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Decaying vacuum cosmological models evolving smoothly between two extreme (very early and late time) de Sitter phases are
able to solve or at least to alleviate some cosmological puzzles; among them we have (i) the singularity, (ii) horizon, (iii) graceful-
exit from inflation, and (iv) the baryogenesis problem. Our basic aim here is to discuss how the coincidence problem based on a
large class of running vacuum cosmologies evolving from de Sitter to de Sitter can also be mollified. It is also argued that even the
cosmological constant problem becomes less severe provided that the characteristic scales of the two limiting de Sitter manifolds
are predicted from first principles.

1. Introduction

The present astronomical observations are being successfully
explained by the so-called cosmic concordance model orΛ 0CDM cosmology [1]. However, such a scenario can hardly
provide by itself a definite explanation for the complete
cosmic evolution involving two unconnected accelerating
inflationary regimes separated by many aeons. Unsolved
mysteries include the predicted existence of a space-time sin-
gularity in the very beginning of the Universe, the “graceful-
exit” from primordial inflation, the baryogenesis problem,
that is, the matter-antimatter asymmetry, and the cosmic
coincidence problem. Last but not least, the scenario is also
plagued with the so-called cosmological constant problem
[2].

One possibility for solving such evolutionary puzzles is to
incorporate energy transfer among the cosmic components,
as what happens in decaying or running vacuum models or,
more generally, in the interacting dark energy cosmologies.
Here we are interested in the first class of models because the
idea of a time-varying vacuum energy density orΛ(𝑡)-models
(𝜌Λ ≡ Λ(𝑡)/8𝜋𝐺) in the expanding Universe is physically

more plausible than the current view of a strict constant Λ
[3–13].

The cosmic concordance model suggests strongly that we
live in a flat, accelerating Universe composed of ∼ 1/3 of
matter (baryons + dark matter) and ∼ 2/3 of a constant vac-
uum energy density. The current accelerating period ( ̈𝑎 > 0)
started at a redshift 𝑧𝑎 ∼ 0.69 or equivalently when 2𝜌Λ =𝜌𝑚. Thus, it is remarkable that the constant vacuum and the
time-varying matter-energy density are of the same order of
magnitude just by now thereby suggesting that we live in a
very special moment of the cosmic history.This puzzle (“why
now”?) has been dubbed by the cosmic coincidence problem
(CCP) because of the present ratioΩ𝑚/ΩΛ ∼ O(1), but it was
almost infinite at early times [14, 15].There aremany attempts
in the literature to solve such a mystery, some of them closely
related to interacting dark energy models [16–18].

Recently, a large class of flat nonsingular FRW type
cosmologies, where the vacuum energy density evolves like
a truncated power-series in the Hubble parameter 𝐻, has
been discussed in the literature [19–22] (its dominant term
behaves like 𝜌Λ(𝐻) ∝ 𝐻𝑛+2, 𝑛 > 0). Such models has
some interesting features; among them, there are (i) a new
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mechanism for inflation with no “graceful-exit” problem, (ii)
the late time expansion history which is very close to the
cosmic concordance model, and (iii) a smooth link between
the initial and final de Sitter stages through the radiation and
matter dominated phases.

In this article we will show in detail how the coincidence
problem is also alleviated in the context of this class of
decaying vacuum models. In addition, partially based on
previous works, we also advocate here that a generic running
vacuum cosmology providing a complete cosmic history
evolving between two extreme de Sitter phases is potentially
able to mitigate several cosmological problems.

2. The Model: Basic Equations

TheEinstein equations, 𝐺𝜇] = 8𝜋𝐺 [𝑇𝜇]
(Λ)

+𝑇𝜇]
(𝑇)
], for an inter-

acting vacuum-matter mixture in the FRW geometry read
[19, 20]

8𝜋𝐺 𝜌𝑇 + Λ (𝐻) = 3𝐻2, (1)

