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We consider a cosmology with decaying metastable dark energy and assume that a decay process of this metastable dark energy is a
quantum decay process. Such an assumption implies among others that the evolution of the Universe is irreversible and violates the
time reversal symmetry. We show that if we replace the cosmological time 𝑡 appearing in the equation describing the evolution of
the Universe by the Hubble cosmological scale time, then we obtain time dependentΛ(𝑡) in the form of the series of even powers of
the Hubble parameter𝐻: Λ(𝑡) = Λ(𝐻). Our special attention is focused on radioactive-like exponential form of the decay process
of the dark energy and on the consequences of this type decay.

1. Introduction

In the explanation of the Universe, we encounter the old
problem of the cosmological constant, which is related to
understanding why themeasured value of the vacuum energy
is so small in comparison with the value calculated using
quantum field theory methods [1]. Because of a cosmological
origin of the cosmological constant one must also address
another problem. Namely, it is connected with our under-
standing, with a question of not only why the vacuum energy
is not only small, but also, as current Type Ia supernova
observations to indicate, why the present mass density of the
Universe has the same order of magnitude [2].

Both mentioned cosmological constant problems can be
considered in the framework of the extension of the standard
cosmological ΛCDM model in which the cosmological con-
stant (naturally interpreted as related to the vacuum energy
density) is running and its value is changing during the
cosmic evolution.

Results of many recent observations lead to the conclu-
sion that our Universe is in an accelerated expansion phase
[3].This acceleration can be explained as a result of a presence

of dark energy. A detailed analysis of results of recent
observations shows that there is a tension between local and
primordial measurements of cosmological parameters [3]. It
appears that this tension may be connected with dark energy
evolving in time [4]. This paper is a contribution to the
discussion of the nature of the dark energy. We consider
the hypothesis that dark energy depends on time, 𝜌de =𝜌de(𝑡), and it is metastable: We assume that it decays with
the increasing time 𝑡 to 𝜌bare: 𝜌de(𝑡) 󳨀→ 𝜌bare ̸= 0 as 𝑡 󳨀→∞. The idea that vacuum energy decays was considered in
many papers (see, e.g., [5, 6]). Shafieloo et al. [7] assumed
that 𝜌de(𝑡) decays according to the radioactive exponential
decay law. Unfortunately, such an assumption is not able to
reflect all the subtleties of evolution in the time of the dark
energy and its decay process. It is because the creation of the
Universe is a quantum process. Hence the metastable dark
energy can be considered as the value of the scalar field at
the false vacuum state and therefore the decay of the dark
energy should be considered as a quantum decay process.The
radioactive exponential decay law does not reflect correctly
all phases of the quantum decay process. In general, analysing
quantum decay processes one can distinguish the following
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phases [8, 9]: (i) the early time initial phase, (ii) the canonical
or exponential phase (when the decay law has the exponential
form), and (iii) the late time nonexponential phase. The first
phase and the third one are missed when one considers
the radioactive decay law only. Simply they are invisible
to the radioactive exponential decay law. For example, the
theoretical analysis of quantum decay processes shows that
at late times the survival probability of the system considered
in its initial state (i.e., the decay law) should tend to zero as𝑡 󳨀→ ∞ much more slowly than any exponential function
of time and that as a function of time it has the inverse
power-like form at this regime of time [8, 10, 11]. So, all
implications of the assumption that the decay process of
the dark energy is a quantum decay process can be found
only if we apply a quantum decay law to describe decaying
metastable dark energy. This idea was used in [12], where the
assumption made in [7] that 𝜌de(𝑡) decays according to the
radioactive exponential decay law was improved by replacing
that radioactive decay law by the survival probability P(𝑡),
that is, by the decay law derived assuming that the decay
process is a quantum process.

This is the place where one has to emphasize that the
use of the assumption that dark energy depends on time and
is decaying during time evolution leads to the conclusion
that such a process is irreversible and violates a time reversal
symmetry. (Consequences of this effect will be analysed
in next sections of this paper) Note that the picture of
the evolving Universe, which results from the solutions of
the Einstein equations completed with quantum corrections
appearing as the effect of treating the false vacuum decay as a
quantum decay process, is consistent with the observational
data. The evolution starts from the early time epoch with the
running Λ(𝑡) and then it goes to the final accelerating phase
expansion of the Universe. In such a scenario the standard
cosmological ΛCDMmodel emerges from the quantum false
vacuum state of the Universe.

