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We have examined the thermodynamic volume products for spherically symmetric and axisymmetric spacetime in the framework
of extended phase space. Such volume products are usually formulated in terms of the outer horizon (H+) and the inner horizon
(H−) of black hole (BH) spacetime. Besides volume product, the other thermodynamic formulations like volume sum, volume
minus, and volume division are considered for a wide variety of spherically symmetric spacetime and axisymmetric spacetime. Like
area (or entropy) product of multihorizons, the mass-independent (universal) features of volume products sometimes also fail. In
particular, for a spherically symmetric AdS spacetime, the simple thermodynamic volume product ofH± is not mass-independent.
In this case, more complicated combinations of outer and inner horizon volume products are indeed mass-independent. For a
particular class of spherically symmetric cases, i.e., Reissner Nordström BH of Einstein gravity and Kehagias-Sfetsos BH of Hořava
Lifshitz gravity, the thermodynamic volume products of H± are indeed universal. For axisymmetric class of BH spacetime in
Einstein gravity, all the combinations are mass-dependent. There has been no chance to formulate any combinations of volume
product relation to be mass-independent. Interestingly, only the rotating BTZ black hole in 3D provides that the volume product
formula is mass-independent, i.e., universal, and hence it is quantized.

1. Introduction

It has been examined by a number of researchers that the
area (or entropy) product of various spherically symmetric
and axisymmetric BHs are mass-independent (universal) [1–
9]. For instance, Ansorg and Hennig [1] demonstrated that
for a stationary and axisymmetric class of Einstein-Maxwell
gravity the area product formula satisfied the universal
relation as

AℎA𝑐 = (8𝜋𝐽)2 + (4𝜋𝑄2)2 . (1)

Aℎ and A𝑐 are area of outer horizon (OH) or event horizon
(EH) and inner horizon (IH) or Cauchy horizon (CH). The
parameters, 𝐽 and 𝑄, are denoted as the angular momentum
and charge of the black hole (BH), respectively.

On the other hand, Cveti ̆c et al. [2] extended this
work for a higher dimensions spacetime and showed that

for multihorizon BHs the area product formula should be
quantized by satisfying the following relation:

AℎA𝑐 = (8𝜋ℓ2𝑝𝑙)2𝑁, 𝑁 ∈ N. (2)

ℓ𝑝𝑙 is the Planck length. This relation indicates that the
product relation is indeed universal in nature. This is a very
fascinating topic of research since 2009.

Aspects of BH thermodynamic properties have started
by the seminal work of Hawking and Page [10]; they first
proposed that certain type of phase transition occurs between
small and large BHs in case of Schwarzschild-AdS BH.
This phase transition is now called the famous Hawking-
Page phase transition. For a charged AdS BH, the study of
thermodynamic properties is initiated by Chamblin et al. [11,
12], where the authors demonstrated the critical behaviour
of Van der Waal like liquid-gas phase transitions. This has
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been brought into a new form by Kubizňák and Mann [13]
by examining the thermodynamic properties, i.e., 𝑃 − 𝑉
criticality of Reissner Nordström AdS BH in the extended
phase space. They determined the BH equation of state and
computed the critical exponent by using themeanfield theory
and also computed the other thermodynamic features.

Motivated by the above-mentioned work and our pre-
vious investigation [14] in which we have considered the
extended phase space framework for a wide variety of spher-
ically symmetric AdS spacetime. In the present work, we
would like to extend our study for various classes of spheri-
cally symmetric BHs and axisymmetric BHs. In the extended
phase formalism, the cosmological constant is treated as ther-
modynamic pressure 𝑃 and its conjugate variable as thermo-
dynamic volumeV [13, 15–17]. They are defined as

𝑃 = − Λ8𝜋 = 38𝜋ℓ2 . (3)

and

V = (𝜕𝑀𝜕𝑃 )
𝑆,𝑄,𝐽

(4)

The extended phase space is more meaningful than con-
ventional phase space due to the following reasons. The
conventional phase space allows the physical parameters like
temperature, entropy, charge, and potential, whereas the ex-
tended phase space allows the parameters like pressure, vol-
ume, and enthalpy (rather than internal energy). In addition
to that, the mass parameter should be considered there as
enthalpy of the system, which is useful to study the critical
behaviour of the thermodynamic system.The BH equation of
state could be used to study for comparisons with the classical
thermodynamic equation of state (Van der-Waal equation).
Once the BH thermodynamic equation of state is in hand,
then one may compute different thermodynamic quantities
like isothermal compressibility, specific heat at constant pres-
sure, and so forth.

This thermodynamic volume (there are different types of
definitions regarding the volume of a BH in the literature; the
idea regarding the BH volume was first introduced by Parikh
[18]; for other types of definition like dynamical volume and
vector volume, see [19–21]; here we are particularly interested
regarding the thermodynamic volume [22]) of a spherically
symmetric BH and for OH should read

Vℎ = 43𝜋𝑟3ℎ = Aℎ𝑟ℎ3 . (5)

𝑟ℎ is OH radius. Similarly, this volume for IH should be

V𝑐 = 43𝜋𝑟3𝑐 = A𝑐𝑟𝑐3 . (6)

It should be noted that the thermodynamic volume of CH
can be obtained by using the symmetric properties [14] of OH
radius 𝑟ℎ and IH radius 𝑟𝑐, i.e.,

V𝑐 = 𝑉ℎ󵄨󵄨󵄨󵄨𝑟ℎ↔𝑟𝑐 . (7)

Another important point in the extended phase space is
that the ADMmass should be treated as the total enthalpy of
the thermodynamic system, i.e.,𝑀 = 𝐻 = 𝑈 + 𝑃V, where𝑈
is thermal energy of the system [15].Therefore the first law of
BH thermodynamics in this phase space for any spherically
symmetric spacetime and for OH should be

𝑑𝐻 = 𝑇ℎ𝑑𝑆ℎ +Vℎ𝑑𝑃 + Φℎ𝑑𝑄. (8)

The quantities 𝑇ℎ, 𝑆ℎ, and Φℎ are denoted as the BH temper-
ature, entropy, and electric potential of OH.The parameter𝑄
is denoted as the charge of a BH.

Analogously, the first law of BHmechanics for IH should
be

𝑑𝐻 = −𝑇𝑐𝑑𝑆𝑐 +V𝑐𝑑𝑃 + Φ𝑐𝑑𝑄. (9)

Thequantities𝑇𝑐, 𝑆𝑐, andΦ𝑐 are denoted as the corresponding
BH temperature, entropy, and electric potential which could
be defined on the IH.

When we add the rotation parameter, the first law of BH
thermodynamics in the extended phase space (for axisym-
metric spacetime and for OH) becomes

𝑑𝐻 = 𝑇ℎ𝑑𝑆ℎ +Vℎ𝑑𝑃 + Φℎ𝑑𝑄 + Ωℎ𝑑𝐽. (10)

Ωℎ and 𝐽 are the angular velocity defined on the OH and the
angular momentum of BH. For IH, the first law becomes

𝑑𝐻 = −𝑇𝑐𝑑𝑆𝑐 +V𝑐𝑑𝑃 + Φ𝑐𝑑𝑄 + Ω𝑐𝑑𝐽. (11)

Ω𝑐 is the angular velocity defined on the IH. Using symmetric
features of 𝑟ℎ and 𝑟𝑐, one can determine the following ther-
modynamic relations for IH:

A𝑐 = Aℎ
󵄨󵄨󵄨󵄨𝑟ℎ↔𝑟𝑐 ,

S𝑐 = Sℎ
󵄨󵄨󵄨󵄨𝑟ℎ↔𝑟𝑐 ,Ω𝑐 = Ωℎ󵄨󵄨󵄨󵄨𝑟ℎ↔𝑟𝑐 ,Φ𝑐 = Φℎ󵄨󵄨󵄨󵄨𝑟ℎ↔𝑟𝑐𝑇𝑐 = −𝑇ℎ󵄨󵄨󵄨󵄨𝑟ℎ↔𝑟𝑐 ,

V𝑐 = Vℎ
󵄨󵄨󵄨󵄨𝑟ℎ↔𝑟𝑐 .