8𝜋𝐺 𝑝𝑇 − Λ (𝐻) = −2𝐻̇ − 3𝐻2, (2)

where 𝜌𝑇 = 𝜌𝑀 + 𝜌𝑅 and 𝑝 = 𝑝𝑀 + 𝑝𝑅 are the total
energy density and pressure of the material medium formed
by nonrelativistic matter and radiation. Note that the bare Λ
appearing in the geometric side was absorbed on the matter-
energy side in order to describe the effective vacuum with
energy density 𝜌Λ = −𝑝Λ ≡ Λ(𝐻)/8𝜋𝐺. Naturally, the time
dependence of Λ is provoked by the vacuum energy transfer
to the fluid component. In this context, the total energy
conservation law, 𝑢𝜇[𝑇𝜇](Λ) +𝑇𝜇]

(𝑇)
];] = 0, assumes the following

form:

̇𝜌𝑇 + 3𝐻 (𝜌𝑇 + 𝑝𝑇) = − ̇𝜌Λ ≡ − Λ̇8𝜋𝐺. (3)

What about the behavior of Λ̇? Assuming that the created
particles have zero chemical potential and that the vacuum
fluid behaves like a condensate carrying no entropy, as
what happens in the Landau-Tisza two-fluid description
employed in helium superfluid dynamics[23], it has been
shown that Λ̇ < 0 as a consequence of the second law of
thermodynamics [10], that is, the vacuum energy density
diminishes in the course of the evolution. Therefore, in what
follows we consider that the coupled vacuum is continuously
transferring energy to the dominant component (radiation or
nonrelativistic matter components). Such a property defines
precisely the physical meaning of decaying or running vac-
uum cosmologies in this work.

Now, by combining the above field equation it is readily
checked that

𝐻̇ + 3 (1 + 𝜔)2 𝐻2 − 1 + 𝜔2 Λ (𝐻) = 0, (4)

where the equation of state 𝑝𝑇 = 𝜔𝜌𝑇 (𝜔 ≥ 0) was used. The
above equations are solvable only if we know the functional
form of Λ(𝐻).

Thedecaying vacuum law adopted herewas first proposed
based on phenomenological grounds [7–9, 11] and later on

suggested by the renormalization group approach techniques
applied to quantum field theories in curved space-time [24].
It is given by

Λ (𝐻) ≡ 8𝜋𝐺𝜌Λ = 𝑐0 + 3]𝐻2 + 𝛼𝐻𝑛+2𝐻𝐼𝑛 , (5)

where𝐻𝐼 is an arbitrary time scale describing the primordial
de Sitter era (the upper limit of the Hubble parameter), ]
and 𝛼 are dimensionless constants, and 𝑐0 is a constant with
dimension of [𝐻]2.

In a point of fact, the constant 𝛼 above does not represent
a new degree of freedom. It can be determined with the
proviso that, for large values of 𝐻, the model starts from a
de Sitter phase with 𝜌 = 0 and Λ 𝐼 = 3𝐻2𝐼 . In this case, from
(5) one finds 𝛼 = 3(1 − ]) because the first two terms there
are negligible in this limit [see Eq. (1) in [9] for the case 𝑛 = 1
and [11] for a general 𝑛]. The constant 𝑐0 can be fixed by the
time scale of the final de Sitter phase. For𝐻 << 𝐻𝐼we also see
from (4) that 𝑐0 = 3(1−])𝐻2𝐹, where𝐻𝐹 characterizes the final
de Sitter stage (see (6) and (8)). Hence, the phenomenological
law (5) assumes the final form:

Λ (𝐻) = 3 (1 − ])𝐻2𝐹 + 3]𝐻2 + 3 (1 − ]) 𝐻𝑛+2𝐻𝐼𝑛 . (6)

This is an interesting 3-parameter phenomenological expres-
sion. It depends on the arbitrary dimensionless constant ] and
also the two extreme Hubble parameters (𝐻𝐼,𝐻𝐹) describing
the primordial and late time inflationary phases, respectively.
Current observations imply that the value of ] is very small,|]| ∼ 10−6 − 10−3 [25, 26]. More interestingly, the analytical
results discussed below remain valid even for ] = 0. In this
case, we obtain a sort of minimal model defined only by
a pair of physical time scales, 𝐻𝐼 and 𝐻𝐹, determining the
entire evolution of the Universe. As we shall see, the possible
existence of these two extreme de Sitter regimes suggests a
different perspective to the cosmological constant problem.

