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The approach inwhich the electron and positron are treated as ordinary, different particles, each being characterized by the complete
set of the Dirac plane waves, is examined. This completely symmetric representation that is beyond the standard QED makes it
necessary to choose another solution of the Dirac equation for the free particle propagator as compared to that used currently.
The Bethe-Salpeter equation with these particle propagators is solved in the ladder approximation. A new solution has been found
represented by the massless composite bosons formed by the coupled electron-positron pairs with the coupling equal to the fine
structure constant. It has been demonstrated that (1) themassless boson states have normalizable complexwave functions which are
transversely compressed plane waves; (2) the transverse radius of the wave functions diverges as the boson energy goes to zero; that
is, the composite bosons cannot be at rest; (3) increasing the boson energy results in an extension of the transverse wave function in
the momentum space and a corresponding contraction of the real space coordinate wave function. The new reaction 𝑒−𝑒+ → 𝐵𝛾𝛾
is investigated with the products composed of the massless composite boson and two photons. The cross-section of this reaction
is derived for nonrelativistic colliding beams of spin-polarized electrons and positrons. In this case the 2𝛾 angular correlation
spectrum is characterized by a narrow peak with the full-width-at-half-maximum not exceeding 0.2 mrad. It is shown that in order
to distinguish between the conventional annihilation of the singlet electron-positron pair with the two-photon emission and the
new examined reaction yielding the three particles, experiments are proposed with the extremely nonrelativistic colliding beams.

1. Introduction

During the development of the QED theory, Feynman con-
sidered essentially two possible ways [1, 2]. In the first way,
assuming that the fermion-antifermion symmetry must exist
in nature, Feynman derived the free fermion propagator
(Equation (17) in [1]). In this propagator the negative-energy
states are assumed to be not available to the electrons;
the upper continuum is assumed to be not available to
the positrons which are recognized as particles traveling
backwards in time [2]. The total number of degrees of
freedom that is determined by the complete basis of the Dirac
plane waves [3] is divided into half. One half of the degrees

of freedom is assigned to the electron and the other to the
positron. The modern description of the electron-positron
field is based on this propagator.

Note that, in many situations, the filled electronic states
with negative energies cannot be ignored. So, these states play
a prominent role in the behavior of an electron in external
fields, for example, in the Coulomb field [4, 5]. The filled
lower continuum is important in the analysis of the electronic
structure in super-heavy nuclei, for which at a certain nuclear
charge the electron lower level 1S1/2 merges with the bottom
of the lower continuum [6, 7]. A similar situation arises in
discussion of the value of the cosmological constant. Apart
from the positive contribution from the zero-point energy of
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boson quantized fields, another energy source is derived from
the Dirac theory of the electron because the filled levels lead
inevitably to negative contribution to the vacuum energy [8].
In a study of the radiation scattering by free electrons it was
concluded that radiation-induced electron quantum jumps in
the intermediate states of negative energies are crucial for the
scattering [9].

Taking into account the contradictory situation presented
above, in the present paper we have tried to find out what one
can expect from the second way that was also discussed by
Feynman [1], but has not been studied so far. In this second
way Feynman also proposed the free electron propagator, in
which the electron is characterized by the complete set of the
Dirac plane waves [3]. In this case there is the only possibility
of treating the electron and the positron as independent
particles and of using a similar propagator for the positron.
Then both the electron and the positron are characterized by
the number of degrees of freedom that exactly corresponds
to the Dirac theory. There is no reason to doubt that the
complete spectrum of states for any system of interacting
particles can be deduced only when the full basis of states is
taken into account for each particle of the system. According
to our considerations the division of the complete plane-
wave basis into two parts as discussed above leads to the
following fact: neither electron states nor positron states
separately form the complete system of the wave functions.
Therefore, the full coupled electron-positron system may
possess additional states as compared to the partial electron
and positron subsystems.

The electron-positron field theory derived from the
hole theory of positrons [1] leads to a clear picture of
the annihilation process of electron-positron pairs. In this
process nothing remains of the electron and positron, and
the reaction products are just a few photons [1, 3, 5, 10].
The singlet pair of free particles with the center of mass
at rest is converted with the greatest probability into two
photons which, due to the momentum conservation, should
be emitted exactly in the two opposite directions, at the angle
of 180∘ to each other.

Below we consider only reactions of low-energy electron-
positron pairs. This article does not take into account any
high-energy electron-positron reactions, when the reaction
products can be either charged leptons (electrons, muons,
taus) or hadrons [11–18]. In the case of the existence of
the predicted massless composite bosons there should be
a process that is, in a sense, similar to the conventional
process of electron and positron annihilation, but it has a
fundamental difference from the latter.The reaction products
in this new process involve, together with emitted photons,
the massless boson which is formed by the strongly coupled
electron-positron pair. This annihilation-like process with
emission of two photons can be represented as follows:𝑒−𝑒+ 󳨀→ 𝐵𝛾1𝛾2, (1)

where 𝐵 denotes the massless composite boson. It is crucial
for this reaction that the two-photon angular correlation
spectra must have finite angular widths even for the electron-
positron pairs with the center ofmass at rest.This is due to the

fact that there are three particles in the reaction products. To
prove the existence of the third body in the reaction outcome
it is of fundamental importance to find the angular width of
the 2𝛾 correlation spectra.

The article consists of two parts. The first part, presented
in Section 2, is devoted to derivation of the massless boson
states formed by the coupled electron-positron system with
the actual coupling equal to the fine structure constant.
Results obtained for the massless boson wave functions are
presented. The goal of the second part presented in Section 3
of the paper is to study the cross-section of the reaction
(1) for the extremely nonrelativistic colliding beams of the
electrons and positrons. The minimal angular width of the2𝛾 correlation spectrum is obtained numerically. In addition,
in Section 4 experiments are suggested to establish whether
there is the conventional annihilation of singlet electron-
positron pair with the two-photon emission or the proposed
new reaction with the three-particle outcome. Note that
such experiments constitute a relatively simple possibility
of testing the central particle-antiparticle concept of the
Standard Model.

Natural units (ℏ = 𝑐 = 1) will be used throughout.

2. The Massless Composite Bosons

2.1. The Free Fermion Propagator. At present in QED the free
propagator for the Dirac equation is used in the following
form [1, 4, 5]:𝐾+ (2, 1) = ∑

p
𝜓𝑝 (2) 𝜓𝑝 (1) 𝜃 (𝑡2 − 𝑡1)−∑
p
𝜓−𝑝 (2) 𝜓−𝑝 (1) 𝜃 (𝑡1 − 𝑡2) . (2)

Here 𝜓±𝑝 is the Dirac plane wave representing the state of the
free particle with energy ±𝜀𝑝, respectively, and 𝜓𝑝 the Dirac
conjugate wave function. In (2) the contribution to 𝐾+(2, 1)
at 𝑡2 > 𝑡1 is due to the electron terms and at 𝑡2 < 𝑡1 to the
positron terms.

The Bethe-Salpeter equation [19, 20] with the propagator
(2) was studied inmanyworks, as a rule, in the ladder approx-
imation [21]. After the work [22], considerable attention is
given to the problem of strongly coupled states for fermion-
antifermion systems. In the most commonly used approach
to the problem the Bethe-Salpeter equation is regarded as
eigenvalues task for the coupling constant [23–30]. That is,
an eigenvalue is considered as the necessary strength of the
attractive potential to make a massless bound state.

The Dirac equation, as well as any differential equation,
has several solutions for the Green function [31]. The Green
function for the Dirac equation can also be presented in the
following form:𝐾− (2, 1)= ∑

p
(𝜓𝑝 (2) 𝜓𝑝 (1) + 𝜓−𝑝 (2) 𝜓−𝑝 (1)) 𝜃 (𝑡2 − 𝑡1) . (3)

Both the propagators (2) and (3) were discussed in [1]. In
the positron hole theory that is the foundation of QED, the
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negative-energy states are assumed to be not available to the
electron. Therefore from this point of view the choice of
(3), for which the negative-energy states are available for the
electron, is unsatisfactory, as noted in [1].

On the other hand, the situation changes radically when
the consideration is based on the Dirac theory. Because
the electron must be characterized by the total number of
degrees of freedom, the propagator (2) is not suitable, and
the propagator (3), in which all of the spectrum of the Dirac
plane waves is taken into account, should be applied. There
is no doubt that the positron can be described by the Dirac
equation as well. Considering (3) as the electron propagator,
the only opportunity to use a free propagator similar to (3)
for the positron is to assume that the electron and positron
are independent particles.

In this approach, in the vacuum state, the lower continua
for each of these particles are completely filled and the
upper continua are not occupied. Then this vacuum state
is charge-neutral and stable. The latter is due to the fact
that the annihilation of the electrons and the positrons
in the negative-energy states is forbidden by the energy
conservation law since 𝛿(𝜀el+𝜀pos−∑ the photon energies) ≡0 when both the electron energy 𝜀el and the positron energy𝜀pos are negative.

The interaction between electron and positron is attrac-
tive. In the ladder approximation the retarded interaction
function can be written as follows [32]:𝐺(1) (3, 4; 5, 6)= −𝑒2 (1 − 𝛼−𝛼+) 𝛿+ (𝑠256) 𝛿 (3, 5) 𝛿 (4, 6) . (4)

Here 𝛼± = ( 0 𝜎±𝜎± 0 ) are the velocity operators of the electron
(−) and positron (+), 𝜎± are the Pauli matrices, and 𝑠56 is the
invariant distance between the particles.

This kind of the interaction function (4) is convenient for
the subsequent development in this paper but at the same
timewemust exclude the𝛽matrices from the definition of the
free fermion propagator (3). By doing this, in the approach of
the absolutely symmetric representation of the particles, the
electron propagator should be written as𝐾0− (2, 1)= ∑

p
(𝜓𝑝 (2) 𝜓+𝑝 (1) + 𝜓−𝑝 (2) 𝜓+−𝑝 (1)) 𝜃 (𝑡2 − 𝑡1) , (5)

and, similarly, for the positron propagator𝐾0+ (4, 3)= ∑
p
(𝜑𝑝 (4) 𝜑+𝑝 (3) + 𝜑−𝑝 (4) 𝜑+−𝑝 (3)) 𝜃 (𝑡4 − 𝑡3) . (6)

Here 𝜓±𝑝 and 𝜑±𝑝 are the Dirac plane waves for the free
electrons and positrons and 𝜓+±𝑝 and 𝜑+±𝑝 are the Hermitian
conjugate matrices with respect to𝜓±𝑝 and 𝜑±𝑝. The latter are
given by 𝜓𝑝, 𝜑𝑝 = 𝑢𝑝,±𝑒−𝑖𝑝𝑥and 𝜓−𝑝, 𝜑−𝑝 = 𝑢−𝑝,±𝑒𝑖𝑝𝑥, where

𝑢𝑝,± = 1√2𝜀𝑝 ( √𝜀𝑝 + 𝑚𝑤±√𝜀𝑝 − 𝑚 (n𝜎±) 𝑤±) ,
𝑢−𝑝,± = 1√2𝜀𝑝 (√𝜀𝑝 − 𝑚 (n𝜎±) 𝑤󸀠±√𝜀𝑝 + 𝑚𝑤󸀠± ) , (7)

and 𝑛 is the unit vector 𝑛=𝑝/𝑝.
Considering (4)–(7), in the ladder approximation the

bound-state Bethe-Salpeter equation for the electron-
positron system is𝜓 (1, 2) = −𝑖 ∫∫∫∫𝑑𝜏3𝑑𝜏4𝑑𝜏5𝑑𝜏6𝐾0− (1, 3)𝐾0+ (2, 4)⋅ 𝐺(1) (3, 4; 5, 6) 𝜓 (5, 6) , (8)

where 𝑑𝜏𝑖 = 𝑑𝑟𝑖𝑑𝑡𝑖.
Below we do not consider the positronium states. Note

only that in the nonrelativistic limit in which one neglects
the interaction retardation and the interaction through the
vector potential and assumes that the characteristic velocity
of particles in the bound pair is much smaller than the speed
of light, (8) with the propagators (5)-(6) is reduced to the
Schrodinger equation for the Ps states.