(12)

However in this work, we wish to extend our study by
computing the volume product, volume sum, volume minus,
and volume division in the extended phase space for various
spherically symmetric BHs and axisymmetric BHs (including
the various AdS spacetime). By evaluating these quantities
we prove that for a spherically symmetric AdS spacetime the
simple volume product is notmass-independent. In this case,
somewhat complicated combination of volume functional
relations of OH and IH are indeed mass-independent. For
instance, we have derived the mass-independence volume
functional relation for RN-AdS BH as

𝑓 (Vℎ,V𝑐) = ℓ2, (13)
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where𝑓 (Vℎ,V𝑐)
= ( 332𝜋)1/3 (8𝜋ℓ

2𝑄2/3)(VℎV𝑐)1/3
− ( 34𝜋)2/3 [Vℎ2/3 +V𝑐

2/3 + (VℎV𝑐)1/3] .
(14)

For simple Reissner Nordström BH (which is a spherically
symmetric solution of Einstein equation) of Einstein gravity
and Kehagias-Sfetsos BH of Hořava Lifshitz gravity, the ther-
modynamic volume products of H± are mass-independent.
Therefore they behave as a universal character by its own
features. Moreover, we have derived the thermodynamic
volume functional relation for Hořava Lifshitz-AdS BH and
phantom AdS BH. The phantom fields are exotic because
they were produced via negative energy density. Furthermore
we have derived volume functional relation for regular BH.
Regular BH is a kind of BHwhich is free from a curvature sin-
gularity.

Whereas for axisymmetric class of BHs including AdS
spacetime there has been no chance to formulate any possible
combinations of thermodynamic volume product to bemass-
independent, it should be noted that, for a KN-AdS BH, there
may be a possibility of formulating the area (or entropy)
product relations to be mass-independent.The reason is that,
for a simple Kerr BH, the area (or entropy) product is univer-
sal, i.e., mass-independent, while the volume product is not!
This is because the thermodynamic volume is proportional
to the spin parameter. That is why there has been no chance
to produce any combinations of volume product of H± to be
mass-independent. Therefore the axisymmetric BHs show
no universal behaviour for volume products. Interestingly,
only rotating BTZ BH shows the mass-independent feature.
Thus only axisymmetric BHs in 3D provided the universal
character of thermodynamic volume product.

In our previous investigation [8, 9], we computed the BH
area (or entropy) products, BH temperature products, Komar
energy products, and specific heat products for various
classes of BHs. Besides the area (or entropy) product, it should
be important to study whether the thermodynamic volume
product, volume sum, volume minus, and volume division for
all the horizons are universal or not and whether they should
be quantized or not. This is the main motivation behind this
work.

The structure of the paper is as follows. In Section 2,
we shall compute the various thermodynamic volume prod-
ucts for spherically symmetric BHs and conclude that the
product is mass-independent. In Section 3, we compute
various thermodynamic volume products for axisymmetric
spacetime and conclude that the product is mass-dependent.
Interestingly, for the spinning BTZ BH, the said volume
product ismass-independent.

2. Spherically Symmetric BH

In this section, we would consider various spherically sym-
metric BHs.

2.1. Reissner Nordström BH. We begin with charged BH with
zero cosmological constant which is a solution of Einstein
equation. The metric form is given by

𝑑𝑠2 = −Z (𝑟) 𝑑𝑡2 + 𝑑𝑟2
Z (𝑟) + 𝑟2𝑑Ω22, (15)

where

Z (𝑟) = 1 − 2𝑀𝑟 + 𝑄2𝑟2 , (16)

and 𝑑Ω22 is metric on the unit sphere in two dimensions.
The OH (there are several definitions of horizons for a

static spherically symmetric spacetime; we have used Killing
horizons for computations of thermodynamic volume) radius
and IH radius read

𝑟ℎ = 𝑀 + √𝑀2 − 𝑄2 (17)

𝑟𝑐 = 𝑀 − √𝑀2 − 𝑄2. (18)

𝑀 and 𝑄 denote the mass and charge of BH, respectively.
When𝑀2 > 𝑄2, it describes a BH; otherwise it has a naked
singularity. The thermodynamic volume for OH and IH
should read

Vℎ = 43𝜋𝑟3ℎ (19)

V𝑐 = 43𝜋𝑟3𝑐 . (20)

The thermodynamic volume (in the limit 𝑄 = 0, one obtains
the thermodynamic volume for Schwarzschild BH; since in
this case the BH has only OH located at 𝑟ℎ = 2𝑀, therefore
the volume should beVℎ = (32/3)𝜋𝑀3; thus for an isolated
Schwarzschild BH, the thermodynamic volume should be
mass-dependent; therefore it is not universal and not quan-
tized in nature by its own character) product for OH and IH
should be

VℎV𝑐 = 169 𝜋2𝑄6. (21)

It is indeedmass-independent; thus it is universal in character
and it is also quantized.

The volume sum for OH and IH is calculated to be

Vℎ +V𝑐 = 323 𝜋𝑀3 (1 − 34 𝑄2𝑀2) . (22)

Similarly, one can compute the volumeminus for OH and IH
as

Vℎ −V𝑐 = 323 𝜋𝑀2√𝑀2 − 𝑄2 (1 − 𝑄24𝑀2) , (23)

and the volume division should be

Vℎ

V𝑐
= (𝑀 + √𝑀2 − 𝑄2𝑀−√𝑀2 − 𝑄2)

3 . (24)
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It follows from the calculation that all these quantities are
mass-dependent so they are not universal in nature by its
own right. From (23) and (24), we can easily see that, in the
extremal limit𝑀2 = 𝑄2, one obtainsVℎ = V𝑐. This is a new
condition of extreme limit in spherically symmetric cases.

2.2. Hořava Lifshitz BH. In this section, we would briefly
review the UV complete theory of gravity which is a nonrel-
ativistic renormalizable theory of gravity known as Hořava
Lifshitz [23–25] gravity. It reduces to Einstein’s gravity at large
scales for the value of dynamical coupling constant 𝜆 = 1.
Using ADM formalism, one could write the metric as

𝑑𝑠2 = −𝑁2𝑑𝑡2 + 𝑔𝑖𝑗 (𝑑𝑥𝑖 − 𝑁𝑖𝑑𝑡) (𝑑x𝑗 − 𝑁𝑗𝑑𝑡) . (25)

In addition for a spacelike hypersurface with a fixed time the
extrinsic curvature𝐾𝑖𝑗 is given by

𝐾𝑖𝑗 = 12𝑁 ( ̇𝑔𝑖𝑗 − ∇𝑖𝑁𝑗 − ∇𝑗𝑁𝑖) . (26)

Adot represents a derivativewith respect to 𝑡.The generalized
action for Hořava Lifshitz could be written as

𝑆 = ∫𝑑𝑡𝑑3𝑥√𝑔𝑁[ 2𝜅2 (𝐾𝑖𝑗𝐾𝑖𝑗 − 𝜆𝐾2)
+ 𝜅2𝜇2 (Λ𝑤𝑅 − 3Λ2𝑤)8 (1 − 3𝜆) + 𝜅2𝜇2 (1 − 4𝜆)32 (1 − 3𝜆) 𝑅2
− 𝜅22𝑤4 (𝐶𝑖𝑗 − 𝜇𝑤22 𝑅𝑖𝑗)(𝐶𝑖𝑗 − 𝜇𝑤22 𝑅𝑖𝑗) + 𝜇4𝑅] .