By inserting the above expression into (3) we obtain the
equation of motion:

𝐻̇ + 3 (1 + 𝜔) (1 − ])2 𝐻2 [1 − 𝐻2𝐹𝐻2 − 𝐻𝑛𝐻𝑛𝐼 ] = 0. (7)

In principle, all possible de Sitter phases here are simply
characterized by a constantHubble parameter (𝐻𝐶) satisfying
the conditions 𝐻̇ = 𝜌 = 𝑝 = 0 andΛ = 3𝐻2𝐶. For all physically
relevant values of ] and 𝜔 in the present context, we see that
the condition 𝐻̇ = 0 is satisfied whether the possible values
of𝐻𝐶 are constrained by the algebraic equation involving the
arbitrary (initial and final) de Sitter vacuum scales𝐻𝐼 and𝐻𝐹:

𝐻𝑛+2𝐶 − 𝐻𝑛𝐼𝐻2𝐶 + 𝐻2𝐹𝐻𝑛𝐼 = 0. (8)

In particular, for 𝑛 = 2, the value preferred from the
covariance of the action, the exact solution is given by

𝐻2𝐶 = 𝐻2𝐼2 ± 𝐻2𝐼2 √1 − 4𝐻2𝐹𝐻2𝐼 , (9)
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and since 𝐻𝐹 << 𝐻𝐼 we see that the two extreme scaling
solutions for 𝑛 = 2 are 𝐻1𝐶 = 𝐻𝐼 and 𝐻2𝐶 = 𝐻𝐹. However,
we also see directly from (8) that the condition 𝐻𝐹 << 𝐻𝐼,
also guarantees that such solutions are valid regardless of the
values of 𝑛. In certain sense, since 𝐻0 is only the present
day expansion rate, characterizing a quite casual stage of the
recent evolving Universe, probably, it is not the interesting
scale to be a priori predicted. In what follows we consider that
the pair of extreme de Sitter scales (𝐻𝐼, 𝐻𝐹) are the physically
relevant quantities. This occurs because different from 𝐻0,
the expanding de Sitter rates are associated with very specific
limiting manifolds. For instance, it is widely known that de
Sitter spaces are static when written in a suitable coordinate
system. Besides the discussion on the coincidence problem
(see next section), a new idea to be advocated here is that the
prediction of such scales, at least in principle, should be an
interesting theoretical target. Their first principles prediction
would open a new and interesting route to investigate the
cosmological constant problem.

The solutions for theHubble parameter describing analyt-
ically the transitions vacuum-radiation (𝜔 = 1/3) andmatter-
vacuum (𝜔 = 0) can be expressed in terms of the scale factor,
the couple of scales (𝐻𝐼, 𝐻𝐹), and free parameters (], 𝑛):

𝐻 = 𝐻𝐼[1 + 𝐶𝑎2𝑛(1−])]1/𝑛 , (10)

𝐻 = 𝐻𝐹 [𝐷𝑎−3(1−]) + 1]1/2 . (11)

We remark that the transition radiation-matter is like that in
the standard cosmic concordance model. The only difference
is due to the small ] parameter that can be fixed to be zero
(minimal model). Indeed, if one fixes ] = 0, the matter-
vacuum transition is exactly the same one appearing in the
flat ΛCDM model. As we shall see below, the final scale 𝐻𝐹
can be expressed as a simple function of 𝐻0, ], and ΩΛ.
Naturally, the existence of such an expression is needed in
order to compare with the present observations. However, it
cannot be used to hide the special meaning played by𝐻𝐹 in a
possible solution of the cosmological constant problem.

3. Alleviating the Coincidence Problem

The so-called coincidence problem is very well known.
It comes from the fact that the matter-energy density of
the nonrelativistic components (baryons + dark matter)
decreases as the Universe expands while the vacuum energy
density (𝜌Λ 0) is always constant in the cosmic concordance
model (Λ 0CDM). This happens also because the energy
densities of the radiation 𝜌𝛾 (CMB photons) and neutrinos
(𝜌]) are negligible today. Thus, in a broader perspective, one
may also say that the ratio (𝜌𝑀+𝜌𝑅)/𝜌Λ 0 , where 𝜌𝑅 = 𝜌𝛾 +𝜌],
was almost infinite at early times, but it is nearly of the order
unity today.