2.2. The Boson Wave Function. We search for a solution𝜓(1, 2) of (8) in the form of a stationary wave with the phase
velocity equal to the speed of light. Let 𝑝 + 𝑞 = 𝑔 (𝑝 and 𝑞
are themomentumof the electron andpositron, respectively),
and the momentum of the pair, 𝑔, is directed along the 𝑧-
axis. It is the strongly coupled state with the momentum
dependence of the boson energy 𝐸 = 𝑔 that is valid only for
massless particles. Due to the symmetry of the problem, we
have to put 𝑧1 = 𝑧2 = 𝑧 and 𝑡1 = 𝑡2 = 𝑡 for thismassless boson
state that allows us to introduce a two-dimensional relative
vector between the particles, 𝜌 = 𝜌1 − 𝜌2. Then the wave
function is 𝜓 (1, 2) = 𝜑 (𝜌, g) exp (𝑖𝑔 (𝑧 − 𝑡)) . (9)

One can imagine (9) as transversely compressed plane
wave. The wave cross-section is determined by the wave
function of the transverse motion of the coupled pair 𝜑(𝜌,𝑔),
which should be normalizable:∫ 󵄨󵄨󵄨󵄨𝜑 (𝜌, g)󵄨󵄨󵄨󵄨2 𝑑𝜌 = 1. (10)

For the state (9) the particle distribution is stationary and
depends only on 𝜌.

The function 𝛿+(𝑠256) in (4) was given in [32]. In our case
it can be written as𝛿+ (𝑡256 − 𝜌256)= 14𝜋𝜌56 ∫+∞−∞ (𝑒−𝑖𝜔(𝑡5−𝑡6) + 𝑒−𝑖𝜔(𝑡6−𝑡5)) 𝑒𝑖|𝜔|𝜌56𝑑𝜔, (11)

where 𝜌56 = |𝜌5 −𝜌6|. It was taken into account that since the
phase velocity of the wave (9) is equal to the velocity of light,
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the interaction between the electron and positron can only
occur in the same layers (𝑧5 = 𝑧6), which are perpendicular
to the wave vector 𝑔. Considering that 𝛼−𝑧𝛼+𝑧 = 1 (here𝛼−𝑧 and 𝛼+𝑧 are the z-components of the velocity operators
for the electron and positron, respectively), the factor of (1 −
𝛼−𝛼+) in (4) should be replaced by −𝛼−𝜌𝛼+𝜌.The latter means
that in this bound state the electron and positron do not
interact through the Coulomb potential and their retarded
interaction occurs through the vector potential which is due
to the particles transverse motion defined by the function𝜑(𝜌,𝑔).

As a result, for the massless composite boson state (9), (8)
is reduced to

𝜑 (𝜌12, g) 𝑒𝑖𝑔𝑧−𝑖𝑔𝑡 = −𝑖𝑒2 ∫𝑧
−∞
𝑑𝑧3 ∫𝑧
−∞
𝑑𝑧4 ∫𝑑𝜌3 ∫𝑑𝜌4⋅ ∫𝑡

−∞
𝑑𝑡3 ∫𝑡
−∞
𝑑𝑡4∑

p𝑞

𝑒(𝑖p(r1−r3)+𝑖q(r2−r4))4𝜀𝑝𝜀𝑞⋅ ∫+∞
−∞

𝑒𝑖|𝜔|𝜌34𝑑𝜔⋅ {Λ+− (p) 𝑒−𝑖𝜀𝑝(𝑡−𝑡3) + Λ−− (p) 𝑒𝑖𝜀𝑝(𝑡−𝑡3)}⋅ {Λ++ (q) 𝑒−𝑖𝜀𝑞(𝑡−𝑡4) + Λ−+ (q) 𝑒𝑖𝜀q(𝑡−𝑡4)}⋅ {𝑒−𝑖𝜔(𝑡3−𝑡4) + 𝑒−𝑖𝜔(𝑡4−𝑡3)} 𝑒𝑖(𝑔/2)(𝑧3+𝑧4)−𝑖(𝑔/2)(𝑡3+𝑡4)⋅ 14𝜋𝜌34 (𝛼−𝜌𝛼+𝜌) 𝜑 (𝜌34, g)

(12)

Here Λ+−(𝑝) = 𝜀𝑝 + 𝑚𝛽− + 𝛼−𝑝𝜌 + 𝑝𝑧 and Λ−−(𝑝) = 𝜀𝑝 −𝑚𝛽− − 𝛼−𝑝𝜌 − 𝑝𝑧 are the electron operators, Λ++(𝑞) = 𝜀𝑞 +𝑚𝛽+ + 𝛼+𝑞𝜌 + 𝑞𝑧 and Λ−+(𝑞) = 𝜀𝑞 − 𝑚𝛽+ − 𝛼+𝑞𝜌 − 𝑞𝑧 are
the positron ones, 𝑚 is the electron mass, 𝜀𝑝 = √𝑚2 + 𝑝2
is the electron energy, and 𝜀𝑞 = √𝑚2 + 𝑞2 is the positron
energy. The matrices 𝛽± and 𝛼± are given in the standard
representation.

At first, analyzing only the 𝑧- dependent functions in (12),
we integrate over 𝑧3 and 𝑧4:
𝑒𝑖𝑔𝑧 = ∑

𝑝𝑧𝑞𝑧

∫𝑧→∞
−∞

𝑑𝑧3 ∫𝑧→∞
−∞

𝑑𝑧4⋅ 𝑒𝑖(𝑔/2)(𝑧3+𝑧4)+𝑖𝑝𝑧(𝑧−𝑧3)+𝑖𝑞𝑧(𝑧−𝑧4) = (2𝜋)2 ∑
𝑝𝑧𝑞𝑧

𝑒𝑖(𝑝𝑧+𝑞𝑧)𝑧
⋅ 𝛿 (𝑝𝑧 − 𝑔2 ) 𝛿 (𝑞𝑧 − 𝑔2 ) = 𝑒𝑖𝑔𝑧 󵄨󵄨󵄨󵄨󵄨 𝑞𝑧=𝑝𝑧=𝑔/2

(13)

Since the function 𝜑 depends only on 𝜌34, in (12),
we replace the integration variables: ∫𝑑𝜌3 ∫𝑑𝜌4 =∫𝑑𝜌34 ∫𝑑(𝜌3 +𝜌4)/2. Thereafter the integral over (𝜌3 +𝜌4)/2
on the right side of (12) is easily calculated and gives us(2𝜋)2𝛿(𝑝𝜌 + 𝑞𝜌). Consequently (12) takes the form:

𝜑 (𝜌12) 𝑒−𝑖𝑔𝑡 = −𝑖 𝛼4𝜋 ∫ 𝑑𝜌34𝜌34 ∫𝑡−∞ 𝑑𝑡3 ∫𝑡−∞ 𝑑𝑡4⋅ ∑
p𝜌

𝑒𝑖p𝜌(r12−r34)4𝜀2𝑝 ∫+∞
−∞

𝑒𝑖|𝜔|𝜌34𝑑𝜔
⋅ {Λ+− (p) 𝑒−𝑖𝜀𝑝(𝑡−𝑡3) + Λ−− (p) 𝑒𝑖𝜀𝑝(𝑡−𝑡3)}⋅ {Λ++ (q) 𝑒−𝑖𝜀𝑞(𝑡−𝑡4) + Λ−+ (q) 𝑒𝑖𝜀𝑞(𝑡−𝑡4)}⋅ {𝑒−𝑖𝜔(𝑡3−𝑡4) + 𝑒−𝑖𝜔(𝑡4−𝑡3)} 𝑒−𝑖(𝑔/2)(𝑡3+𝑡4) (𝛼−𝜌𝛼+𝜌)⋅ 𝜑 (𝜌34, g) ,

(14)

where 𝑞𝜌 = −𝑝𝜌, 𝑞𝑧 = 𝑝𝑧 = 𝑔/2, 𝜀𝑝 = 𝜀𝑞, and 𝑒2 was replaced
by the fine structure constant, 𝛼.

Now integrating over 𝑡3 and 𝑡4, (14) is rewritten as

𝜑 (𝜌12, g) = −𝑖 𝛼4𝜋 ∫ 𝑑𝜌34𝜌34 ∑p𝜌 𝑒𝑖p𝜌(𝜌12−𝜌34)4𝜀2𝑝⋅ ∫∞
−∞
𝑒𝑖|𝜔|𝜌34𝑑𝜔 (𝐼1 + 𝐼2 + 𝐼3) (𝛼−𝜌𝛼+𝜌)⋅ 𝜑 (𝜌34, g) ,

(15)

where the functions 𝐼1,2,3(𝜔) are given by

𝐼1 = 2 Λ+− (𝑝) Λ++ (𝑞)𝜔2 − (𝜀𝑝 − 𝑔/2)2 + 𝑖𝛿 ,𝐼2 = 2 Λ−− (𝑝) Λ−+ (𝑞)𝜔2 − (𝜀𝑞 + 𝑔/2)2 − 𝑖𝛿 ,
𝐼3 = Λ−− (𝑝) Λ++ (𝑞) + Λ+− (𝑝) Λ−+ (𝑞)−𝑔 ( 2𝜀𝑝 − 𝑔𝜔2 − (𝜀𝑝 − 𝑔/2)2 + 𝑖𝛿
+ −2𝜀𝑝 − 𝑔𝜔2 − (𝜀𝑝 + 𝑔/2)2 − 𝑖𝛿) .