(27)

Here 𝜅2, 𝜆, 𝜇, 𝑤, and Λ are the constant parameters and the
cotton tensor, 𝐶𝑖𝑗, is defined to be

𝐶𝑖𝑗 = 𝜖𝑖𝑘𝑙∇𝑘 (𝑅𝑗𝑙 − 14𝜖𝑖𝑘𝑗𝜕𝑘𝑅) . (28)

As compared with Einstein's general relativity, one could
obtain the speed of light, Newtonian constant, and the cos-
mological constant as

𝑐 = 𝜅2𝜇4 √ Λ𝑤1 − 3𝜆 (29)

𝐺 = 𝜅232𝜋𝑐 (30)

Λ = 32Λ𝑤, (31)

respectively. It should be mentioned here that when 𝜆 = 1,
the first three terms in (27) reduce to that one obtains as in
Einstein's gravity. It must also be noted that 𝜆 is a dynamic
coupling constant and for 𝜆 > 1/3, the cosmological constant
should be a negative one.However, it could bemade a positive
one if one could give a following transformation like 𝜇 →𝑖𝜇 and 𝑤2 → −𝑖𝑤2. Here we restrict ourselves that the BH

solution is in the limit of Λ𝑤 → 0. That is why, we have to set𝑁𝑖 = 0 and to get the spherically symmetric solution we have
to choose the metric ansatz as

𝑑𝑠2 = −𝑁2 (𝑟) 𝑑𝑡2 + 𝑑𝑟2𝑔 (𝑟) + 𝑟2 (𝑑𝜃2 + sin2𝜃𝑑𝜙2) . (32)

In order to get the spherically symmetric solution, substitute
the metric ansatz 32 into the action and one obtains reduced
Lagrangian as

L = 𝜅2𝜇2𝑁8 (1 − 3𝜆)√𝑔 [(2𝜆 − 1) (𝑔 − 1)2𝑟2 − 2𝜆𝑔 − 1𝑟 𝑔󸀠
+ 𝑔 − 12 𝑔󸀠2 − 2𝜔 (1 − 𝑔 − 𝑟𝑔󸀠)] , (33)

where 𝜔 = 8𝜇2(3𝜆 − 1)/𝜅2. Here we are interested to investi-
gate the situation 𝜆 = 1, i.e., 𝜔 = 16𝜇2/𝜅2. Then one finds the
solution of the metric [26] as

𝑁2 (𝑟) = 𝑔 = 1 − √4𝑀𝜔𝑟 + 𝜔2𝑟4 + 𝜔𝑟2, (34)

where𝑀 is an integration constant related to themass param-
eter. Thus the static, spherically symmetric solution is given
by

𝑑𝑠2 = −𝑔 (𝑟) 𝑑𝑡2 + 𝑑𝑟2𝑔 (𝑟) + 𝑟2 (𝑑𝜃2 + sin2𝜃𝑑𝜙2) . (35)

For 𝑟 ≫ (𝑀/𝜔)1/3, one gets the usual behaviour of a Schwarz-
schild BH.The BH horizons correspond to 𝑔(𝑟) = 0. The OH
radius and IH radius should read

𝑟ℎ = 𝑀 + √𝑀2 − 12𝜔 (36)

𝑟𝑐 = 𝑀 − √𝑀2 − 12𝜔 , (37)

where𝑀 and𝜔 denote themass and coupling constant of BH,
respectively. When𝑀2 > 1/2𝜔, it describes a BH and when𝑀2 < 1/2𝜔, it describes a naked singularity.

The thermodynamic volume product for KS BH should
be

VℎV𝑐 = 2𝜋29𝜔3 . (38)

It indicates that it is mass-independent; therefore it is uni-
versal in nature and it also be quantized. We do not calculate
other possible combinations because it is clear that these com-
binations are surely mass-dependent as we have seen in case
of RN BH. It should be mentioned that the Smarr formula is
satisfied in case of Einstein-Aether theory and some variants
of infrared HL gravity [27]. It would be interesting if one
could examine what the status of HL gravity is when the
extended phase space formalism is applied. It could be found
elsewhere.
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2.3. Nonrotating BTZ BH. Thenonrotating BTZ BH is a solu-
tion of Einstein-Maxwell gravity in three spacetime dimen-
sions. The metric form is given by

𝑑𝑠2 = −(𝑟2ℓ2 −𝑀)𝑑𝑡2 + 𝑑𝑟2(𝑟2/ℓ2 −𝑀) + 𝑟2𝑑𝜙2. (39)

𝑀 is the ADM mass of the BH and −Λ = 1/ℓ2 = 8𝜋𝑃𝐺3
denotes the cosmological constant. Here we have set 𝑐 = ℏ =𝑘 = 1. The BH OH is located at 𝑟ℎ = √8𝐺3𝑀ℓ (we have
already mentioned that in the extended phase space ℓ =√3/8𝜋P; in the subsequent expression, we have to put this
condition to obtain the results in terms of thermodynamic
pressure). 𝐺3 is 3D Newtonian constant. Interestingly, the
thermodynamic volume for 3D static BTZ BH is computed
in [17]

Vℎ = 𝜋𝑟2ℎ = 8𝜋𝐺3𝑀ℓ2 (40)

This is an isolated case and the thermodynamic volume is
mass-dependent; thus it is not quantized as well as it is not
universal. Λ = −1/ℓ2 is cosmological constant.

2.4. Schwarzschild-AdS BH. This BH is a solution of Einstein
equation. The form of the metric function is given by

Z (𝑟) = 1 − 2𝑀𝑟 + 𝑟2ℓ2 , (41)

where Λ = −3/ℓ2 is cosmological constant. The horizon radii
could be calculated from the following equation:

𝑟3 + ℓ2𝑟 − 2𝑀ℓ2 = 0. (42)

Among the three roots, only one root is real. Therefore the
BH possesses only one physical horizon which is located at

𝑟ℎ = (ℓ3)2/3 (9𝑀 + √3√ℓ2 + 27𝑀2)1/3
− (ℓ43 )1/3 1(9𝑀 + √3√ℓ2 + 27𝑀2)1/3 .

(43)

The thermodynamic volume is computed to be

Vℎ = 43𝜋𝑟3ℎ = 43
⋅ 𝜋[[(

ℓ3)2/3 (9𝑀 + √3√ℓ2 + 27𝑀2)1/3

− (ℓ43 )1/3 1(9𝑀 + √3√ℓ2 + 27𝑀2)1/3]]
3 .

(44)

Since it is an isolated case and the thermodynamic volume
is mass-dependent, therefore it is not universal nor does
it quantized. We do not consider the other AdS spacetime
because it has already been discussed in [14].