The current fine-tuning behind the coincidence problem
can also be readily defined in terms of the corresponding
density parameters, since (ΩΛ 0 ∼ 0.7 andΩ𝑀+Ω𝑅 ∼ 0.3), so
that the ratio is of the order unity some 14 billion years later.
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Figure 1: Standard coincidence problem in the cosmic concordance
model (Λ 0CDM). Solid and dashed lines represent the evolution of
the vacuum (ΩΛ 0) and total matter-radiation (Ω𝑀 + Ω𝑅) density
parameters.The circlemarks the low (and unique!) redshift present-
ing the extreme coincidence between the density parameter of the
vacuum and material medium. Note that the model discussed here
is fully equivalent toΛ 0CDMwhen the time dependent corrections
in the decay Λ(𝑡) expression are neglected [see (5)].

In Figure 1 we display the standard view of the coin-
cidence problem in terms of the corresponding density
parameters: Ω𝑀 = Ω𝑏 + Ω𝑐𝑑𝑚 (baryons + cold dark matter)
and Ω𝑅 = Ω𝛾 + Ω] (CMB photons + relic neutrinos). As
one may conclude from the figure, the ratio was practically
infinite at very high redshifts, that is, at the early Universe
(say, roughly at the Planck time). However, both densities are
nearly coincident at present. The ratio (Ω𝑅 + Ω𝑀)/ΩΛ 0 ∼ 1)
is at low redshifts. Note also that, in the far future, that is,
very deep in the de Sitter stage, the ratio approaches zero or
equivalently the inverse ratio is almost infinite because the
vacuum component becomes fully dominant.

A natural way to solve this puzzle is to assume that the
vacuum energy density must vary in the course of the expan-
sion. As shown in the previous section, the characteristic
scales of the Λ(𝑡) model specify the evolution during the
extreme de Sitter phases: the primordial vacuum solution
with 𝐶𝑎2𝑛(1−]) << 1 and 𝐻 = 𝐻𝐼 behaves like a “repeller” in
the distant past, while the final vacuum solution for 𝑎 >> 1,
that is, 𝐷𝑎3(1−]) 󳨃󳨀→ 0 and 𝐻 = 𝐻𝐹, is an attractor in the
distant future.

The arbitrary integration constants C andD are also easily
determined. The constant C can be fixed by the end of the
primordial inflation ( ̈𝑎 = 0) or equivalently 𝜌Λ = 𝜌𝑅. This
means that 𝐶 = 𝑎−2𝑛(1−])(𝑒𝑞) /(1 − 2]) [𝑎(𝑒𝑞) corresponds to the
value of the scale factor at vacuum-radiation equality]. In
terms of the present day observable quantities we also find𝐷 = Ω𝑀0/(ΩΛ0 − ]) and 𝐻𝐹 = 𝐻0√ΩΛ0 − ]/√1 − ]. For
] = 0 and ΩΛ0 ∼ 0.7 one finds 𝐻𝐹 ∼ 0.83𝐻0, as expected
a little smaller than 𝐻0. The small observable parameter
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] < 10−3 quantifies the difference between the late time de-
caying vacuum model and the cosmic concordance cosmol-
ogy; namely,

𝐻 = 𝐻0√1 − ]
[Ω𝑀0𝑎−3(1−]) + 1 − Ω𝑀0 − ]]1/2 . (12)

As remarked above, the 𝐻(𝑎) expression of the standardΛCDMmodel is fully recovered for ] = 0.
The solution of the coincidence problem in the present

framework can be demonstrated as follows. The density
parameters of the vacuum and material medium are given by

ΩΛ ≡ Λ (𝐻)3𝐻2 = ] + (1 − ]) 𝐻2𝐹𝐻2 + (1 − ]) 𝐻𝑛𝐻𝑛𝐼 , (13)

Ω𝑇 ≡ 1 − ΩΛ = 1 − ] − (1 − ]) 𝐻2𝐹𝐻2 − (1 − ]) 𝐻𝑛𝐻𝑛𝐼 . (14)

Such results are a simple consequence of expression (6)
for Λ(𝐻) and constraint Friedman equation (1). Note thatΩ𝑇 ≡ Ω𝑀+Ω𝑅 is always describing the dominant component,
either the nonrelativistic matter (𝜔 = 0) or radiation (𝜔 =1/3).