(16)

Here 𝛿 → 0+ defines the rule for bypassing simple poles.
All the three integrals over 𝜔 on the right side of (15) are

easily calculated. We obtain

𝑇1 = ∫∞
−∞
𝐼1 (𝜔) 𝑒𝑖|𝜔|𝜌34𝑑𝜔

= 8𝑖Λ+− (𝑝) Λ++ (𝑞)2𝜀𝑝 − 𝑔 (cos (𝑥) si (𝑥) − sin (𝑥) ci (𝑥)) , (17)

where 𝑥 = |𝜀𝑝 − 𝑔/2|𝜌34,
𝑇2 = ∫∞

−∞
𝐼2 (𝜔) 𝑒𝑖|𝜔|𝜌34𝑑𝜔 = 8𝑖Λ−− (p) Λ−+ (q)2𝜀𝑝 + 𝑔 {𝜋𝑒𝑖𝑦

+ cos (𝑦) si (𝑦) − sin (𝑦) ci (𝑦)} (18)
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with 𝑦 = (𝜀𝑝 + 𝑔/2)𝜌34 and𝑇3 = ∫∞
−∞
𝐼3 (𝜔) 𝑒𝑖|𝜔|𝜌34𝑑𝜔 = 4𝑖

⋅ Λ−− (p) Λ++ (q) + Λ+− (p) Λ−+ (q)𝑔 {𝜋𝑒𝑖𝑦− cos (𝑥) si (𝑥) + sin (𝑥) ci (𝑥) + cos (𝑦) si (𝑦)− sin (𝑦) ci (𝑦)} .
(19)

Here si(𝑥) and ci(𝑥) are the integral sine and cosine functions.
Nowwe treat the bispinors of the function𝜑. It is apparent

from (15) that the action of the following operators 𝛼−𝑥𝛼+𝑥 +𝛼−𝑦𝛼+𝑦, Λ+−(𝑝)Λ++(𝑞), Λ−−(𝑝)Λ−+(𝑞), and Λ−−(𝑝)Λ++(𝑞) +Λ+−(𝑝)Λ−+(𝑞) on these bispinors must be reduced only to
the multiplication of these spin functions on some scalars.
For the boson state each particle of the bound pair can be
characterized by the projection of the particle spin on the
wave vector 𝑔 or, in other words, the particle helicity. There
are eight bispinor functions 𝜂𝑖 (𝑖 = 1, . . . , 8) for which the
helicities of both the electron and positron are simultaneously
either positive,

𝜂𝑖=1,...,4 =(1000)(1000),(1000)(0010),
(0010)(1000),(0010)(0010),

(20)

or negative,

𝜂𝑖=5,...,8 =(0100)(0100),(0100)(0001),
(0001)(0100),(0001)(0001).

(21)

Because 𝛼−𝜌𝛼+𝜌 = 𝛼−𝑥𝛼+𝑥 + 𝛼−𝑦𝛼+𝑦, one can verify that

𝛼−𝜌𝛼+𝜌𝜂𝑖=1,...,8 = 0. (22)

It implies that the interaction function 𝐺(1)(3, 4; 5, 6) ∝
𝛼−𝜌𝛼+𝜌 vanishes, and the massless boson state cannot be
formed from these electron and positron states.

Analyzing the remaining possibilities, the required func-
tions in (9) can be written as 𝜑1,2 = 𝜒1,2(𝜌,𝑔)V1,2, where the
bispinor functions are given by

V1

= 1√2 [[[[[[(
1000)
−

(0001)
+

+(0001)
−

(1000)
+

]]]]]] ,

V2 = 1√2 [[[[[[(
0100)
−

(0010)
+

+(0010)
−

(0100)
+

]]]]]]

(23)

and 𝜒1,2(𝜌,𝑔) are the coordinate wave functions of the
transverse motion of the strongly coupled electron-positron
pair.

In the states (23) the helicities of the particles are opposite.
For these functions we have

𝛼−𝜌𝛼+𝜌𝜑1,2 = 2𝜑1,2,Λ+− (p) Λ++ (q) 𝜑1,2 = 𝑔(𝜀𝑝 + 𝑔2 )𝜑1,2,Λ−− (p) Λ−+ (q) 𝜑1,2 = 𝑔(−𝜀𝑝 + 𝑔2 )𝜑1,2,(Λ−− (p) Λ++ (q) + Λ+− (p) Λ−+ (q)) 𝜑1,2= (4𝜀2𝑝 − 𝑔2) 𝜑1,2.
(24)

As a result, (15) is transformed to the following integral
equation for the coordinate function 𝜒1,2 (since 𝜒1 = 𝜒2, the
lower index 1, 2 can be omitted):

𝜒 (𝜌12) = 𝛼(2𝜋)3 ∫ 𝑑𝜌34𝜌34 ∫ 𝑑p𝜌𝜀2𝑝 exp (𝑖p𝜌 (𝜌12 − 𝜌34))⋅ (𝑇1 + 𝑇2 + 𝑇3) 𝜒 (𝜌34) , (25)

where

𝑇1 = 𝑔2𝜀𝑝 + 𝑔2𝜀𝑝 − 𝑔 (cos (𝑥) si (𝑥) − sin (𝑥) ci (𝑥)) ,
𝑇2 = 𝑔𝑔 − 2𝜀𝑝𝑔 + 2𝜀𝑝 {𝜋𝑒𝑖𝑦 + cos (𝑦) si (𝑦) − sin (𝑦) ci (𝑦)} ,
𝑇3 = 4𝜀2𝑝 − 𝑔2𝑔 {𝜋𝑒𝑖𝑦 − cos (𝑥) si (𝑥) + sin (𝑥) ci (𝑥)+ cos (𝑦) si (𝑦) − sin (𝑦) ci (𝑦)} .

(26)
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Equation (25) with the notations (26) is a rather com-
plicated integral equation for the transverse wave function𝜒(𝜌12,𝑔). It is important to show that this equation has
solutions for the normalizable eigenfunctions. Below it will be
demonstrated for the case of the S-state of the bound pair and
small momentum of the boson, 𝑔 ≪ 𝑚. Then, 𝑥 = 𝑦 = 𝜀𝑝𝜌34
can be used in (26).

For the S-state the angular momentum of the relative
motion of the bound pair is zero, and the transverse wave
function depends only on the modulus of the relative vector,
that is, 𝜒(𝜌12, 𝑔). In this case after integration over the
azimuthal angle of the vector 𝜌34 and integration over the
azimuthal angle of the vector 𝑝𝜌, (25) is reduced to

𝜒 (𝜌12) = 𝛼2𝜋 ∫∞0 𝑑𝜌34 ∫∞0 𝑝𝜌𝑑𝑝𝜌𝐽0 (𝑝𝜌𝜌12) 𝐽0 (𝑝𝜌𝜌34)⋅ ∑3𝑖=1 𝑇𝑖 (𝑝, 𝜌34)𝜀2𝑝 𝜒 (𝜌34) . (27)

Here 𝐽0 is the Bessel function of the first kind. In the case 𝑔 ≪𝑚 from (26) we find that 𝑇3 ≫ 𝑇1, 𝑇2 and
𝑇3 ≅ 4𝜋𝜀2𝑝𝑔 exp (𝑖𝜀𝑝𝜌34) . (28)

Substituting (28) to (27), the latter equation is reduced to the
homogeneous Fredholm integral equation of the secondkind:

𝜒 (𝜌12) = 𝛼𝑔 ∫∞0 𝑑𝜌34𝑅 (𝜌12, 𝜌34) 𝜒 (𝜌34) (29)

with the kernel𝑅 (𝜌12, 𝜌34)= 2∫∞
0
𝑝𝜌𝑑𝑝𝜌𝐽0 (𝑝𝜌𝜌12) 𝐽0 (𝑝𝜌𝜌34) exp (𝑖𝜀𝑝𝜌34) . (30)

One canmake sure that the kernel (30) is a non-Fredholm
one. According to the asymptotic property of the Bessel
function 𝐽0, the integral in the right-hand side of (30) can
only be defined as the principal value integral. That is, (29)
with the kernel (30) is still difficult to solve.

In the momentum space, the equation for the trans-
verse wave function can be reduced to a simpler form
convenient for a numerical solution. To this end, in (25),

we use the Fourier transform of the 𝜒-functions, 𝜒(𝑞) =∫ 𝜒(𝜌12) exp(−𝑖𝑞𝜌12)𝑑𝜌12. Then, for the wave function in the
momentum space we obtain:𝜒 (q)

= 𝛼(2𝜋)3 ∫ 𝑑𝜌34𝜌34 ∑3𝑖=1 𝑇𝑖 (𝑞, 𝜌34)𝜀2𝑞 ∫𝑑f𝑒𝑖(f−q)𝜌34𝜒 (f) . (31)

For the S-state of the bound pair, (31) can be written as

𝜒 (𝑞) = 𝛼2𝜋𝜀2𝑞 ∫𝑑𝜌34 3∑𝑖=1𝑇𝑖 (𝑞, 𝜌34) 𝐽0 (𝑞𝜌34)⋅ ∫𝑓𝐽0 (𝑓𝜌34) 𝜒 (𝑓) 𝑑𝑓. (32)

In the case 𝑔 ≪ 𝑚 the function ∑3𝑖=1 𝑇𝑖(𝑞, 𝜌34) can be
replaced by the expression (28). Then (32) is reduced to the
homogeneous Fredholm integral equation of the secondkind:𝜒 (𝑞) = 𝛼𝑔 ∫∞0 𝑄 (𝑞, 𝑓) 𝜒 (𝑓) 𝑑𝑓 (33)

with the kernel𝑄 (𝑞, 𝑓)= 2𝑓∫∞
0
𝐽0 (𝑞𝜌34) 𝐽0 (𝑓𝜌34) exp (𝑖𝜀𝑞𝜌34) 𝑑𝜌34. (34)

Now the integral in the right-hand side of (34) that
has a direct relationship with the discontinuous Weber-
Schafheitlin integral is an absolutely convergent integral
which, however, is expressed through a discontinuous func-
tion, as will be shown below.

It is convenient to use the dimensionless variables: 𝑥 →𝜌34/�𝑒, 𝑞 → 𝑞�𝑒, 𝑓 → 𝑓�𝑒, and 𝑔 → 𝑔𝑚. Here �𝑒 = ℏ/𝑚𝑐 is
the Compton wavelength of the electron. Then (33) remains
unchanged, and (34) is rewritten as𝑄 (𝑞, 𝑓)= 2𝑓∫∞

0
𝐽0 (𝑞𝑥) 𝐽0 (𝑓𝑥) exp (𝑖𝑥√1 + 𝑞2)𝑑𝑥. (35)

The integral on the right-hand side of (35) was previously
calculated [33]. Thus the complex kernel 𝑄(𝑞, 𝑓) = Re𝑄 +𝑖 Im𝑄 is given by

Im𝑄 =
{{{{{{{{{{{{{{{{{{{{{{{{{

4𝑓𝜋√1 − 𝑓2 + 2𝑓𝑞K( 2√𝑓𝑞√1 − 𝑓2 + 2𝑓𝑞) , 𝑓 < √1 + 𝑞2 − 𝑞
2𝜋√𝑓𝑞K(√1 − 𝑓2 + 2𝑓𝑞2√𝑓𝑞 ) , √1 + 𝑞2 − 𝑞 < 𝑓 < √1 + 𝑞2 + 𝑞
0, 𝑓 > √1 + 𝑞2 + 𝑞,

(36)
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Re𝑄 =
{{{{{{{{{{{{{{{{{{{{{{{{{

0, 𝑓 < √1 + 𝑞2 − 𝑞2𝜋√𝑓𝑞K(√𝑓2 + 2𝑓𝑞 − 12√𝑓𝑞 ) , √1 + 𝑞2 − 𝑞 < 𝑓 < √1 + 𝑞2 + 𝑞
4𝑓𝜋√𝑓2 + 2𝑓𝑞 − 1K( 2√𝑓𝑞√𝑓2 + 2𝑓𝑞 − 1) , 𝑓 > √1 + 𝑞2 + 𝑞

(37)

Here 𝐾 is the complete elliptic integral of the first kind.
Since this kernel, having the weak logarithmic singularity, is
a complex function, the boson wave function 𝜒(𝑞) is complex
too. Partition of 𝜒(𝑞) into the imaginary and real parts is,
in a sense, arbitrary since (33) is invariant under the phase
transformation 𝜒(𝑞) → 𝜒(𝑞)𝑒𝑖𝜙 with a constant 𝜙.

