Besides, we have
chosen the quark masses as 𝑚𝑐 = 1.84 GeV and 𝑚𝑏 = 5.18
GeV, in this case [12].

Also, we tested our formula by comparing our results, for
the masses of heavy mesons, with the experimental data. For
doing this, we have taken the quark masses as𝑚𝑐 = 1.44GeV
and𝑚𝑏 = 4.87GeV and the potential parameters as 𝐴 = 0.64
and 𝐵 = 0.39 GeV. All these values have been obtained by
fitting our formula to the experimental data in [22].

In Table 6, we compared our energy eigenvalues calcu-
lated by using (28) with the ones of [12]. Furthermore, in
Table 7, we gave our results for the masses of the mesons
obtained by the same equation. Table 7 also includes the
experimental data got from [22].

It can be seen from Table 6 that the energy eigenvalues
of the mesons cc, bb, and bc, obtained by (28), are more
compatible with the exact ones, than those of [12]. The
difference between AIM and [12] becomes clearer as the
energy level increases. Similar things can be said for the
masses in Table 7: the results obtained via AIM are closer to
the experimental data than those of [12].

5. Conclusion

We have used AIM to obtain both, the eigenvalues of Schrö-
dinger equation and mass of qq system for Cornell potential,
in three dimensions. AIM has some advantages such as being
used for either exactly or numerically (or approximately)
solvable problems. Furthermore, one can use AIM in the
frame of perturbation theory. Once it is performed to obtain
perturbative solutions, the wavefunction of unperturbed
Hamiltonian is not needed to get the corrections to the
perturbation expansion.
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Table 6: Comparisons of the energy eigenvalues (in GeV) of the mesons cc, bb, and bc calculated by using (28) with the exact ones of [12].
The parameters of Cornell potential are 𝐴 = 0.52 and 𝐵 = 0.43 GeV, while the quark masses are𝑚𝑐 =1.84 GeV and𝑚𝑏 =5.18 GeV.

cc bb bc
En Exact [12] Ref. [12] AIM Exact [12] Ref. [12] AIM Exact [12] Ref. [12] AIM
1s 0.2575 0.2578 0.2660 -0.1704 -0.1702 -0.1216 0.1110 0.1113 0.1269
2s 0.8482 0.8096 0.8481 0.4214 0.3579 0.4203 0.6813 0.6324 0.6803
3s 1.2720 1.1427 1.2715 0.7665 0.5612 0.7635 1.0686 0.9065 1.0668

Table 7: Comparisons of the masses (in GeV), obtained via AIM, of the heavy mesons cc, bb, and cb with the ones of [12], and with the
experimental data from [22]. In this case, we have taken the quark masses as𝑚𝑐 =1.44 GeV and𝑚𝑏 =4.87 GeV, and the potential parameters
as 𝐴 = 0.64 and 𝐵 = 0.39 GeV, for our calculations. All these parameters have been obtained by fitting our formula, given in (28), to the
experimental data.

cc bb cb
Mn Exp. Ref. [12] AIM Exp. Ref. [12] AIM Exp. Ref. [12] AIM
1s 3.097 3.097 3.096 9.460 9.350 9.462 6.275 6.291 6.362
2s 3.686 3.649 3.672 10.023 9.878 10.027 6.842 6.812 6.911
3s 4.039 3.963 4.085 10.355 10.081 10.361 - 7.087 7.284
4s - - 4.433 10.579 - 10.624 - - 7.593
1p 3.511 - 3.521 9.899 - 9.963 - - 6.792
2p 3.927 - 3.951 10.260 - 10.299 - - 7.178
3p - - 4.310 10.512 - 10.564 - - 7.494
1d - - 3.800 10.164 - 10.209 - - 7.051

In the present study, the energy eigenvalues in the case
of Cornell potential have been achieved by direct application
of the method. Besides, we have performed perturbation
theory in the view of AIM for the problem and found a
semianalytical formula for energy eigenvalues. Numerical
results obtained by using this formula, for the reduced mass𝜇 = 1/2 GeV, conform with the exact results of [10, 21],
in a wide spectrum of the potential parameters 𝐴 and 𝐵
(especially for 𝐵 > 𝐴). Furthermore, the results are compat-
ible with the ones obtained directly, in Section 3. It is
also possible to see from the results that the perturbative
eigenvalues fit in with the exact ones for higher quantum
states, even for the large values of 𝐴. For any values of𝐴 and 𝐵, the higher quantum states are more consonant
with the exact ones than the lower states. The perturbation
expansion, which includes third-order correction, may give
more accurate results. The more correction terms we add to
the perturbative expansion, the more compatible results we
may get.

We have also tested our semianalytical formula, by cross-
checking it with the exact results in literature and with the
experimental data. It can be seen, from Table 6, that our
energy eigenvalues calculated by using (28) aremore compat-
ible with the exact ones than those of [12]. Furthermore, the
difference between our results and [12] becomes clearer as the
energy level increases. By using AIM, we have also obtained
mass results which are closer to the experimental data than
[12].

As a consequence, semianalytical formula achieved for
energy eigenvalues and mass of quarkonium can be used
for practical purposes in the case of Cornell potential. If
our formula is fitted to the experimental data, the potential

parameters (andmasses of the quarks, if it is needed) can also
be obtained.
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