The density parameters of the vacuum and material
medium are equal in two different epochs specifying the
dynamic transition between the distinct dominant compo-
nents. These specific moments of time will be characterized
here by Hubble parameters 𝐻𝑒𝑞1 and 𝐻𝑒𝑞2 . The first equality
(vacuum-radiation, 𝜌Λ = 𝜌𝑅) occurs just at the end of the
first accelerating stage ( ̈𝑎 = 0), that is, when 𝐻𝑒𝑞1 = [(1 −2])/2(1 − ])]1/𝑛𝐻𝐼, while the second one is at low redshifts
when 𝐻𝑒𝑞2 = [2(1 − ])/(1 − 2])]1/2𝐻𝐹. Note that such results
are also valid for the minimal model by taking ] = 0. In
particular, inserting ] = 0 in the first expression above we
find 𝐻𝑒𝑞1 = 𝐻𝐼/21/𝑛. The scale 𝐻𝑒𝑞2 can also be determined in
terms of 𝐻0. By adding the result 𝐻𝐹 ∼ 0.83𝐻0 we find for
] = 0 that 𝐻𝑒𝑞2 ∼ 1.18𝐻0, which is higher than 𝐻0, as should
be expected for the matter-vacuum transition.

Naturally, the existence of two subsequent equalities on
the density parameter suggests a solution to the coincidence
problem. Neglecting terms of the order of 10−120 and 10−60𝑛
in above expressions, it is easy to demonstrate the following
results:

(1) lim𝐻󳨀→𝐻𝐼ΩΛ = 1 and lim𝐻󳨀→𝐻𝐼Ω𝑇 = 0,
(2) lim𝐻󳨀→𝐻𝐹ΩΛ = 1 and lim𝐻󳨀→𝐻𝐹Ω𝑇 = 0.

The meaning of the above results is quite clear. The density
parameters of the vacuum and material components (radia-
tion + matter) perform a cycle, that is, ΩΛ, and Ω𝑀 + Ω𝑅 are
periodic in the long run.

In Figure 2, we show the complete evolution of the vac-
uum and matter-energy density parameters for this class of
decaying vacuum model. Different from Figure 1 we observe
that the values ofΩΛ andΩ𝑀 +Ω𝑅 are cyclic in the long run.

These parameters start and finish the evolution satisfying
the above limits. The physical meaning of such evolution is
also remarkable. For any value of 𝑛 > 0, the model starts as
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Figure 2: Solution of the coincidence problem in running vacuum
cosmologies. The right graphic is our model; the left is ΛCDM.
Solid and dashed lines represent the evolution of the vacuum (ΩΛ)
and total matter-radiation (Ω𝑀 + Ω𝑅) density parameters for n=2,
] = 10−3, and 𝐻𝐼/𝐻0 = 1060. The late time coincidence between the
density parameter of the vacuum and material medium (left circle)
has already occurred at very early times (right circle). Note also that
the values 5 and 75 in the horizontal axis were glued in order to
show the complete evolution (the suppressed part presents exactly
the same behavior). Different values of 𝑛 change slightly the value of
the redshift for whichΩΛ = Ω𝑀 +Ω𝑅 at the very early Universe (see
also discussion in the text).

a pure unstable vacuum de Sitter phase with 𝐻 = 𝐻𝐼 (in the
beginning there is nomatter or radiation,ΩΛ = 1,Ω𝑀+Ω𝑅 =0). The vacuum decays and the model evolves smoothly to a
quasi-radiation phase parametrized by the small ]-parameter.

The circles show the redshifts for which ΩΛ = Ω𝑀 + Ω𝑅.
Of course, the existence of two equality solutions alleviates
the cosmic coincidence problem.

The robustness of the solution must also be commented
on. It holds not only for any value of 𝑛 > 0 but also for
] = 0. In the latter case, the primordial nonsingular vacuum
state deflates directly to the standard FRW radiation phase.
Later on, the transition from radiation to matter-vacuum
dominated phase also occurs, thereby reproducing exactly the
matter-vacuum transition of the standard Λ 0CDMmodel.