It is easy to see that the kernel (36)-(37) is a non-Fredholm
one as well. Therefore we can expect that for this kernel
the spectra of both the characteristic eigenvalues 𝑔 and the
eigenfunctions 𝜒(𝑞, 𝑔) should be continuous.

2.3. Numerical Procedure. The studies of the Fredholm equa-
tion with non-Fredholm kernels are extremely rare in the
literature because the search for its solutions is very difficult.
In our case, the kernel eigenfunctions must satisfy the
normalization condition, 2𝜋 ∫∞

0
|𝜒(𝑞, 𝑔)|2𝑞 𝑑𝑞 = 1. Hence,𝜒(𝑞 → ∞,𝑔) → 0; that simplifies the problem. Assume that𝜒(𝑞, 𝑔) goes to zero fast enough so that (33) can be reduced

to the form: 𝜒 (𝑞) = 𝛼𝑔 ∫𝑓00 𝑄 (𝑞, 𝑓) 𝜒 (𝑓) 𝑑𝑓, (38)

where the value of𝑓0(𝑔) in units of �−1𝑒 depends on the boson
kinetic energy and 𝑞 ∈ [0, 𝑓0].

The kernel 𝑄(𝑞, 𝑓) given by (36)-(37) is replaced by the
two𝑁 ×𝑁matrices:𝑄(𝑟)𝑖𝑗 + 𝑖𝑄(𝑖)𝑖𝑗 = 𝑓0𝑁 − 1𝑄 (𝑞𝑖, 𝑓𝑗) , (39)

which is denoted as 𝑄(𝑟) + 𝑖𝑄(𝑖). Here the number 𝑁 is the
partition of the interval [0, 𝑓0]. The wave function 𝜒(𝑞) is
replaced by the two 𝑁-dimensional vectors 𝜒(𝑞) ⇒ 𝜒(𝑟) +𝑖𝜒(𝑖). Then (38) is reduced to two related linear equations:(𝑔𝛼 I −Q(𝑟))𝜒(𝑟) = −Q(𝑖)𝜒(𝑖), (40)(𝑔𝛼 I −Q(𝑟))𝜒(𝑖) = Q(𝑖)𝜒(𝑟). (41)

Here 𝐼 is the unit𝑁 ×𝑁matrix.
From (40)-(41) we obtain the homogeneous system of

linear𝑁-equations for the vector 𝜒(𝑟):

A𝜒(𝑟) = 0, (42)
where the 𝐴matrix is

A = 𝑔𝛼 I −Q(𝑟) +Q(𝑖) (𝑔𝛼 I −Q(𝑟))−1Q(𝑖) (43)

Here ((𝑔/𝛼)𝐼 −𝑄(𝑟))−1 means the inverse of ((𝑔/𝛼)𝐼 −𝑄(𝑟)).

In contrast to the Fredholm procedure, to solve (42) with
the definition (43), it is required to introduce a boundary
condition. It is sufficient to put

Re𝜒 (𝑓0) = 𝛿. (44)

Here 𝛿 is small. Typically this value is assumed to be equal
to 𝛿 = 10−7. This selection does not matter because of the
subsequent normalization of the wave function.

Using the boundary condition (44), from (42) we found
the vector 𝜒(𝑟). Then, from (41) rewritten as

𝜒(𝑖) = (𝑔𝛼 I −Q(𝑟))−1Q(𝑖)𝜒(𝑟), (45)

the vector 𝜒(𝑖) was obtained. The function 𝜒(𝑟) + 𝑖𝜒(𝑖)
was normalized to unity. Having thus determined the first
approximation to the boson wave function 𝜒(𝑞), (40) was
represented as

𝜒(𝑟) = −(𝑔𝛼 I −Q(𝑟))−1Q(𝑖)𝜒(𝑖), (46)

and the system of two interrelated equations (45) and (46)
was solved by the iterative method. The number of iterations
necessary to provide a convergent solution appeared to be
about a few hundred.

Then we found the average momentum of the transverse
motion of the strongly coupled electron-positron pair:𝑞𝑎V�𝑒 = 2𝜋∫𝑓0

0

󵄨󵄨󵄨󵄨𝜒 (𝑞, 𝑔)󵄨󵄨󵄨󵄨2 𝑞2𝑑𝑞. (47)

The transverse wave function in the coordinate represen-
tation was derived (𝑥 = 𝜌34/�𝑒):𝜒 (𝑥) = ∫𝑓0

0
𝑞𝐽0 (𝑥𝑞) 𝜒 (𝑞) 𝑑𝑞 (48)

and the average transverse radius of the massless boson wave
function was calculated:𝜌𝑎V

�𝑒
= 2𝜋∫𝑓0

0

󵄨󵄨󵄨󵄨𝜒 (𝑥, 𝑔)󵄨󵄨󵄨󵄨2 𝑥2𝑑𝑥. (49)

In other words, 𝜌𝑎V is the average relative distance between
the electron and the positron in the massless boson state.

For all results presented below, 𝑁 = 4501 was used. To
obtain reproducible results, the upper limit of integration 𝑓0
(in units of �−1𝑒 ) has a bottom restriction which depends on
the boson kinetic energy.Therefore, 𝑓0 was chosen separately
for each energy 𝑔.
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Figure 1: The average transverse momentum 𝑞𝑎V (47) and the
average transverse radius 𝜌𝑎V (49) as functions of the massless boson
kinetic energy. Inset: the same in the low-energy region.

2.4. Numerical Results for the Transverse Wave Functions.
Figure 1 shows the kinetic energy dependencies of the
integral characteristics (47) and (49) for the composite
massless boson.With increasing energy 𝑞𝑎V increases, and 𝜌𝑎V
decreases. In the low-energy region 129 eV≤ 𝑔 ≤ 511 eV, with
decreasing energy the average momentum 𝑞𝑎V approaches
monotonically to �−1𝑒 , and the average transverse radius
increases sharply, as shown in the inset in Figure 1. In a
narrower region 129 eV≤ 𝑔 ≤ 220 eV the 𝑔 dependence of𝜌𝑎V is close to logarithmic, 𝜌𝑎V ∝ − log(𝑔). There is a reason
to suppose that this logarithmic divergence persists to the
limit 𝑔 → 0 because the massless particles cannot be at
rest.

Because of computational constraints we were unable
to carry out calculations for boson energies lower than≃ 130 eV. Figure 2 demonstrates the boson wave function
for the energy 𝑔 = 160 eV (the dimensionless value of𝑔 = 0.043𝛼) that is slightly larger than the boson energy
restriction. Above we pointed out the arbitrariness of the
choice between the imaginary and real parts of 𝜒. Therefore
we do not introduce the corresponding notations for the
presented curves. Note that Figure 2 shows one of the possible
representations of 𝜒(𝑞) obtained in our calculations, since the
phase transformation of the wave function will change these
curves.

The momentum wave function is maximal at 𝑞 = 0
and then abruptly decays with increasing 𝑞. This feature for
small boson energies does not allow us to calculate accurately
the coordinate wave function at 𝜌 = 0, since the integrand
function in (48) vanishes at 𝑞 = 0. However, this does not
affect the average transverse radius of the massless boson
wave function. It was found that 𝑞𝑎V = 1.03�−1𝑒 and 𝜌𝑎V =7.99�𝑒 for the energy 𝑔 = 160 eV.

Computational noise on the curves presented in Fig-
ure 2(a) correlates with the step of the finite difference gridΔ𝑞 = 𝑓0(𝑔)/(𝑁 − 1). With decreasing energy 𝑔 < 160 eV
the region of this noise becomes more extended. After the
transformation (48) the noise features vanish, as shown in
Figure 2(b).

According to Figure 1, with increasing boson energy,
there is the extension of the transverse wave function in
the momentum space, and the contraction of the real space
coordinate wave function. This contraction means that the
electron and the positron become closer to each other in the
𝜌-space. The region 1 keV< 𝑔 <2.3 keV can be considered as
a transition region, in which 𝑞𝑎V�𝑒 ≃ 𝜌𝑎V�−1𝑒 . Outside this
region 𝜌𝑎V decreases monotonically with increasing boson
energy, and the dependence of 𝑞𝑎V(𝑔) becomes close to linear.
Figure 3 shows both the momentum and coordinate wave
functions for 𝑔 = 1.68 keV.

Comparing the data in Figures 2 and 3, one can conclude
that, with increasing of the boson energy, oscillations of
the wave functions in both the momentum and coordinate
spaces are enhanced. The wave function in the momentum
space presented in Figure 3(a) is more extended as compared
with that for 𝑔 = 160 eV (see Figure 2(a)). Consequently,
the average transverse momentum increases to the value of𝑞𝑎V = 3.09�−1𝑒 . The probability of zero relative momentum
of the particles decreased significantly in comparison to that
presented in Figure 2(a). As a consequence of the contraction
of the transverse wave function, the average transverse radius
of the boson wave function is changed from 𝜌𝑎V = 7.99�𝑒
at 𝑔 = 160 eV (Figure 2(b)) to the value 𝜌𝑎V = 3.22�𝑒 at𝑔 = 1.68 keV (Figure 3(b)).

With a further increase in the boson energy the transverse
contraction of the wave function 𝜒(𝜌, 𝑔) tends to slow
down. At the same time the probability of finding the
electron and positron with nearly zero distance between
them increases abruptly. This is clearly demonstrated by
Figure 4 where the boson state corresponding to the kinetic
energy 𝑔 = 24.87 keV is presented. The transverse momen-
tum wave function (Figure 4(a)) is very extended, and the
average relative transverse momentum 𝑞𝑎V = 38.02�−1𝑒 .
The wave function in coordinate space is presented in
Figure 4(b). The average transverse radius between the
electron and positron 𝜌𝑎V = 0.31�𝑒, but with the highest
probability density the relative distance between the particles𝜌 < 0.1�𝑒.

Thus, the consideration of the electron and positron
as independent particles leads to the appearance of the
branch of the massless composite bosons formed by the
coupled electron-positron pairs with the coupling equal to
the fine structure constant. The results obtained above for
the normalizable wave functions of the massless bosons are
used in the next section, in which reaction (1) is investigated
theoretically.