The paper is organised as follows: In Section 2 one finds
a short introduction of formalism necessary for considering
decaying dark energy as a quantum decay process. Cosmo-
logical implications of a decaying dark energy are considered
in Section 3. Section 4 contains conclusions.

2. Decay of a Dark Energy as a Quantum
Decay Process

In the quantum decay theory of unstable systems, properties
of the survival amplitudes

A (𝑡) = ⟨𝜙󵄨󵄨󵄨󵄨𝜙 (𝑡)⟩ (1)

are usually analysed. Here a vector |𝜙⟩ represents the unstable
state of the system considered and |𝜙(𝑡)⟩ is the solution of the
Schrödinger equation

𝑖ℏ 𝜕𝜕𝑡 󵄨󵄨󵄨󵄨𝜙 (𝑡)⟩ = H
󵄨󵄨󵄨󵄨𝜙 (𝑡)⟩ . (2)

The initial condition for (2) in the case considered is usually
assumed to be 󵄨󵄨󵄨󵄨𝜙 (𝑡 = 𝑡0 ≡ 0)⟩ def󳨐󳨐󳨐󳨐 󵄨󵄨󵄨󵄨𝜙⟩ , (3)

or equivalently

A (0) = 1. (4)

In (2)H denotes the complete (full), self-adjoint Hamiltonian
of the system. We have |𝜙(𝑡)⟩ = exp[−(𝑖/ℏ)𝑡H]|𝜙⟩. It is not
difficult to see that this property and hermiticity of 𝐻 imply
that

(A (𝑡))∗ = A (−𝑡) . (5)

Therefore, the decay probability of an unstable state (usually
called the decay law), i.e., the probability for a quantum
system to remain at time 𝑡 in its initial state |𝜙(0)⟩ ≡ |𝜙⟩,

P (𝑡) def󳨐󳨐󳨐󳨐 |A (𝑡)|2 ≡ A (𝑡) (A (𝑡))∗ , (6)

must be an even function of time [8]:

P (𝑡) = P (−𝑡) . (7)

This last property suggests that, in the case of the unstable
states prepared at some instant 𝑡0, say 𝑡0 = 0, initial condition
(3) for evolution equation (2) should be formulated more
precisely. Namely, from (7), it follows that the probabilities
of finding the system in the decaying state |𝜙⟩ at the instant,
say 𝑡 = 𝑇 ≫ 𝑡0 ≡ 0, and at the instant 𝑡 = −𝑇 are the same.
Of course, this can never occur. In almost all experiments in
which the decay law of a given unstable subsystem system is
investigated this particle is created at some instant of time, say𝑡0, and this instant of time is usually considered as the initial
instant for the problem. From property (7) it follows that the
instantaneous creation of the unstable subsystem system (e.g.,
a particle or an excited quantum level and so on) is practically
impossible. For the observer, the creation of this object (i.e.,
the preparation of the state, |𝜙⟩, representing the decaying
subsystem system) is practically instantaneous.What ismore,
using suitable detectors he/she is usually able to prove that it
did not exist at times 𝑡 < 𝑡0. Therefore, if one looks for the
solutions of Schrödinger equation (2) describing properties
of the unstable states prepared at some initial instant 𝑡0 in the
system and if one requires these solutions to reflect situations
described above, one should complete initial conditions (3),
(4) for (2) by assuming additionally that󵄨󵄨󵄨󵄨𝜙 (𝑡 < 𝑡0)⟩ = 0

orA (𝑡) (𝑡 < 𝑡0) = 0. (8)

Equivalently, within the problem considered, one can use
initial conditions (3), (4) and assume that time 𝑡 may vary
from 𝑡 = 𝑡0 > −∞ to 𝑡 = +∞ only, that is, that 𝑡 ∈ R+.

Note that canonical (that is a classical radioactive) decay
law P𝑐(𝑡) = exp[−𝑡/𝜏0] (where 𝜏0 is a lifetime) does not
satisfy property (7), which is valid only for the quantumdecay
lawP(𝑡).What ismore, from (5) and (6) it follows that at very
early times, i.e., at the Zeno times (see [8, 13]),

𝜕P (𝑡)𝜕𝑡 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑡=0 = 0, (9)
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which implies that

P (𝑡) > 𝑒−𝑡/𝜏0 def󳨐󳨐󳨐󳨐 P𝑐 (𝑡) for 𝑡 󳨀→ 0. (10)

So at the Zeno time region the quantum decay process
is much slower than any decay process described by the
canonical (or classical) decay lawP𝑐(𝑡).