The “irreversible entropic cycle” from initial Sitter (𝐻𝐼)
to the late time de Sitter stage is completed when the Hubble
parameter approaches its small final value (𝐻 󳨃󳨀→ 𝐻𝐹). The
de Sitter space-time that was a “repeller” (unstable solution)
at very early times (𝑧 󳨀→ ∞) becomes an attractor in the
distant future (𝑧 󳨀→ −1) driven by the incredibly low energy
scale𝐻𝐹 which is associatedwith the late time vacuumenergy
density, 𝜌𝑀 󳨀→ 0, 𝜌Λ𝐹 ∝ 𝐻2𝐹.

Like the above solution to the coincidence problem, some
cosmological puzzles can also be resolved along the same
lines because the time behavior of the present scenario even
fixing 𝛼 = 1 − ] has been proven here to be exactly the one
discussed in [20] (see also [9] for the case 𝑛 = 1).
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4. Final Comments and Conclusion

As we have seen, the phenomenological Λ(𝑡)-term provided
a possible solution to the coincidence problem because the
ratio Ω𝑀/ΩΛ is periodic in long run (see Figure 2). In
other words, the coincidence is not a novelty exclusive of
the current epoch (low redshifts) since it also happened in
the very early Universe at extremely high redshifts. In this
framework, such a result seems to be robust because it is not
altered even to the minimal model, that is, for ] = 0.

It should also be stressed that the alternative complete
cosmological scenario (from de Sitter to de Sitter) is not a
singular attribute of decaying vacuummodels. For instance, it
was recently proved that at the background level such models
are equivalent to gravitationally induced particle production
cosmologies [27, 28] by identifying Λ(𝑡) ≡ 𝜌Γ/3𝐻, whereΓ is the gravitational particle production rate. In a series of
papers [29, 30], the dynamical equivalence of such scenario
at late times with the cosmic concordance model was also
discussed. It is also interesting that such a reduction of
the dark sector can mimic the cosmic concordance model
(Λ 0CDM) at both the background and perturbative levels
[31, 32]. In principle, this means that alternative scenarios
evolving smoothly between two extreme de Sitter phases
are also potentially able to provide viable solutions of the
main cosmological puzzles. However, different from Λ(𝑡)-
cosmologies, such alternatives are unable to explain the
cosmological constant problem with this extreme puzzle
becoming restricted to the realm of quantum field theory.

At this point, in order to compare our results with
alternative models also evolving between two extreme de
Sitter stages, it is interesting to review briefly how the main
cosmological problems are solved (or alleviated) within this
class ofmodels driven by a pure decaying vacuum initial state:

(i) Singularity: the space-time in the distant past is
a nonsingular de Sitter geometry with an arbitrary
energy scale𝐻𝐼. In order to agree with the semiclassi-
cal description of gravity, the arbitrary scale 𝐻𝐼 must
be constrained by the upper limit 𝐻𝐼 ≤ 1019 GeV
(Planck energy) in natural units or equivalently based
on general relativity is valid only for times greater
than the Plank time, 𝐻−1𝐼 ≥ 10−43 sec.

(ii) Horizon problem: the ansatz (6) can mathematically
be considered as the simplest decaying vacuum law
which destabilizes the initial de Sitter configuration.
Actually, in such a model the Universe begins as a
steady-state cosmology, 𝑅 ∼ 𝑒𝐻𝐼𝑡. Since the model
is nonsingular, it is easy to show that the horizon
problem is naturally solved in this context (see, for
instance, [22]).

(iii) “Graceful-Exit” from inflation: the transition from
the early de Sitter to the radiation phase is smooth
and driven by (10). The first coincidence of density
parameters happens for 𝐻 = 𝐻𝑒𝑞1 , 𝜌Λ = 𝜌𝑅, and̈𝑎 = 0, that is, when the first inflationary period
ends (see Figure 2). All the radiation entropy (𝑆0 ∼1088, in dimensionless units) and matter-radiation
content nowobservedwere generated during the early

decaying vacuum process (see [21] for the entropy
produced in the case 𝑛 = 2). For an arbitrary 𝑛 >0, the exit of inflation and the entropy production
had also already been discussed [22]. Some possible
curvature effects were also analyzed [33].