2.5. RN-AdS BH. For this BH, the metric function is given by

Z (𝑟) = 1 − 2𝑀𝑟 + 𝑄2𝑟2 + 𝑟2ℓ2 . (45)

The horizon radii could be found from the following equa-
tion:

𝑟4 + ℓ2𝑟2 − 2𝑀ℓ2𝑟 + ℓ2𝑄2 = 0. (46)

Among the four roots, two roots are real and two roots are
imaginary. Thus the OH and IH radii become

𝑟ℎ,𝑐 = 12√ 13 (𝑥2)1/3 + ( 2𝑥)1/3 ℓ
2 (ℓ2 + 12𝑄2)3 − 2ℓ23 ± 12

⋅ √ 4𝑀ℓ2√(1/3) (𝑥/2)1/3 + (2/𝑥)1/3 ℓ2 (ℓ2 + 12𝑄2) /3 − 2ℓ2/3 − 13 (𝑥2)1/3 − ( 2𝑥)1/3 ℓ
2 (ℓ2 + 12𝑄2)3 − 4ℓ23 , (47)

where

𝑥 = 2ℓ6 + 108𝑀2ℓ4 − 72ℓ4𝑄2
+ √(2ℓ6 + 108𝑀2ℓ4 − 72ℓ4𝑄2)2 − 4ℓ6 (ℓ2 + 12𝑄2)3 (48)

The thermodynamic volume product of RN-AdS BH for OH
and IH is computed to be

VℎV𝑐 = 𝜋236 [[[
23 (𝑥2)1/3 + ( 2𝑥)1/3 2ℓ

2 (ℓ2 + 12𝑄2)3 + 2ℓ23
− 4𝑀ℓ2√(1/3) (𝑥/2)1/3 + (2/𝑥)1/3 ℓ2 (ℓ2 + 12𝑄2) /3 − 2ℓ2/3]]]

3

.
(49)

It is clearly evident from the above expression that the
product is strictly mass-dependent. Thus the product is
not universal. But below we would like to determine that
somewhat complicated function of inner and outer horizon
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volume is indeed mass-independent. To proceed it we would
like to use Vieta's theorem. Therefore from (46), we get

4∑
𝑖=1

𝑟𝑖 = 0. (50)

∑
1≤𝑖<𝑗≤4

𝑟𝑖𝑟𝑗 = ℓ2. (51)

∑
1≤𝑖<𝑗<𝑘≤4

𝑟𝑖𝑟𝑗𝑟𝑘 = 2𝑀ℓ2. (52)

4∏
𝑖=1

𝑟𝑖 = ℓ2𝑄2. (53)

Hence the mass-independent volume sum and volume
product relations are

4∑
𝑖=1

V𝑖
1/3 = 0. (54)

∑
1≤𝑖<𝑗≤4

(V𝑖V𝑗)1/3 = ( 332𝜋)1/3 8𝜋ℓ23 . (55)

4∏
𝑖=1

(V𝑖)1/3 = (𝜋6 )1/3 8𝜋ℓ2𝑄23 . (56)

The mass-independent volume functional relations in
terms of two horizons are

𝑓 (Vℎ,V𝑐) = ℓ2, (57)

where𝑓 (Vℎ,V𝑐)
= ( 332𝜋)1/3 (8𝜋ℓ

2𝑄2/3)(VℎV𝑐)1/3
− ( 34𝜋)2/3 [Vℎ2/3 +V𝑐

2/3 + (VℎV𝑐)1/3] .
(58)

These are explicitly mass-independent volume functional
relations in the extended phase space.

2.6. Hořava Lifshitz-AdS BH. Themetric function for Hořava
Lifshitz BH in AdS space [28, 29] is given by

Z (𝑟) = 1 + (1 − 2Λ3𝜔)𝜔𝑟2 − 𝜔𝑟2√1 − 4Λ3𝜔 + 4𝑀𝜔𝑟3 . (59)

The horizon radii could be calculated from the following
equation:

4𝑟4 + 2 (𝜔ℓ2 + 2) ℓ2𝑟2 − 4𝑀𝜔ℓ4𝑟 + ℓ4 = 0. (60)

Similarly, among the four roots, two roots are real and two
roots are imaginary. Thus the OH and IH radii become

𝑟ℎ = (𝑎 + 𝑏)2 ,
𝑟𝑐 = (𝑎 − 𝑏)2 , (61)

where

𝑎 = √ 21/3 (𝜔2ℓ8 + 4𝜔ℓ6 + 16ℓ4) − (ℓ2/3) (𝜔ℓ2 + 2)3𝑦1/3 + 112 (𝑦2 )1/3 (62)

𝑏 = √ 2𝑀𝜔ℓ4𝑎 − 112 (𝑦2 )1/3 − [21/3 (𝜔2ℓ8 + 4𝜔ℓ6 + 16ℓ4) + (2/3) ℓ2 (𝜔ℓ2 + 2)]3𝑦1/3 (63)

and

𝑦 = 1728𝑀2𝜔2ℓ8 − 576ℓ6 (𝜔ℓ2 + 2) + 16ℓ6 (𝜔ℓ2 + 2)3
+ √[1728𝑀2𝜔2ℓ8 − 576ℓ6 (𝜔ℓ2 + 2) + 16ℓ6 (𝜔ℓ2 + 2)3]2 − 256ℓ12 (𝜔2ℓ4 + 4𝜔ℓ2 + 16)3. (64)

The thermodynamic volume for this BH is quite different
from RN-AdS spacetime and it has been calculated in [29]: Vℎ = 43𝜋𝑟3ℎ [ 4ℓ2 + 2𝜔𝑟2

ℎ

] (65)
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and

V𝑐 = 43𝜋𝑟3𝑐 [ 4ℓ2 + 2𝜔𝑟2𝑐 ] . (66)

The volume product is calculated to be

VℎV𝑐

= 16𝜋29 [24/3 (𝜔2ℓ8 + 4𝜔ℓ6 + 16ℓ4) + (ℓ2/3) (𝜔ℓ2 + 2)3𝑦1/3
+ 16 (𝑦2 )1/3 − 2𝑀𝜔ℓ4𝑎 ]
× [[

14ℓ4 {2
4/3 (𝜔2ℓ8 + 4𝜔ℓ6 + 16ℓ4) + (ℓ2/3) (𝜔ℓ2 + 2)3𝑦1/3

+ 16 (𝑦2 )1/3 − 2𝑀𝜔ℓ4𝑎 }2 + 1𝜔2 + 1𝜔ℓ2 {2𝑀𝜔ℓ4𝑎
− ℓ2 (𝜔ℓ2 + 2)3𝑦1/3 }]] .

(67)

From the above expression, we can conclude that the volume
product for Hořava Lifshitz BH in AdS space is strictly mass-
dependent. Thus this product is not a universal quantity.
Below we will derive more complicated function of inner and
outer horizon volume that is indeed mass-independent. To
compute it, we should apply Vieta's theorem.Thus from (60),
we find

4∑
𝑖=1

𝑟𝑖 = 0. (68)

∑
1≤𝑖<𝑗≤4

𝑟𝑖𝑟𝑗 = 𝜔ℓ42 (1 + 2𝜔ℓ2 ) . (69)

∑
1≤𝑖<𝑗<𝑘≤4

𝑟𝑖𝑟𝑗𝑟𝑘 = 𝑀𝜔ℓ4. (70)

∑
1≤𝑖<𝑗<𝑘<𝑙≤4

𝑟𝑖𝑟𝑗𝑟𝑘𝑟𝑙 = ℓ44 . (71)

Eliminating the mass parameter in terms of two horizons,
one could obtain the following mass-independent volume
functional relation:

𝑔 (Vℎ,V𝑐) = 𝜔ℓ42 (1 + 2𝜔ℓ2 ) , (72)

where

𝑔 (Vℎ,V𝑐) = (ℓ4/4)𝑟ℎ𝑟𝑐 − (𝑟2ℎ + 𝑟2𝑐 + 𝑟ℎ𝑟𝑐) , (73)

where the parameters 𝑟ℎ and 𝑟𝑐 could be obtained by solving
(65) and (66) in terms of thermodynamic volume as

𝑟ℎ = 12 [(𝑢ℎ9 )1/3 1𝜔 − 2ℓ2(3𝑢ℎ)1/3] , (74)

𝑟𝑐 = 12 [(𝑢𝑐9 )1/3 1𝜔 − 2ℓ2(3𝑢𝑐)1/3] , (75)

and

𝑢ℎ = √3√8𝜔3ℓ6 + 27ℓ4𝜔6 + 27ℓ4𝜔6 (3𝑉ℎ4𝜋 )3
− 9ℓ2𝜔3 (3𝑉ℎ4𝜋 ) , (76)

𝑢𝑐 = √3√8𝜔3ℓ6 + 27ℓ4𝜔6 + 27ℓ4𝜔6 (3𝑉𝑐4𝜋 )3
− 9ℓ2𝜔3 (3𝑉𝑐4𝜋 ) . (77)

Now (72) is completely mass-independent volume functional
relation.