3. The 2𝛾 Angular Correlation Spectrum

3.1. The Initial and Final States of the Reaction (1). We will
need the massless boson state for an arbitrary direction of
the boson momentum. When 𝑔 is directed along the 𝑧-
axis, the boson wave function is given by (9) with 𝜑1,2 =𝜒(𝜌,𝑔)V1,2, where the bispinor parts V1,2 have the forms (23).
Thebispinors V1,2 define only the 𝑧-projection of the total spin(Σ𝑧− + Σ𝑧+)V1,2 = 0. That is, the helicities of the particles are
opposite.
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Figure 2: The momentum wave function (a) and the coordinate wave function (b) for the massless boson energy 160 eV. The parameter𝑓0 = 65.
When 𝑔 is directed along the 𝑥-axis, the bispinors take

the forms:

V1 = 1√8 [[[[[[(
1100)
−

( 001−1)
+

+( 001−1)
−

(1100)
+

]]]]]] ,
V2 = 1√8 [[[[[[(

1−100 )
−

(0011)
+

+(0011)
−

( 1−100 )
+

]]]]]] .

(50)

For (50) we have (Σ𝑥− + Σ𝑥+)V1,2 = 0. The form of these
functions is obvious when 𝑔 is parallel to the 𝑦-axis.

Now consider an arbitrary direction of the momentum
boson. Let 𝑟⊥ be an arbitrary radius vector lying in the plane

perpendicular to the vector 𝑔 (𝑔𝑟⊥ = 0). Then the wave
function (9) takes the form:

𝜓1,2 = 𝜒 (r⊥, 𝑔) V1,2 (ig) exp (𝑖g𝑟𝑔 − 𝑖𝑔𝑡) , (51)

where 𝑟𝑔 = 𝑟 − 𝑟⊥ is the component of the radius vector
𝑟 which is collinear to 𝑔 and V1,2 are the bispinor parts
which can depend only on the angles of the unit vector
𝑖𝑔 =𝑔/𝑔. For the wave function (51) one should understand
that 𝑟⊥ = 𝑟1⊥ − 𝑟2⊥, where 𝑔𝑟1⊥ = 0 and 𝑔𝑟2⊥ = 0, and
that 𝑟1𝑔 = 𝑟1 − 𝑟1⊥ and 𝑟2𝑔 = 𝑟2 − 𝑟2⊥ with the condition
𝑟1𝑔 = 𝑟2𝑔 = 𝑟𝑔.

As it is well known, the three-dimensional spinors corre-
sponding to definite helicities have the following form:

𝑤1/2 = (𝑒−𝑖𝜑𝑔/2 cos 𝜃𝑔2𝑒𝑖𝜑𝑔/2 sin 𝜃𝑔2 ) ,
𝑤−1/2 = (−𝑒−𝑖𝜑𝑔/2 sin 𝜃𝑔2𝑒𝑖𝜑𝑔/2 cos 𝜃𝑔2 ) , (52)

where 𝜃𝑔 and 𝜑𝑔 are the polar and azimuthal angles of the
vector 𝑖𝑔. Taking into account (52), one can see that (23) and
(50) are the special cases of the following bispinor functions:
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Figure 3: The same as in Figure 2 except for the massless boson energy equal to 1.68 keV. The parameter 𝑓0 = 130.
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Figure 4: The massless boson wave function in the momentum space (a) and the coordinate space (b) for the kinetic energy 24.87 keV. The
parameter 𝑓0 = 767.
V1= 1√2 [(𝑤1/20 )

−

( 0𝑤−1/2)+ + ( 0𝑤−1/2)− (𝑤1/20 )+] ,
V2= 1√2 [(𝑤−1/20 )

−

( 0𝑤1/2)+ + ( 0𝑤1/2)− (𝑤−1/20 )
+

] .
(53)

Now we turn to the initial state of the free electron and
positron. In principle one can consider colliding non-spin-
polarized particles with equal energy. Currently, however,
the production of spin-polarized low-energy positron beams
with the kinetic energy of a few electron volts became possible
[34–38]. It is therefore of particular interest to study the
annihilation-like process (1) for the polarized beams.

Suppose that the electron and positron collide with the
center of mass at rest (𝑝− + 𝑝+ = 0). For definiteness let the
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electron momentum, 𝑝−, be directed along the 𝑧-axis; then
the positron momentum, 𝑝+, is against the 𝑧-axis. The wave
function of the free pair can be represented as𝜑 (1, 2) = 𝑢 exp (−𝑖𝑝−𝑥− − 𝑖𝑝+𝑥+) , (54)

where𝑝− = (𝜀−,𝑝−) and𝑥− = (𝑡, 𝑟) are the four vectors for the
electron, 𝑝+ = (𝜀+,𝑝+) and 𝑥+ = (𝑡, 𝑟1) are the four vectors of
the positron, and 𝜀− = 𝜀+ = 𝜀. The spin function in (54) can
be defined by the 𝑧-projections of the spin for the particles in
the rest system.Then, for the total spin projection 𝑆𝑧 = 0, the
function 𝑢 can be represented as

𝑢𝑆𝑧=0 =(
√𝜀 + 𝑚0√𝜀 − 𝑚0 )

−

( 0√𝜀 + 𝑚0√𝜀 − 𝑚)
+

. (55)

The function (55) can be considered as the two-particle
spin state with opposite helicities. One can also say that (55)
corresponds to the opposite longitudinal polarization of the
particles.

Free pairs of the transversely polarized particles relative
to the vector 𝑝− can be prepared as well, and it is easy to
write, for example, 𝑢𝑆𝑥=0 for the polarization along the 𝑥-axis.
Besides, the colliding electron-positron pair with 𝑆𝑧 = 1 or𝑆𝑥 = 1 can be experimentally obtained, and it is not difficult
to write the corresponding bispinor parts for these cases.

Interaction for the reaction (1), which will be discussed
in Section 3.2, predetermines the choice of the photon wave
function. The photon plane wave can be represented as𝐴(𝛼)

𝑘
= √4𝜋l(𝛼)k exp (−𝑖𝑘𝑥) , (56)

where 𝑙(𝛼)
𝑘

is the photon polarization that can be chosen real,𝑘𝑥 = 𝜔𝑘𝑡 − 𝑘𝑟, and 𝜔𝑘, 𝑘 are the energy and wave vector of
the photon, respectively. For the transverse photons 𝑘𝑙(𝛼)

𝑘
= 0

with 𝛼 = 1, 2.
3.2. Interaction for the Reaction (1). The products of reac-
tion (1) include two photons and the massless boson. This
composite boson is formed by the strongly coupled electron-
positron pair. Therefore, the radiative transition of any
particle from the initial free pair (the left-hand side of (1))
to any intermediate state does not lead to the formation
of the massless boson. The simultaneous emission of one
photon by the electron and other photon by the positron
and, accordingly, the simultaneous transition of both the
electron and positron into the massless boson state are the
only processes for which reaction (1) occurs. For this reason
it is necessary to determine the interaction operator for the
simultaneous emission of photons by each particle of the pair.

The additive energy of any free pair from the beams is
defined as 𝜀− + 𝜀+ = √𝑚2𝑠 + (p− + p+)2. (57)

Here 𝑚𝑠 is the pair mass. Note that in (57) the sum of the
particle momenta is presented.

The interaction operator for single-photon emission by
the electron and positron at the same time can be obtained
from (57) by introducing the canonical momenta in the
presence of electromagnetic fields, 𝑝− → 𝑝− + 𝑒𝐴− and
𝑝+ → 𝑝+ − 𝑒𝐴+ (𝐴± are the operators of the vector potentials
generated by the electron and positron). Assuming 𝑚𝑠 =2𝑚 for the nonrelativistic particles, from (57), we obtain the
expression for this operator:𝑊 = − 𝑒22𝑚A−A+. (58)

A similar approach can be applied to positronium. The
kinetic energy of the unperturbed Hamiltonian is𝑇 = p2𝑚 , (59)

where 𝑝 is the momentum operator of the relative motion,
corresponding to the relative radius vector between the
particles. Substituting 𝑝 = (𝑝− − 𝑝+)/2 into this energy
and making the transition to the canonical momenta of
the particles, we get, up to the sign, the operator (58) for
simultaneous emission of two photons by the two particles.

The electromagnetic interaction operator (58) is used
below in the study of the reaction (1).

3.3. Possible Reaction Channels. Now, taking into account the
spin conservation, we discuss the possible reaction channels
with initially free electron-positron pairs. Let the colliding
pairs be in the triplet state, 𝑆𝑧 = 1. First of all, the reaction
with single-photon emission(𝑒−𝑒+)𝑆𝑧=1 󳨀→ 𝐵𝛾. (60)

is impossible in principle. Here (𝑒− + 𝑒+)𝑆𝑧=1 denotes the
initial free pair, 𝐵 is the massless boson, and 𝛾 is the photon
emitted. For this reaction, the single photon is only emitted
either by the electron or by the positron. Therefore, the
simultaneous transition of these particles into the composite
massless boson state cannot occur.

The reaction with emission of three photons,(𝑒−𝑒+)𝑆𝑧=1 󳨀→ 𝐵𝛾1𝛾2𝛾3, (61)

can take place. For (61), at first one of the particles (elec-
tron or positron) emits one photon (say 𝛾1) and passes to
an intermediate state, and then, in a subsequent point in
time, simultaneous emission of two other photons (𝛾2, 𝛾3) is
accompanied by the simultaneous transition of these particles
into the boson state 𝐵.

In the case of prepared pairs with 𝑆𝑧 = 0 the reaction with
single-photon emission is also impossible in principle as was
discussed above.

The reaction with the emission of two photons:(𝑒−𝑒+)𝑆𝑧=0 󳨀→ 𝐵𝛾1𝛾2, (62)

can occur due to the interaction (58). As will be shown below,
for (62), the emission of composite bosons with relatively low
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energies is possible and preferable. Their energy is several
orders of magnitude smaller than the electron mass. With
the increasing of the boson energy the cross-section of this
reaction decreases sharply.

Below,we derive the cross-section of the reaction (62) and
study numerically the 2𝛾 angular correlation spectra.