(iv) Baryogenesis problem: recently, it was shown that
the matter-antimatter asymmetry can also be induced
by a derivative coupling between the running vac-
uum and a nonconserving baryon current [34, 35].
Such an ingredient breaks dynamically CPT thereby
triggering baryogenesis through an effective chemical
potential (for a different but related approach see
[36]). Naturally, baryogenesis induced by a running
vacuum process has at least two interesting features:
(i) the variable vacuum energy density is the same
ingredient driving the early accelerating phase of the
Universe and it also controls the baryogenesis process;
(ii) the running vacuum is always accompanied by
particle production and entropy generation [8, 10, 22].
This nonisentropic process is an extra source of T-
violation (beyond the freeze-out of the B-operator)
which as first emphasized by Sakharov [37] is a basic
ingredient for successful baryogenesis. In particular,
for ] = 0 it was found that the observed B-asymmetry
ordinarily quantified by the 𝜂 parameter

5.7 × 10−10 < 𝜂 < 6.7 × 10−10 (15)

can be obtained for a large range of the relevant
parameters (𝐻𝐼, 𝑛) of the present model [34, 35].
Thus, as remarked before, the proposed running
vacuum cosmology may also provide a successful
baryogenesis mechanism.

(v) de Sitter Instability and the future of the Universe:
another interesting aspect associated with the pres-
ence of two extreme Sitter phases as discussed here is
the intrinsic instability of such space-time. Long time
ago, Hawking showed that the space-time of a static
black hole is thermodynamically unstable to macro-
scopic fluctuation in the temperature of the horizon
[38]. Later on, it was also demonstrated by Mottola
[39] based on the validity of the generalized second
law of thermodynamics that the same arguments used
byHawking in the case of black holes remain valid for
the de Sitter space-time. In the case of the primordial
de Sitter phase, described here by the characteristic
scale 𝐻𝐼, such an instability is dynamically described
by solution (10) for 𝐻(𝑎). As we know, it behaves like
a “repeller” driving the model to the radiation phase.
However, the instability result in principle must also
be valid to the final de Sitter stage which behaves
like an attractor. In this way, once the final de Sitter
phase is reached, the space-time would evolve to an
energy scale smaller than 𝐻𝐹 thereby starting a new
evolutionary “cycle” in the long run.

(vi) Cosmological constant problem: it is known that phe-
nomenological decaying vacuum models are unable
to solve this conundrum [22, 34]. The basic reason
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seems to be related to the clear impossibility to
predict the present day value of the vacuum energy
density (or equivalently the value of 𝐻0) from first
principles. However, the present phenomenological
approach can provide a new line of inquiry in the
search for alternative (first principle) solutions for this
remarkable puzzle. In this concern, we notice that the
minimal model discussed here depends only on two
relevant physical scales (𝐻𝐹, 𝐻𝐼) which are associated
with the extreme de Sitter phases. The existence of
such scales implies that the ratio between the late
and very early vacuum energy densities 𝜌Λ𝐹/𝜌Λ𝐼 =(𝐻𝐹/𝐻𝐼)2 does not depend explicitly on the Planck
mass. Indeed, the gravitational constant (in natural
units, 𝐺 = 𝑀−2𝑃𝑙𝑎𝑛𝑐𝑘) arising in the expressions of the
early and late time vacuum energy densities cancels
out in the above ratio. Since 𝐻𝐹 ∼ 10−42GeV, by
assuming that 𝐻𝐼 ∼ 1019GeV (the cutoff of classical
theory of gravity), one finds that the ratio 𝜌Λ𝐹/𝜌Λ𝐼 ∼10−122, as suggested by some estimates based on
quantum field theory, a result already obtained in
some nonsingular decaying vacuum models [19]. In
this context, the open new perspective is related to
the search for a covariant action principle where both
scales arise naturally. One possibility is related to
models whose theoretical foundations are based on
modified gravity theories like 𝐹(𝑅), 𝐹(𝑅, 𝑇), 𝑒𝑡𝑐 [see,
for instance, [40, 41]].

The results outlined above suggest that decaying vacuum
models phenomenologically described by Λ(𝑡)-cosmologies
may be considered an interesting alternative to the mixing
scenario formed by the standard ΛCDMplus inflation. How-
ever, although justified from different viewpoints, the main
difficulty of such models seems to be a clear-cut covariant
Lagrangian description.
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vacuum energy model and comparing with the entropic-force
models,” Physical Review D: Particles, Fields, Gravitation and
Cosmology, vol. 86, Article ID 043010, 2012.
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