2.7. Thermodynamic Volume Products for Phantom BHs. In
this section, we would like to discuss the thermodynamic vol-
ume products for phantom AdS BH [30]. The phantom fields
are exotic fields in BH physics. They could be generated via
negative energy density. They could explain the acceleration
of our universe.Thus one could expect that these exotic fields
might have an important role in BH thermodynamics. We
want to study here what is the key role of these phantom
fields in thermodynamic volume functional relation? This is
the main motivation behind this work. For phantom BH, the
metric function is given by

Z (𝑟) = 1 − 2𝑀𝑟 − Λ3 𝑟2 + 𝜂𝑄2𝑟2 , (78)

where the parameter 𝜂 determines the nature of electromag-
netic (EM) field. For 𝜂 = 1, one obtains the classical EM
theory but when 𝜂 = −1, one obtains theMaxwell field which
is phantom.

Therefore for phantom BH, the horizon radii could be
found from the following equation:

𝑟4 + ℓ2𝑟2 − 2𝑀ℓ2𝑟 − ℓ2𝑄2 = 0. (79)

The above equation has four roots; among them the two roots
are real and other two roots are imaginary. Thus the OH and
IH radii are



8 Advances in High Energy Physics

𝑟ℎ,𝑐 = 12√13 (𝑧2)1/3 + (2𝑧)1/3 ℓ
2 (ℓ2 − 12𝑄2)3 − 2ℓ23 ± 12

⋅ √ 4𝑀ℓ2√(1/3) (𝑧/2)1/3 + (2/𝑧)1/3 ℓ2 (ℓ2 − 12𝑄2) /3 − 2ℓ2/3 − 13 (𝑧2)1/3 − (2𝑧)1/3 ℓ
2 (ℓ2 − 12𝑄2)3 − 4ℓ23 , (80)

where

𝑧 = 2ℓ6 + 108𝑀2ℓ4 + 72ℓ4𝑄2
+ √(2ℓ6 + 108𝑀2ℓ4 + 72ℓ4𝑄2)2 − 4ℓ6 (ℓ2 − 12𝑄2)3 (81)

Nowwe compute the thermodynamic volume product which
turns out to be

VℎV𝑐 = 𝜋236 [[[
23 (𝑧2)1/3 + (2𝑧)1/3 2ℓ

2 (ℓ2 − 12𝑄2)3 + 2ℓ23
− 4𝑀ℓ2√(1/3) (𝑧/2)1/3 + (2/𝑧)1/3 ℓ2 (ℓ2 − 12𝑄2) /3 − 2ℓ2/3]]]

3

.
(82)

The above product indicates that it is strictlymass-dependent.
Therefore the product is not universal. Below we would like
to prove that more complicated function of inner and outer
horizon volume is indeed mass-independent.

To do thiswewould like to useVieta's theorem.Thus from
(79), we find

4∑
𝑖=1

𝑟𝑖 = 0. (83)

∑
1≤𝑖<𝑗≤4

𝑟𝑖𝑟𝑗 = ℓ2. (84)

∑
1≤𝑖<𝑗<𝑘≤4

𝑟𝑖𝑟𝑗𝑟𝑘 = 2𝑀ℓ2. (85)

4∏
𝑖=1

𝑟𝑖 = −ℓ2𝑄2. (86)

Thus the mass-independent volume sum and volume product
relations should read

4∑
𝑖=1

V𝑖
1/3 = 0. (87)

∑
1≤𝑖<𝑗≤4

(V𝑖V𝑗)1/3 = ( 332𝜋)1/3 8𝜋ℓ23 . (88)

4∏
𝑖=1

(V𝑗)1/3 = (𝜋6 )1/3 8𝜋ℓ2𝑄23 . (89)

Therefore the mass-independent volume functional relations
in terms of two horizons are

𝑓 (Vℎ,V𝑐) = −ℓ2, (90)

where

𝑓 (Vℎ,V𝑐)
= ( 332𝜋)1/3 (8𝜋ℓ

2𝑄2/3)(VℎV𝑐)1/3
+ ( 34𝜋)2/3 [Vℎ2/3 +V𝑐

2/3 + (VℎV𝑐)1/3] .
(91)

These are explicitly mass-independent volume functional
relations in the extended phase space.

2.8. Thermodynamic Volume Products for AdS BH in 𝑓(𝑅)
Gravity. In this section, we are interested in deriving the
thermodynamic volume products for a static, spherically
symmetric AdSBH in𝑓(𝑅) gravity. To some extent, it is called
modified gravity. It is a very crucial tool for explaining the
current and future status of the accelerating universe. Thus it
is very important to investigate the thermodynamic volume
products for this gravity. The metric [14, 31] function for this
kind of gravity can be written as

Z (𝑟) = 1 − 2𝑚𝑟 + 𝑞2𝛼𝑟2 − 𝑅012 𝑟2, (92)

where 𝛼 = 1 + 𝑓󸀠(𝑅0). The parameters𝑚 and 𝑞 are related to
the ADM mass, 𝑀, and electric charge, 𝑄, by the following
expression:

𝑚 = 𝑀𝛼 ,
𝑞 = √𝛼𝑄. (93)

In this gravity, the thermodynamic pressure could be written
as 𝑃 = −(Λ/8𝜋)𝛼 = 3/8𝜋ℓ2 and the scalar curvature constant
as 𝑅0 = −12/ℓ2 = 4Λ. Thus the horizon equation for 𝑓(𝑅)
gravity becomes

𝑟4 + ℓ2𝑟2 − 2𝑚ℓ2𝑟 + ℓ2𝑞2𝛼 = 0. (94)
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The EH radius and CH radius are

𝑟ℎ = (𝑎 + 𝑏)2 ,
𝑟𝑐 = (𝑎 − 𝑏)2 , (95)

where

𝑎 = √ 13𝛼 (𝜇2)1/3 + (2𝜇)1/3 ℓ
2 (𝛼ℓ2 + 12𝑞2)3 − 2ℓ23 (96)

and

𝑏
= √ 4𝑚ℓ2𝑎 − 13𝛼 (𝜇2)1/3 − (2𝜇)1/3 ℓ

2 (𝛼ℓ2 + 12𝑞2)3 − 4ℓ23 , (97)

where

𝜇 = 2𝛼3ℓ6 + 108𝛼3𝑚2ℓ4 − 72𝛼2ℓ4𝑞2
+ √(2𝛼3ℓ6 + 108𝛼3𝑚2ℓ4 − 72𝛼2ℓ4𝑞2)2 − 4ℓ6 (𝛼2ℓ2 + 12𝛼𝑞2)3 (98)

The volume products for 𝑓(𝑅) gravity are derived to be

VℎV𝑐 = 𝜋236 [ 23𝛼 (𝜇2)1/3

+ (2𝜇)1/3 2ℓ
2 (𝛼ℓ2 + 12𝑞2)3 + 2ℓ23 − 4𝑚ℓ2𝑎 ]3 .