3.4. Cross-Section of the Reaction (62). In the center of mass
system 𝑝− = −𝑝+ = 𝑝 and 𝜀− + 𝜀+ = 2𝜀. The cross-section of
the reaction (62) has the following form:𝑑𝜎 = (2𝜋)4 𝛿(4) (𝑃𝑖 − 𝑃𝑓) 󵄨󵄨󵄨󵄨󵄨𝑊𝑖𝑓󵄨󵄨󵄨󵄨󵄨2 14𝜀2Vrel 𝑑k(2𝜋)3 2𝜔⋅ 𝑑k1(2𝜋)3 2𝜔1 𝑑g(2𝜋)3 2𝑔 . (63)

Here 𝛿(4)(𝑃𝑖 − 𝑃𝑓) = 𝛿(𝜔 + 𝜔1 + 𝑔 − 2𝜀)𝛿(𝑘 + 𝑘1 + 𝑔),
Vrel = 2V𝑒 is the relative velocity of the particles, V𝑒 =√2(𝜀 − 𝑚)/𝑚, and𝑊𝑖𝑓 is the matrix element of the operator
(58) for the transition from the initial state (i) of the free
pair (54)-(55) into the final state (f ). The latter include the
composite massless boson (51)–(53) and the two photons
(56), one of which has the energy 𝜔, the momentum 𝑘, and
the polarization 𝑙(𝛼)

𝑘
(𝛼 = 1, 2) and the second photon, 𝜔1, 𝑘1,

and 𝑙(𝛽)
𝑘1

(𝛽 = 1, 2), respectively.Thismatrix element is written
as 𝑊𝑖𝑓 = −4𝜋 𝑒22𝑚 (l(𝛼)k l(𝛽)k1 ) (V+1,2𝑢𝑆𝑧=0)∫ 𝑑r1 ∫𝑑r2𝜒∗ (󵄨󵄨󵄨󵄨r⊥󵄨󵄨󵄨󵄨 ; 𝑔) × 𝑒−𝑖k𝑟1−𝑖k1r2−𝑖g𝑟𝑔 (𝑒𝑖p𝑟1−𝑖p𝑟2 + 𝑒𝑖p𝑟2−𝑖p𝑟1) . (64)

Here 𝜒(|𝑟⊥|; 𝑔) satisfies (29), 𝑟⊥ = 𝑟1⊥ − 𝑟2⊥ is the
two-dimensional relative vector between the electron and
positron, 𝑟1 = 𝑟1⊥ + 𝑟1𝑔, and 𝑟2 = 𝑟2⊥ + 𝑟2𝑔. As noted above,
when the boson momentum is directed along 𝑧-axis, the 𝑧-
components of the radius-vectors of particles coincide, and𝑧1 = 𝑧2 = 𝑧. Now we need to take into account the fact that𝑟1𝑔 = 𝑟2𝑔 = 𝑟𝑔 for the composite boson. On the right side of
(64), the last factor in round brackets is the sum of two terms.
The first contribution corresponds to the emission of photon
with the wave vector 𝑘 by the electron, and in the second term
the electron emits photonwith thewave vector𝑘1.The second
of two photons is emitted simultaneously by the positron.

To calculate the spatial integrals in (64), it is convenient
to use new variables: 𝑟1⊥ = 𝑅 + 𝑟⊥/2 and 𝑟2⊥ = 𝑅 − 𝑟⊥/2. As
a result we obtain∫𝑑r1 ∫𝑑r2𝜒∗ (󵄨󵄨󵄨󵄨r1⊥ − r2⊥

󵄨󵄨󵄨󵄨 ; 𝑔)⋅ 𝑒−𝑖k𝑟1−𝑖k1r2−𝑖g𝑟𝑔 (𝑒𝑖p𝑟1−𝑖p𝑟2 + 𝑒𝑖p𝑟2−𝑖p𝑟1)= 𝜒∗ (󵄨󵄨󵄨󵄨k⊥ − p⊥
󵄨󵄨󵄨󵄨 ; 𝑔) + 𝜒∗ (󵄨󵄨󵄨󵄨k⊥ + p⊥

󵄨󵄨󵄨󵄨 ; 𝑔)
(65)

multiplied by (2𝜋)3𝛿(𝑘 + 𝑘1 + 𝑔). We do not write the latter,
because it is already included in (63). In (65) the Fourier
transform of the wave function of the transverse motion of

the coupled pair in the massless composite boson state is
used:𝜒∗ (󵄨󵄨󵄨󵄨k⊥ + p⊥

󵄨󵄨󵄨󵄨 ; 𝑔) = ∫𝜒∗ (󵄨󵄨󵄨󵄨r⊥󵄨󵄨󵄨󵄨 ; 𝑔) 𝑒−𝑖(k+p)r⊥𝑑r⊥. (66)

Here 𝑘⊥ is the component of the photon wave vector 𝑘which
is perpendicular to 𝑔,

k⊥ = k − (k𝑖g) ig, (67)

and 𝑝⊥ is the component of the free electron momentum
perpendicular to the boson momentum,

p⊥ = p − (p𝑖g) ig. (68)

According to the momentum conservation, 𝑘⊥ + 𝑘1⊥ = 0,
where 𝑘1⊥ is the corresponding component of thewave vector
of the second emitted photon.

Note that 𝜒∗(|𝑘⊥ ± 𝑝⊥|; 𝑔) has the dimension of length.
Substituting (64)-(65) in (63), the cross-section is given

by 𝑑𝜎 = 2−8𝜋−3𝑟2𝑒 𝑐Vrel∑𝛼,𝛽 󵄨󵄨󵄨󵄨󵄨󵄨l(𝛼)k l(𝛽)k1
󵄨󵄨󵄨󵄨󵄨󵄨2 1𝜀2 󵄨󵄨󵄨󵄨󵄨V+1,2𝑢𝑆𝑧=0󵄨󵄨󵄨󵄨󵄨2⋅ 󵄨󵄨󵄨󵄨𝜒 (󵄨󵄨󵄨󵄨k⊥ − p⊥

󵄨󵄨󵄨󵄨 ; 𝑔) + 𝜒 (󵄨󵄨󵄨󵄨k⊥ + p⊥
󵄨󵄨󵄨󵄨 ; 𝑔)󵄨󵄨󵄨󵄨2∗ 𝛿 (𝑘 + 𝑘1 + 𝑔 − 2𝑘𝑒)⋅ 𝛿 (k1 + k + g) 𝑑k𝑘 𝑑k1𝑘1 𝑑g𝑔 ,

(69)

where 𝑟𝑒 = 𝑒2/𝑚 is the electromagnetic radius of the electron
and 𝑘𝑒 = �−1𝑒 ∗ 𝜀/𝑚, where �𝑒 is the Compton wavelength of
the electron.

3.5. Transformation of (69). In (69) we have the summation
over photon polarization: 𝑆 = ∑𝛼,𝛽 |𝑙(𝛼)𝑘 𝑙(𝛽)𝑘1 |2. Because𝑙(𝛼)
𝑘𝑖
𝑙(𝛼)
𝑘𝑗

= 0 for 𝑖, 𝑗 = 𝑥, 𝑦, 𝑧 and 𝑖 ̸= 𝑗, the sum is reduced
to 𝑆 = ∑

𝛼,𝛽

∑
𝑖=𝑥,𝑦,𝑧

𝑙(𝛼)2k𝑖 𝑙(𝛽)2k1𝑖
. (70)

For the unit polarization vectors we can use 𝑙(𝛼)2
𝑘𝑧

= 1 − 𝑙(𝛼)2
𝑘𝑥

−𝑙(𝛼)2
𝑘𝑦

. Then, taking into account ∑𝛼=1,2 𝑙(𝛼)2𝑘𝑥 = 1, finally we
obtain 𝑆 = 2.

In (69) the factor |V+1,2𝑢𝑆𝑧=0|2 can be considered as the
overlap of bispinor functions.Using (53) and (55), we find that
the factor is equal to (1/2)𝑝2cos2𝜃𝑔.

Considering these results, in the nonrelativistic limit, the
cross-section (69) is reduced to𝑑𝜎 = 2−9𝜋−3𝑟2𝑒 V𝑒𝑐 cos2𝜃𝑔⋅ 󵄨󵄨󵄨󵄨𝜒 (󵄨󵄨󵄨󵄨k⊥ − p⊥

󵄨󵄨󵄨󵄨 ; 𝑔) + 𝜒 (󵄨󵄨󵄨󵄨k⊥ + p⊥
󵄨󵄨󵄨󵄨 ; 𝑔)󵄨󵄨󵄨󵄨2⋅ 𝛿 (𝑘 + 𝑘1 + 𝑔 − 2𝑘𝑒) 𝛿 (k1 + k + g) 𝑑k𝑘 𝑑k1𝑘1 𝑑g𝑔 .

(71)
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According to themomentumconservation of the reaction
products, 𝑔 = −(𝑘 + 𝑘1) and, hence,

cos 𝜃𝑔 = −𝑘 cos 𝜃𝑘 + 𝑘1 cos 𝜃𝑘1󵄨󵄨󵄨󵄨k + k1
󵄨󵄨󵄨󵄨 , (72)

where 𝜃𝑘 and 𝜃𝑘1 are polar angles of the photon wave vectors
𝑘 and 𝑘1, respectively.

Integrating over the massless boson momentum 𝑔, the
cross-section (71) takes the following form:𝑑𝜎 = 2−9𝜋−3𝑟2𝑒 V𝑒𝑐

⋅ (𝑘 cos 𝜃𝑘 + 𝑘1 cos 𝜃𝑘1)2(2𝑘𝑒 − 𝑘 − 𝑘1)3 󵄨󵄨󵄨󵄨𝜒 (󵄨󵄨󵄨󵄨k⊥ − p⊥
󵄨󵄨󵄨󵄨 ; 2𝑘𝑒 − 𝑘− 𝑘1) + 𝜒 (󵄨󵄨󵄨󵄨k⊥ + p⊥

󵄨󵄨󵄨󵄨 ; 2𝑘𝑒 − 𝑘 − 𝑘1)󵄨󵄨󵄨󵄨2 𝛿 (𝑘 + 𝑘1+ 󵄨󵄨󵄨󵄨k1 + k󵄨󵄨󵄨󵄨 − 2𝑘𝑒) 𝑘𝑘1𝑑𝑘𝑑𝑘1𝑑Ωk𝑑Ωk1 .
(73)

Here 𝑑Ω𝑘 and 𝑑Ω𝑘1 are the solid angle elements of the photon
wave vectors.

Now it is easy to carry out the integration over the energy
of one of the two photons, for example, over 𝑘1. As a result,
from (73), we obtain𝜕2𝜎𝜕Ωk𝜕Ωk1

= 2−8𝜋−3𝑟2𝑒 V𝑒𝑐⋅ ∫𝑘𝑒
0

𝑘𝑒𝑘 (𝑘𝑒 − 𝑘) 𝑑𝑘(2𝑘2𝑒 − 𝑘 (2𝑘𝑒 − 𝑘) (1 − cos 𝜗))2
⋅ (𝑘 cos 𝜃𝑘 + 2𝑘𝑒 (𝑘𝑒 − 𝑘)2𝑘𝑒 − 𝑘 (1 − cos 𝜗) cos 𝜃𝑘1)2⋅ 󵄨󵄨󵄨󵄨𝜒 (󵄨󵄨󵄨󵄨k⊥ − p⊥

󵄨󵄨󵄨󵄨 ; 𝑔) + 𝜒 (󵄨󵄨󵄨󵄨k⊥ + p⊥
󵄨󵄨󵄨󵄨 ; 𝑔)󵄨󵄨󵄨󵄨2 .

(74)

Here we use the following notations: 𝑔 is the kinetic energy
of the massless composite boson emitted,𝑔 = 2𝑘2𝑒 − 𝑘 (2𝑘𝑒 − 𝑘) (1 − cos𝜗)2𝑘𝑒 − 𝑘 (1 − cos𝜗) , (75)𝑑Ω𝑘 = sin 𝜃𝑘𝑑𝜃𝑘𝑑𝜑𝑘, 𝑑Ω𝑘1 = sin 𝜃𝑘1𝑑𝜃𝑘1𝑑𝜑𝑘1 , 𝜗 is the angle
between the wave vectors 𝑘 and 𝑘1 (𝑘𝑘1 = 𝑘𝑘1 cos 𝜗):

cos 𝜗 = cos 𝜃𝑘 cos 𝜃𝑘1 + sin 𝜃𝑘 sin 𝜃𝑘1 cos (𝜑𝑘 − 𝜑𝑘1) , (76)

and 𝜑𝑘 and 𝜑𝑘1 are the azimuthal angles of the wave vectors 𝑘
and 𝑘1.

According to (67), the component of the photon wave
vector 𝑘, which is perpendicular to 𝑔, is given by

k⊥ = k − (k (k + k1))󵄨󵄨󵄨󵄨k + k1
󵄨󵄨󵄨󵄨2 ∗ (k + k1) (77)

and its modulus depends only on 𝑘 and the angle 𝜗,𝑘⊥ = 2𝑘𝑘𝑒 (𝑘𝑒 − 𝑘)√1 − cos2 𝜗2𝑘2𝑒 − 𝑘 (2𝑘𝑒 − 𝑘) (1 − cos 𝜗) . (78)

3.6. The Observables. Consider colliding two bunches of
electrons and positrons with flux densities 𝐼− and 𝐼+ that are
moving towards each other. Let 𝐼− = 𝐼+ = 𝐼, the spatial
lengths of bunches 𝐿 and their cross-sectional areas 𝑆 are
identical. Then the number of coincidence events per time
unit in which one photon is detected in the small element of
solid angle ΔΩ𝑘, and the second photon is in ΔΩ𝑘1 has the
following form:Δ𝑁Δ𝑡 = 𝜁 (cos 𝜗) 𝐿𝑆𝐼2ΔΩkΔΩk1 , (79)

where the small solid angles are determined by the angular
resolution of an experimental setup, and, according to (74),

𝜁 (cos 𝜗) = 2−8𝜋−3 𝑟2𝑒𝑐⋅ ∫𝑘𝑒
0

𝑘𝑒𝑘 (𝑘𝑒 − 𝑘) 𝑑𝑘(2𝑘2𝑒 − 𝑘 (2𝑘𝑒 − 𝑘) (1 − cos 𝜗))2
(𝑘 cos 𝜃𝑘 + 2𝑘𝑒 (𝑘𝑒 − 𝑘)2𝑘𝑒 − 𝑘 (1 − cos 𝜗) cos 𝜃𝑘1)2⋅ 󵄨󵄨󵄨󵄨𝜒 (󵄨󵄨󵄨󵄨k⊥ − p⊥

󵄨󵄨󵄨󵄨 ; 𝑔) + 𝜒 (󵄨󵄨󵄨󵄨k⊥ + p⊥
󵄨󵄨󵄨󵄨 ; 𝑔)󵄨󵄨󵄨󵄨2 .

(80)

That is, precisely the value (80) that has dimension𝑀×𝑆 can
be measured in experiments.

Now we carry out the analysis of the observables (74)
and (80). If both of these values would only depend on
the angle 𝜗 between the photon vectors 𝑘 and 𝑘1, then
we could say that there is the angle symmetry of the two-
photon correlation spectra.This symmetry, as far as we know,
is experimentally observed for the positron annihilation in
solid targets. However, this appears to be due to the fact that
the positron energy and momentum relaxations are more
rapid processes compared with the annihilation process in
solids.

We draw attention to the two effects. The first is that the
observables (74) and (80) depend on the momentum of free
particles, and, hence, on the initial energy of the electrons
and positrons. Then we can argue that the 𝑝⊥ dependence
of the observables will result in the first contribution to the
asymmetry of the two-photon angular correlation spectra.

The second effect is due to the radiation pattern of the
massless bosons because, according to (71), the cross-section
is proportional to cos2 𝜃𝑔. That is, these bosons are emitted
predominantly along the colliding axis of the two bunches.
This results in the second contribution to the asymmetry of
these spectra.

3.7. Procedure of Numerical Calculations. Due to computa-
tional constraints, we were not able to investigate these two
effects presented above.The aim of the subsequent part of this
work is to find out the characteristic form of the two-photon
angular correlation spectra which are due to the presence of
the third particle that is the massless boson. We are trying to
answer the question: what typical widths of these spectra can
be expected for the reaction (62)?
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With this aim, we replace cos2 𝜃𝑔 → 1/2. In the low-
energy limit of the initial particles we can use 𝑘⊥ ≫ 𝑝⊥. In
this case the observables (74) and (80) depend only on the
angle 𝜗 between the wave vectors of the two photons emitted.
As a result, the cross-section (74) is reduced to the following
form: 𝜕2𝜎𝜕Ωk𝜕Ωk1

= (4𝜋)−3 𝑟2𝑒 V𝑒𝑐 𝐺 (cos 𝜗) (81)

Here we use notations:𝐺 (cos 𝜗)= ∫𝑘𝑒
0
𝐹 (𝑘, cos 𝜗) 󵄨󵄨󵄨󵄨𝜒 (𝑘⊥ (𝑘, cos 𝜗) ; 𝑔 (𝑘, cos 𝜗))󵄨󵄨󵄨󵄨2 𝑑𝑘, (82)

where 𝑔 and 𝑘⊥ are given by (75) and (78), respectively, and

𝐹 = 𝑘𝑒𝑘 (𝑘𝑒 − 𝑘)(2𝑘𝑒 − 𝑘 (1 − cos 𝜗))2 . (83)

The observable 𝜁 given by (80) is rewritten as

𝜁 (cos 𝜗) = (4𝜋)−3 𝑟2𝑒𝑐 𝐺 (cos 𝜗) (84)

Further it is convenient to introduce dimensionless vari-
ables. For nonrelativistic electrons and positrons 𝑘𝑒 = �−1𝑒 .
Hence, the dimensionless wave function of the transverse
motion of the coupled pair is �−1𝑒 ∗ 𝜒 → 𝜒; the photon and
boson energies become �𝑒𝑘 → 𝑘 and �𝑒𝑔 → 𝑔. As a result,
the functions (75), (78), and (83) are dimensionless:𝑔 = 2 − 𝑘 (2 − 𝑘) (1 − cos 𝜗)2 − 𝑘 (1 − cos 𝜗) (85)

𝑘⊥ = 2𝑘 (1 − 𝑘)√1 − cos2 𝜗2 − 𝑘 (2 − 𝑘) (1 − cos 𝜗) , (86)

𝐹 = 𝑘 (1 − 𝑘)(2 − 𝑘 (1 − cos 𝜗))2 . (87)

The observables (81) and (84) are defined by the same
function (82) which is rewritten as𝐺 (cos 𝜗)= ∫1

0
𝐹 (𝑘, cos 𝜗) 󵄨󵄨󵄨󵄨𝜒 (𝑘⊥ (𝑘, cos 𝜗) ; 𝑔 (𝑘, cos 𝜗))󵄨󵄨󵄨󵄨2 𝑑𝑘. (88)

The 𝐺 function is determined by the momentum-space
wave function of the transverse motion of the coupled
electron-positron pair, 𝜒(𝑘⊥; 𝑔). As was found above, for
small momenta of the boson, 𝑔 ≪ 𝑚; this wave function
satisfies the homogeneous Fredholm integral equation of the
second kind (33) with the non-Fredholmkernel (36)-(37).We
were able to calculate the transversewave function only in this
case. It is a fortunate coincidence that the small energies of the
massless bosons, 𝑔 ≪ 𝑚, are of fundamental importance for
the reaction (62), as will be demonstrated below.

Firstly, to find the wave functions of the massless com-
posite boson, we used exactly the calculation procedure
presented in Section 2.3 with the same 𝑁 = 4501.
For the given 𝑘 and 𝜗 the value of this wave function𝜒(𝑘⊥(𝑘, cos 𝜗); 𝑔(𝑘, cos 𝜗)) was calculated by formula:𝜒 (𝑘⊥; 𝑔) = 𝛼𝑔 ∫𝑓0(𝑔)0 𝑄 (𝑘⊥, 𝑓) 𝜒 (𝑓; 𝑔) 𝑑𝑓. (89)

Finally, to find the observables (81) and (84) for the
given angle 𝜗, the integration over 𝑘 in (88) was carried out.
The angular dependence of 𝜁(cos𝜗) gives us the 2𝛾 angular
correlation spectra for the reaction (62).

3.8. Results. Equation (85) relates the three variables, the
boson energy𝑔, the photon energy 𝑘, and the angle 𝜗 between
the photon wave vectors 𝑘 and 𝑘1. The given angle can be
realized for different 𝑔, since the sums 𝑘 + 𝑘1 + 𝑔 = 2 and
𝑘 + 𝑘1 + 𝑔 = 0 are only fixed. However, for each angle there
is a minimum value of the boson energy which, according to
(85), is𝑔min = 2𝑡𝑔(𝜙2)[(1 + 𝑡𝑔2 (𝜙2))1/2 − 𝑡𝑔(𝜙2)] (90)

Here we introduce the angle 𝜙 = 𝜋−𝜗 that will be used below.
Figure 5 presents the photon energy dependencies of the

boson energy converted to keV, for three angles 𝜙. For curve
1 𝜙 = 0.146 mrad and 𝑔min = 74.6 eV. The minimum on
this curve corresponds to the photon energy 𝑘∗, which is not
marked in the figure. Obviously, this photon energy is very
close to 𝑚𝑐2. As shown in Figure 5, this minimal energy is
equal to 𝑔min = 220 eV for the angle 𝜙 = 0.431 mrad (curve 2)
and 𝑔min = 511 eV for the angle 𝜙 = 1mrad (curve 3).

For the given angle 𝜙 and the boson energy 𝑔 > 𝑔min
there is a pair of the photon energy values, as is clearly
demonstrated by the horizontal line on Figure 5. One value
of the photon energy from this pair is greater than 𝑘∗, and
the other is less than 𝑘∗. These paired values of photon
energies will contribute to the integral on the right-hand side
of (88). We show below that this integral is evaluated in some
neighborhood of 𝑘∗.

There are two more functions, namely, 𝑘⊥, (86), and 𝐹,
(87), which are also important for calculating the observables
(81) and (84). For a given angle 𝜙, the function 𝑘⊥ goes to zero
in the limit 𝑘 → 0, reaches a maximum, and then vanishes
in the limit 𝑘 → 1. The dimensionless photon energy that
corresponds to the maximum value of 𝑘⊥ tends to 1 at 𝜙 → 0.

The photon energy dependencies of 𝐹(𝑘) are very close
at small angles. They differ in that for different values of the
photon energy 2/(3 − cos(𝜙)) the function 𝐹(𝑘) reaches the
maximum values 1/8(1−cos(𝜙) and then goes sharply to zero
in the limit 𝑘 → 1.

The behavior of 𝑘⊥ and 𝐹 at the singular point 𝜙 = 0 will
be analyzed below.