(99)

It indicates that the volume product is notmass-independent.
Now we shall give an alternative approach where we would
see that more complicated function of volume functional
relation is quite mass-independent. To derive it, we should
use Vieta's theorem; then one could find

4∑
𝑖=1

𝑟𝑖 = 0. (100)

∑
1≤𝑖<𝑗≤4

𝑟𝑖𝑟𝑗 = ℓ2. (101)

∑
1≤𝑖<𝑗<𝑘≤4

𝑟𝑖𝑟𝑗𝑟𝑘 = 2𝑚ℓ2. (102)

4∏
𝑖=1

𝑟𝑖 = 𝑞2ℓ2𝛼 . (103)

Eliminating third and fourth roots, the mass-independent
volume functional relation is derived as

𝑓 (Vℎ,V𝑐) = ℓ2, (104)

where𝑓 (Vℎ,V𝑐)
= ( 332𝜋)1/3 (8𝜋ℓ

2𝑞2/3)𝛼 (VℎV𝑐)1/3
− ( 34𝜋)2/3 [Vℎ2/3 +V𝑐

2/3 + (VℎV𝑐)1/3] .
(105)

This equation is explicitly mass-independent.

2.9.Thermodynamic Volume Products for Regular BH. In this
section,we compute the thermodynamic volumeproducts for
a regular BH derived by Ayón-Beato and Garćıa (ABG) [32,
33]. It is a spherically symmetric solution of Einstein's general
relativity and it is a curvature singularity free solution. The
metric function form of ABG BH is given by

Z (𝑟) = 1 − 2𝑚𝑟2(𝑟2 + 𝑞2)3/2 + 𝑞2𝑟2(𝑟2 + 𝑞2)2 . (106)

𝑚 is the mass of the BH and 𝑞 is the monopole charge. The
horizon radii could be found from the following equation:

𝑟8 + (6𝑞2 − 4𝑚2) 𝑟6 + (11𝑞4 − 4𝑚2𝑞2) 𝑟4 + 6𝑞6𝑟2
+ 𝑞8 = 0. (107)

This is a polynomial equation of order 8𝑡ℎ. This could be re-
duced to fourth-order polynomial equation by putting 𝑟2 = 𝑧;
then one obtains [33]

𝑧4 + (6𝑞2 − 4𝑚2) 𝑧3 + (11𝑞4 − 4𝑚2𝑞2) 𝑧2 + 6𝑞6𝑧
+ 𝑞8 = 0. (108)

The EH and CH are located at

𝑟ℎ = √ (2𝑚2 − 3𝑞2)2 + 𝑎2 + 𝑏2 (109)

𝑟𝑐 = √ (2𝑚2 − 3𝑞2)2 − 𝑎2 − 𝑏2 (110)

and the other horizons (we have considered only here EH and
CH; the other horizons are discarded) are located at

𝑟ℎ𝑐 = √ (2𝑚2 − 3𝑞2)2 + 𝑎2 − 𝑏2 (111)

𝑟𝑐ℎ = √ (2𝑚2 − 3𝑞2)2 − 𝑎2 + 𝑏2 (112)

where
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𝑎 = √4𝑚2𝑞2 − 11𝑞4 + (2𝑚2 − 3𝑞2)2 + (11𝑞4 − 4𝑚2𝑞2)3 + (2𝛿)1/3 (16𝑚
4𝑞4 − 16𝑚2𝑞6 + 25𝑞8)3 + 13 (𝛿2)1/3 (113)

and

𝑏 = √𝑐 (114)

where

𝑐 = 4𝑚2𝑞2 − 11𝑞4 + 2 (2𝑚2 − 3𝑞2)2 + (4𝑚2𝑞2 − 11𝑞4)3

− (2𝛿)1/3 (16𝑚
4𝑞2 − 16𝑚2𝑞6 + 25𝑞8)3 − 13 (𝛿2)1/3

+ {48𝑞6 − 8 (2𝑚2 − 3𝑞2)3 + 8 (2𝑚2 − 3𝑞2) (11𝑞4 − 4𝑚2𝑞2)}4𝑎
(115)

and

𝛿 = 624𝑚4𝑞8 − 128𝑚6𝑞6 − 240𝑚2𝑞10 + 250𝑞12 + √324864𝑚8𝑞16 − 110592𝑚10𝑞14 − 193536𝑚6𝑞18 + 172800𝑚4𝑞20. (116)

The volume product ofH± is evaluated to be

VℎV𝑐 = 𝜋236 [(2𝑚2 − 3𝑞2)2 − (𝑎 + 𝑏)2] . (117)

As usual, the volume product is not mass-independent.
Now we would see below that somewhat more complicated
function of inner and outer horizon volume is indeed mass-
independent. To derive it, we have to apply Vieta's theorem
in (108); thus one obtains

4∑
𝑖=1

𝑧𝑖 = 4𝑚2 − 6𝑞2. (118)

∑
1≤𝑖<𝑗≤4

𝑧𝑖𝑧𝑗 = 11𝑞4 − 4𝑚2𝑞2. (119)

∑
1≤𝑖<𝑗<𝑘≤4

𝑧𝑖𝑧𝑗𝑧𝑘 = −6𝑞2. (120)

4∏
𝑖=1

𝑧𝑖 = 𝑞8. (121)

Eliminating the mass parameter, one obtains the mass-
independent equation in terms of two horizons

𝑧1𝑧2 (𝑧1 + 𝑧2) + 6𝑞2𝑧1𝑧2 − 𝑞8 (𝑧1 + 𝑧2)𝑧1𝑧2
− 1𝑧1 + 𝑧2 + 𝑞2 [(𝑧1 + 𝑧2)2 + 6𝑞2 (𝑧1 + 𝑧2) − 𝑧1𝑧2
− 𝑞8𝑧1𝑧2 + 11𝑞4] = 6𝑞6.

(122)

It should be noted that the symbols (ℎ, 𝑐) and (1, 2) both have
the same meaning. Now in terms of volume ofH± the mass-
independent volume functional relation becomes𝑓 (Vℎ,V𝑐) = 6𝑞6, (123)

where

𝑓 (Vℎ,V𝑐) = ( 34𝜋)2 (VℎV𝑐)2/3 {V2/3ℎ +V
2/3
𝑐 }

+ 6𝑞2 ( 34𝜋)4/3 (VℎV𝑐)2/3 − 𝑞8 (4𝜋3 )2/3
⋅ (V2/3ℎ +V2/3𝑐 )(VℎV𝑐)2/3 − ( 34𝜋)2/3
⋅ (VℎV𝑐)2/3{V2/3
ℎ

+V
2/3
𝑐 + (4𝜋3 )2/3 𝑞2}

× [( 34𝜋)4/3 (V2/3ℎ +V
2/3
𝑐 )2

+ 6𝑞2 ( 34𝜋)2/3 (V2/3ℎ +V
2/3
𝑐 )

− ( 34𝜋)4/3 (VℎV𝑐)2/3 − (4𝜋3 )2/3 𝑞8(VℎV𝑐)2/3
+ 11𝑞4]

(124)

Now we are moving to axisymmetric spacetime, to see what
happens there?

3. Axisymmetric Spacetime

In this section, we have considered only the various axisym-
metric BHs. It is easy to compute volume products for
spherically symmetric cases because of Vℎ ∝ Aℎ𝑟ℎ for
OH and V𝑐 ∝ A𝑐𝑟𝑐 for IH. For axisymmetric spacetime,
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this proportionality is quite different because here the spin
parameter is present. Now see what happens in this case by
starting with Kerr BH.

3.1. Kerr BH. The Kerr BH is a solution of Einstein equation.
The OH radius and IH radius for this BH should read

𝑟ℎ = 𝑀 + √𝑀2 − 𝑎2 (125)

𝑟𝑐 = 𝑀 − √𝑀2 − 𝑎2, (126)

where 𝑎 = 𝐽/𝑀. 𝐽 is angular momentum of the BH. When𝑀2 > 𝑎2, it describes a BH; when 𝑀2 < 𝑎2, it describes a
naked singularity. The thermodynamic volume for OH [34]
and IH [14] becomes

Vℎ = Aℎ𝑟ℎ3 [1 + 𝑎22𝑟2
ℎ

] (127)

V𝑐 = A𝑐𝑟𝑐3 [1 + 𝑎22𝑟2c ] . (128)

The thermodynamic volume product of Kerr BH for OH and
IH is calculated to be

VℎV𝑐 = 1289 𝜋2𝐽2𝑀2 (1 + 𝑎28𝑀2) . (129)

The volume sum for OH and IH is

Vℎ +V𝑐 = 323 𝜋𝑀3 (1 − 𝑎24𝑀2) . (130)

Similarly, the volume minus for OH and IH is

Vℎ −V𝑐 = 323 𝜋𝑀2√𝑀2 − 𝑎2. (131)

The volume division is

Vℎ

V𝑐
= (4𝑀2 − 𝑎2 + 4𝑀√𝑀2 − 𝑎24𝑀2 − 𝑎2 − 4𝑀√𝑀2 − 𝑎2) . (132)

It indicates that the volume product, volume sum, volume
minus, and volume division for Kerr BH aremass-dependent.
Therefore the product, the sum, the minus, and the division
all are not universal.

3.2. Kerr-AdS BH. The horizon function for Kerr-AdS BH
[35] is given by

Δ 𝑟 = (𝑟2 + 𝑎2)(1 + 𝑟2ℓ2) − 2𝑀𝑟 = 0, (133)

which gives the quartic order of horizon equation

𝑟4ℓ2 + (1 + 𝑎2ℓ2) 𝑟2 − 2𝑚𝑟 + 𝑎2 = 0. (134)

The quantities𝑚 and 𝑎 are related to the parameters mass𝑀
and angular momentum 𝐽 as follows:𝑚 = 𝑀Ξ2,

𝑎 = 𝐽𝑚Ξ2 (135)

where Ξ = 1 − 𝑎2/ℓ2. To obtain the roots of (134), we apply
Vieta's theorem, and we find

4∑
𝑖=1

𝑟𝑖 = 0. (136)

∑
1≤𝑖<𝑗≤4

𝑟𝑖𝑟𝑗 = ℓ2 (1 + 𝑎2ℓ2) . (137)

∑
1≤𝑖<𝑗<𝑘≤4

𝑟𝑖𝑟𝑗𝑟𝑘 = 2𝑚ℓ2. (138)

4∏
𝑖=1

𝑟𝑖 = 𝑎2ℓ2. (139)

There are at least two real zeros of (134) which is OH radius
and IH radius. After some algebraic computation, we have

𝑟ℎ + 𝑟𝑐 = 2𝑚ℓ2𝑎2 + ℓ2 + 𝑟2
ℎ
+ 𝑟2𝑐 , (140)

𝑟ℎ𝑟𝑐 = 𝑎2ℓ2 − (𝑟ℎ𝑟𝑐)2𝑎2 + ℓ2 + 𝑟2
ℎ
+ 𝑟2𝑐 . (141)

The area of the BH for OH is

Aℎ = 4𝜋 (𝑟2ℎ + 𝑎2)Ξ , (142)

and for IH is

A𝑐 = 4𝜋 (𝑟2𝑐 + 𝑎2)Ξ . (143)

The thermodynamic volume for OH [17, 22] becomes

Vℎ = 2𝜋 [(𝑟2ℎ + 𝑎2) (2𝑟2ℎℓ2 + 𝑎2ℓ2 − 𝑟2ℎ𝑎2)]3𝑟ℎℓ2Ξ2 . (144)

And we derive that the thermodynamic volume for IH
becomes

V𝑐 = 2𝜋 [(𝑟2𝑐 + 𝑎2) (2𝑟2𝑐 ℓ2 + 𝑎2ℓ2 − 𝑟2𝑐𝑎2)]3𝑟𝑐ℓ2Ξ2 . (145)

The thermodynamic volume product for Kerr-AdS BH is
calculated in

VℎV𝑐 = 4𝜋2 {𝑟2ℎ𝑟2𝑐 + 𝑎2 (𝑟2ℎ + 𝑟2𝑐 ) + 𝑎4}9Ξ4𝑟ℎ𝑟𝑐× [3𝑟2ℎ𝑟2𝑐 + 2𝑎2 (𝑟2ℎ + 𝑟2𝑐 ) + Ξ2𝑟2ℎ𝑟2𝑐 ] .
(146)
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Using (140), (141), (142), and (143), we observe that there is no
way to eliminate themass parameter from (146); therefore the
volume product for Kerr-AdS BH is not mass-independent;
thus it is not universal and not quantized.

3.3. Kerr-Newman BH. It is an axisymmetric solution of
Einstein-Maxwell equations. The OH radius and IH radius
for this BH become

𝑟ℎ = 𝑀 + √𝑀2 − 𝑎2 − 𝑄2 (147)

𝑟𝑐 = 𝑀 − √𝑀2 − 𝑎2 − 𝑄2. (148)

The thermodynamic volume for OH [17] is

Vℎ = 2𝜋 [(𝑟2ℎ + 𝑎2) (2𝑟2ℎ + 𝑎2) + 𝑎2𝑄2]3𝑟ℎ . (149)

And we derive that the thermodynamic volume for IH is

V𝑐 = 2𝜋 [(𝑟2𝑐 + 𝑎2) (2𝑟2𝑐 + 𝑎2) + 𝑎2𝑄2]3𝑟𝑐 . (150)

The thermodynamic volume product for KN BH is
computed to be

VℎV𝑐 = 16𝜋29
× [𝐽2 (8𝐽2 + 𝑎4 − 𝑎2𝑄2 − 2𝑄4 + 8𝑀2𝑄2) + 𝑄4 (𝑎2 + 𝑄2)2]𝑎2 + 𝑄2 .

(151)

It also indicates that the thermodynamic volume for KN BH
is mass-dependent. Thus the volume product is not universal
for any axisymmetric spacetime. In the appropriate limit, i.e.,
when 𝑎 = 𝐽 = 0, one obtains the thermodynamic volume
product for Reissner Nordström BH and when 𝑄 = 0, one
obtains the volume product for Kerr BH.