The angular dependence of the observables is determined
by the same integral (88).The 𝑘dependencies of the integrand
function, 𝐹(𝑘, − cos𝜙)|𝜒(𝑘⊥(𝑘, − cos𝜙); 𝑔(𝑘, − cos𝜙))|2, are
demonstrated in Figures 6–8 for three angles 𝜙.
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Figure 5: The photon energy dependence of the boson energy at
given angle between the photon wave vectors. For the curves from 1
to 3, 1: 𝜙 = 0.146mrad; 2: 𝜙 = 0.431mrad; 3: 𝜙 = 1mrad.
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Figure 8: The integrand function in (91) for the angle 𝜙 = 0 in the
region of the photon energies 0.99 ≤ 𝑘 ≤ 0.999748.

We begin with the angles 𝜙 which give a very small
contribution to the 2𝛾 angular correlation spectrum for the
reaction (62). Figure 6 presents the integrand as a function
of the photon energy 𝑘 at the angle 𝜙 = 1 mrad. As
shown above, the transverse wave function 𝜒 is characterized
by anharmonic oscillations in the momentum space. As a
result, the functions𝐹|𝜒|2 always represent irregular changes.
Except for one point which corresponds to 𝑔min, all other
points on the curve presented in Figure 6 must be paired, as
shown in Figure 5.

The massless boson energies that correspond to the
marked points in Figure 6 are as follows: for the point 0 the
energy of emitted boson equals 𝑔min = 511 eV; for the paired
points 1 the boson energy 𝑔 = 626 eV; for 2, 884 eV; for
3, 1.86 keV; for 4, 4.98 keV; and for the last pair points 5,
26.10 keV. Thus, the energies of the bosons are much smaller
than the electron mass.

For the most right-hand point 5, the dimensionless
photon energy differs from unit by 5 × 10−6. Therefore,
contribution to the integral in the right-hand sides of (88)
is very small for the larger photon energies. Using the data
presented in Figure 6, we have found that 𝐺 = 0.40 at 𝜙 =1
mrad.

Figure 7 shows the integrand 𝐹|𝜒|2 as a function of
the photon energy 𝑘 for the angle 𝜙 = 0.252 mrad.
The characteristic values of this function have significantly
increased in comparison with that presented in Figure 6 for
the angle 𝜙 = 1mrad.

For the angle 𝜙 = 0.252mrad the energies of the emitted
bosons for the marked points in Figure 7 are as follows:
the point 0 corresponds to the energy 𝑔min = 129 eV, the
paired points 1 correspond to 𝑔 = 256 eV; 2 to 511 eV;
3 to 626 eV; 4 to 1.86 keV; and the last pair points 5 to
26.10 keV.

For the most right-hand point 5, the dimensionless
photon energy differs from unit by 3 × 10−7. Therefore,
contribution to the integral in the right-hand sides of (88) is
very small for the larger photon energies. We have calculated
that 𝐺 = 11.07 at 𝜙 = 0.252mrad.
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Note that for the angle 𝜙 < 0.252 mrad the mini-
mal energy of the boson 𝑔min < 129 eV (see Figure 5).
Due to computational constraints, we could not find the
eigenfunctions of the kernel (36)-(37) for the boson energies
significantly less than 130 eV. For this reason, in subsequent
results calculated for smaller angles 𝜙, the contribution to
the 𝐺 function due to the emission of massless bosons with
energies less than 129 eV is not taken into account. Obviously,
this will lead to some underestimation of the 𝐺 function.

As discussed above, the singular point of the integral
(88) is the angle 𝜗 = 𝜋. It means that 𝜙 = 0, and, in
the reaction (62), along with the boson the two photons
having the different energies are emitted at 180∘ to each other.
According to (85), (86), and (87), in this case, 𝑔 = 1 − 𝑘,𝑘⊥ = 0, and 𝐹 = 𝑘/4(1 − 𝑘). Then the integral (88) takes
the following form:

𝐺 (−1) = ∫1
0

𝑘𝑑𝑘4 (1 − 𝑘) 󵄨󵄨󵄨󵄨𝜒 (0; 1 − 𝑘)󵄨󵄨󵄨󵄨2 , (91)

where the function 𝜒(0; 1 − 𝑘) is found from the equation

𝜒 (0; 1 − 𝑘) = 2𝛼1 − 𝑘 ∫∞0 (Θ(𝑓 − 1)√𝑓2 − 1 + 𝑖Θ (1 − 𝑓)√1 − 𝑓2 )⋅ 𝑓𝜒 (𝑓; 1 − 𝑘) 𝑑𝑓, (92)

where Θ is the Heaviside step function.
Note that in the limit 𝑘 → 1 the logarithmic divergence

in (91) is absent, since the function 𝜒(𝑓, 0) vanishes for any𝑓.
It is due to the fact that the massless boson can not be in the
state of rest (𝑔 ̸= 0).

The integrand in (91) is presented in Figure 8 for the
photon energy 𝑘 ≥ 0.99. We do not show this function in
the region 0.948 ≤ 𝑘 ≤ 0.99 where it gives very small
contribution to𝐺(−1). The point labeled 1 corresponds to the
energy of the massless boson 𝑔 = 129 eV. In the remaining
marked points the boson energies are as follows: for point 2,
220 eV; for 3, 626 eV; for 4, 1.86 keV; and for 5, 2.98 keV.

The vertical arrow in Figure 8 shows the limitation of the
region in which the integration in (91) is carried out, so that
the region 0.999748 < 𝑘 < 1 remains unaccounted for. The
presented curve in Figure 8 leads to the value 𝐺(−1) = 45.72.
Of course, the value is underrated because events in which
the products of the reaction (62) are themassless bosons with
energies less than 129 eV were not taken into account.

Summarizing all the results obtained in this study, we
have found the 2𝛾 angular correlation spectrum shown in
Figure 9. Kinks on the line at 𝜙 ≃ ±0.22 mrad indicate the
boundary of the small-angle region with the underestimated
data for this spectrum. The reason for this underestimation
was discussed above. It can be seen that for the reaction (62)
the 2𝛾 angular correlation spectrum is characterized by a
narrow peak with the full-width-at-half-maximum (FWHM)
not exceeding 0.2 mrad.
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Figure 9:The 2𝛾 angular correlation spectrum for the reaction (62).
The angle 𝜙 = 𝜋 − 𝜗.
4. Conclusion

In the present work we treated the electron and positron as
independent particles, each being characterized by the com-
plete set of the Dirac plane waves. Although this treatment
is beyond the standard QED theory, it does not contradict
the free particle Dirac theory because, at least, the electron
and positron are fermions. This approach leads inevitably to
another choice of the free particle propagator as compared
to that being currently used in QED. Then the bound-
state Bethe-Salpeter equation was investigated in the ladder
approximation with these free propagators.The branch of the
massless composite bosons formed by the bound electron-
positron pairs with the actual coupling equal to the fine
structure constant states has been found.

In accordance with the central particle-antiparticle con-
cept in QED, products of the low-energy electron-positron
annihilation are just a few photons, and nothing remains
of the electron and positron. The singlet pair of the free
particles with the center of mass at rest is, with the greatest
probability, converted into two photons, which, due to the
momentum conservation, should be emitted at the angle
of 180∘ to each other. The treatment of the electron and
positron as independent particles leads to the reaction (62) in
which together with emitted photons the reaction products
involve the massless boson formed by the coupled electron
and positron pair. For this reaction the 2𝛾 correlation spectra
must always have the finite angular width since the three
particles are emitted. That is, the presence of the width is
fundamental. As it was found for the new reaction with three
product particles, for the extremely nonrelativistic initial
particles, the two-photon angular correlation spectrum is
characterized by a narrow line with the full-width-at-half-
maximum (FWHM) not exceeding 0.2 mrad.

In many known experiments on the low-energy positron
annihilation in condensed and gaseous matters (see [34,
36, 38–40] and references therein) the center of mass of
annihilating pairs is usually in motion with respect to an
observer. Then the angle between the photon directions
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departs from 180∘ by an amount of the order of Vcm/𝑐, where
Vcm is the velocity of the center of mass and 𝑐 is the velocity of
light, and, hence, the annihilation angular correlation spectra
of the 2𝛾 radiation are characterized by finite widths as well.
Obviously, in these experiments it is not possible to distin-
guish the reaction (62) from the conventional annihilation.
In the initial state (left-hand side of (62)) the electron and
positron can occur in a parapositronium state that defines
other channels of this process.

We argue that it is possible to determine which of the
two discussed reactions actually takes place. For this purpose,
experiments with colliding beams of extremely nonrelativis-
tic electrons and positrons should be carried out. To prove
the reaction (62), parameters of the colliding beams are
very important. The ideal would be monoenergetic colliding
beams of the annihilating particles with the center of mass
at rest. However, the spectra always have finite widths, 𝛿𝜀,
which can be considered to be the same in both the electron
and positron beams. Then, it is easy to estimate that for the
conventional annihilation in vacuum the typical width of the2𝛾 angular spectrum is of the order of𝜙𝑟 ≃ V𝑒𝑐 𝛿𝜀𝜀 , (93)

where V𝑒 and 𝜀 are the average velocity and energy of the
particles.

For the reaction (62) we found that the angular width
of the two-photon correlation spectrum is of the order of10−4 rad. Then one can estimate the required parameters of
the beams:

V𝑒𝑐 𝛿𝜀𝜀 < 10−4. (94)

The angular resolution of two-photon detectors should be less
then 𝜙𝑟.

For the electron and positron beams with the average
energies 𝜀 = 3 eV and the spectral line widths 𝛿𝜀 = 50meV
we obtain 𝜙𝑟 = 0.6×10−4 that satisfies the required condition.
The production of the positron beam with close parameters𝜀 = 1 eV and 𝛿𝜀 = 75meV (for which the value of 𝜙𝑟 is slightly
larger, 𝜙𝑟 = 1.5 × 10−4) was reported in [35].

At high energies, say even for keV beams (not to mention
MeV beams), it is difficult to obtain such narrow lines with𝛿𝜀/𝜀 ≃ 10−4.

We did not find in the literature similar experiments with
such colliding low-energy beams in vacuum. We emphasize
that it is very important to use exclusively nonrelativistic
particle beams with energies of a few eV, as discussed in
the paper. Namely, for such energies of the particles one can
obtain the necessary energy homogeneity of the colliding
beams.

Unlike the conventional annihilation, for the reaction
(62), the two-photon correlation spectrum has a finite angu-
lar width in principle.This can be used to establish the actual
process. Consider such colliding beams of the low-energy
spin-polarized electrons and positrons and assume that the
angular resolution of two-photon coincidence-count detector
is less than 𝜙𝑟. In case of observation of a narrow peak,

the angular width of which is determined by the instrument
resolution, one can conclude that only the conventional
annihilation takes place, the positron is the antiparticle of
the electron, and, respectively, our approach that the electron
and positron are independent particles is not correct. If the
angular width of the 2𝛾 correlation spectrum will be greater
than the instrument resolution that should be < 10−4 rad,
then it will mean that the composite massless bosons formed
by the coupled electron-positron pairs do really exist, and the
reaction (62) does occur.
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