3.4. Kerr-Newman-AdS BH. The horizon function for Kerr-
Newman-AdS BH [36] reads

Δ 𝑟 = (𝑟2 + 𝑎2)(1 + 𝑟2ℓ2) − 2𝑀𝑟 + 𝑞2 = 0, (152)

which has the quartic order of horizon equation

𝑟4ℓ2 + (1 + 𝑎2ℓ2) 𝑟2 − 2𝑚𝑟 + 𝑎2 + 𝑞2 = 0. (153)

The quantity 𝑞 is related to the charge parameter 𝑄 as𝑞 = 𝑄Ξ (154)
To determine the roots of (153) again we apply Vieta's rule;
then one obtains

4∑
𝑖=1

𝑟𝑖 = 0. (155)

∑
1≤𝑖<𝑗≤4

𝑟𝑖𝑟𝑗 = ℓ2 (1 + 𝑎2ℓ2) . (156)

∑
1≤𝑖<𝑗<𝑘≤4

𝑟𝑖𝑟𝑗𝑟𝑘 = 2𝑚ℓ2. (157)

4∏
𝑖=1

𝑟𝑖 = (𝑎2 + 𝑞2) ℓ2. (158)

Similarly, there are at least two real zeros of (153) which is
OH radius and IH radius. After some algebraic derivation,
one gets

𝑟ℎ + 𝑟𝑐 = 2𝑚ℓ2𝑎2 + ℓ2 + 𝑟2
ℎ
+ 𝑟2𝑐 , (159)

𝑟ℎ𝑟𝑐 = (𝑎2 + 𝑞2) ℓ2 − (𝑟ℎ𝑟𝑐)2𝑎2 + ℓ2 + 𝑟2
ℎ
+ 𝑟2𝑐 . (160)

The area of this BH for OH is

Aℎ = 4𝜋 (𝑟2ℎ + 𝑎2)Ξ (161)

and for IH is

A𝑐 = 4𝜋 (𝑟2𝑐 + 𝑎2)Ξ . (162)

The thermodynamic volume for OH [17, 22] becomes

Vℎ

= 2𝜋 [(𝑟2ℎ + 𝑎2) (2𝑟2ℎℓ2 + 𝑎2ℓ2 − 𝑟2ℎ𝑎2) + ℓ2𝑞2𝑎2]3𝑟ℎℓ2Ξ2 . (163)

And we derive that the thermodynamic volume for IH
becomes

V𝑐

= 2𝜋 [(𝑟2𝑐 + 𝑎2) (2𝑟2𝑐 ℓ2 + 𝑎2ℓ2 − 𝑟2𝑐𝑎2) + ℓ2𝑞2𝑎2]3𝑟𝑐ℓ2Ξ2 . (164)

The thermodynamic volume product for Kerr-Newman-AdS
BH is computed in
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VℎV𝑐 = 4𝜋29Ξ4𝑟ℎ𝑟𝑐 × [{𝑟2ℎ𝑟2𝑐 + 𝑎2 (𝑟2ℎ + 𝑟2𝑐 ) + 𝑎4}2 + {𝑟2ℎ𝑟2𝑐 + 𝑎2 (𝑟2ℎ + 𝑟2𝑐 ) + 𝑎4} {2𝑟2ℎ𝑟2𝑐 + 𝑎2 (𝑟2ℎ + 𝑟2𝑐 )}]
+ 4𝜋2 [𝑎2𝑞2 {𝑟4ℎ + 𝑟4𝑐 + 2𝑎2 (𝑟2ℎ + 𝑟2𝑐 ) + 2𝑎4} + Ξ2𝑟2ℎ𝑟2𝑐 {𝑟2ℎ𝑟2𝑐 + 𝑎2 (𝑟2ℎ + 𝑟2𝑐 ) + 𝑎4}]9Ξ4𝑟ℎ𝑟𝑐
+ 4𝜋2 [𝑎2𝑞2Ξ {𝑟4ℎ + 𝑟4c + 𝑎2 (𝑟2ℎ + 𝑟2𝑐 )} + 𝑎4𝑞4]9Ξ4𝑟ℎ𝑟𝑐 .

(165)

Again using (159), (160), (161), and (162), we speculate that
there has been no chance to eliminate the mass parameter
from (165); thus the volume product for Kerr-Newman-AdS
BH is not mass-independent; therefore it is not universal and
not quantized.

3.5. Spinning BTZ BH. The metric for rotating BTZ BH [37]
in 2 + 1 dimension is given by

𝑑𝑠2 = −(𝑟2ℓ2 + 𝐽24𝑟2 −𝑀)𝑑𝑡2
+ 𝑑𝑟2(𝑟2/ℓ2 + 𝐽2/4𝑟2 −𝑀)
+ 𝑟2 (− 𝐽2𝑟2 𝑑𝑡 + 𝑑𝜙)2 .

(166)

𝑀 and 𝐽 represent the ADM mass and the angular momen-
tumof the BH.−Λ = 1/ℓ2 = 8𝜋𝑃𝐺3 denotes the cosmological
constant. Here we have set 8𝐺3 = 1 = 𝑐 = ℏ = 𝑘. When 𝐽 = 0,
one obtains the static BTZ BH.

The BH OH radius and IH radius are [37, 38]

𝑟ℎ = √𝑀ℓ22 (1 + √1 − 𝐽2𝑀2ℓ2). (167)

𝑟𝑐 = √𝑀ℓ22 (1 − √1 − 𝐽2𝑀2ℓ2). (168)

The thermodynamic volume for 3D spinning BTZBH forOH
and IH is

Vℎ = (𝜕𝑀𝜕𝑃 )
𝐽

= 𝜋𝑟2ℎ (169)

V𝑐 = (𝜕𝑀𝜕𝑃 )
𝐽

= 𝜋𝑟2𝑐 (170)

The thermodynamic volume product is computed to be

VℎV𝑐 = 𝜋2𝐽2ℓ24 . (171)

Interestingly, the thermodynamic volume product for rotat-
ing BTZ BH ismass-independent, i.e., universal, and it is also

quantized. This is the only example for rotating cases; the
volume product is universal. This is an interesting result of
this work.

4. Discussion

In this work, we have demonstrated the thermodynamic
products, in particular thermodynamic volume products, of
spherically symmetric spacetime and axisymmetric space-
time by incorporating the extended phase space formalism.
In this formalism, the cosmological constant should be
considered as a thermodynamic pressure and its conjugate
parameter as thermodynamic volume. In addition to that, the
mass parameter should be treated as enthalpy of the system
rather than internal energy. Then in this phase space the first
law of BH thermodynamics should be satisfied for both the
OH and IH.

We explicitly computed the thermodynamic volume
products both for OH and IH of several classes of spheri-
cally symmetric and axisymmetric BHs including the AdS
spacetime. In this case, the simple volume product of H±
is not mass-independent. Rather slightly more complicated
volume functional relations are indeed mass-independent.
We have proved that, for simple Reissner Nordström BH of
Einstein gravity and Kehagias-Sfetsos BH of Hořava Lifshitz
gravity, the thermodynamic volume product ofH± is indeed
universal. Such products aremass-independent for spherically
symmetric cases because of Vℎ ∝ Aℎ𝑟ℎ for OH and V𝑐 ∝
A𝑐𝑟𝑐 for IH.

Axisymmetric spacetime does not satisfy this propor-
tionality due to presence of the spin parameter; thus such
spacetime shows no mass-independent features except the
rotating BTZ BH; the only axisymmetric spacetime in 3𝐷
showed universal features; thus it has been quantized in this
sense. We also computed thermodynamic volume sum but
they are always mass-dependent so they are not universal as
well as they are not quantized.

Like area (or entropy) products, the simple thermo-
dynamic volume product of H± is not mass-independent;
rather more complicated function of volume functional
relation is indeed mass-independent. This is often true for
spherically symmetric BHs including AdS spacetime. This
scenario for axisymmetric spacetime (except 3D BTZ BH )
is quite different. In this case, the area functional relation
becomes mass-independent whereas the volume functional
relation is not mass-independent. For volume products, this
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is the main difference between spherically symmetric space-
time and axisymmetric spacetime. To sum up, the volume
functional relation that we have studied in this work in
spherically symmetric cases (but not for axisymmetric cases)
further provides some universal properties of the BH which
gives some insight into microscopic origin of BH entropy of
both outer and inner horizons.
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