Now let us focus the attention on the survival amplitude
A(𝑡). An unstable state |𝜙⟩ can be modeled as wave packets
using solutions of the following eigenvalue equation H|𝐸⟩ =𝐸|𝐸⟩, where 𝐸 ∈ 𝜎𝑐(H), and 𝜎𝑐(H) denotes a continuum
spectrum of H. Eigenvectors |𝐸⟩ are normalized as usual:⟨𝐸|𝐸󸀠⟩ = 𝛿(𝐸 − 𝐸󸀠). Using vectors |𝐸⟩ we can model an
unstable state as the following wave-packet:

󵄨󵄨󵄨󵄨𝜙⟩ ≡ 󵄨󵄨󵄨󵄨𝜙⟩ = ∫∞
𝐸min

𝑐 (𝐸) |𝐸⟩ 𝑑𝐸, (11)

where expansion coefficients 𝑐(𝐸) are functions of the energy𝐸 and 𝐸min is the lower bound of the spectrum 𝜎𝑐(H) of H.
The state |𝜙⟩ is normalized ⟨𝜙|𝜙⟩ = 1, which means that it
has to be ∫∞

𝐸min
|𝑐(𝐸)|2𝑑𝐸 = 1. Now using the definition of the

survival amplitude A(𝑡) and the expansion (11) we can find
A(𝑡), which takes the following form within the formalism
considered:

A (𝑡) ≡ A (𝑡 − 𝑡0) = ∫∞
𝐸min

𝜔 (𝐸) 𝑒−𝑖𝐸(𝑡−𝑡0) 𝑑𝐸, (12)

where 𝜔(𝐸) ≡ |𝑐(𝐸)|2 > 0 and 𝜔(𝐸)𝑑𝐸 is the probability to
find the energy of the system in the state |𝜙⟩ between 𝐸 and 𝐸
+ 𝑑𝐸. The last relation (12) means that the survival amplitude
A(𝑡) is a Fourier transform of an absolute integrable function𝜔(𝐸). If we apply the Riemann-Lebesgue Lemma to integral
(12) then one concludes that there must be A(𝑡) 󳨀→ 0 as𝑡 󳨀→ ∞. This property and relation (12) are an essence of
the Fock–Krylov theory of unstable states [14, 15].

As it is seen from (12), the amplitude A(𝑡) and thus
the decay law P(𝑡) of the unstable state |𝜙⟩ are completely
determined by the density of the energy distribution 𝜔(𝐸) for
the system in this state [14, 15] (see also [8, 10, 11, 16–21]).

In the general case the density 𝜔(𝐸) possesses properties
analogous to the scattering amplitude; i.e., it can be decom-
posed into a threshold factor, a pole-function 𝑃(𝐸) with a
simple pole, and a smooth form factor 𝐹(𝐸). There is 𝜔(𝐸) =Θ(𝐸 − 𝐸min)(𝐸 − 𝐸min)𝛼𝑙𝑃(𝐸)𝐹(𝐸), where 𝛼𝑙 depends on the
angular momentum 𝑙 through 𝛼𝑙 = 𝛼 + 𝑙 [8] (see equation
(6.1) in [8]), 0 ≤ 𝛼 < 1) andΘ(𝐸) is a step function: Θ(𝐸) = 0
for 𝐸 ≤ 0 and Θ(𝐸) = 1 for 𝐸 > 0. The simplest choice is to
take 𝛼 = 0, 𝑙 = 0, 𝐹(𝐸) = 1 and to assume that 𝑃(𝐸) has a
Breit–Wigner (BW) form of the energy distribution density.
(The mentioned Breit–Wigner distribution was found when
the cross section of slow neutrons was analysed [22]) It turns
out that the decay curves obtained in this simplest case are
very similar in form to the curves calculated for the above
described more general 𝜔(𝐸) (see [16] and analysis in [8]). So
to find the most typical properties of the decay process it is
sufficient to make the relevant calculations for 𝜔(𝐸)modeled
by theBreit–Wigner distribution of the energy density𝜔(𝐸) ≡

𝜔BW(𝐸) def󳨐󳨐󳨐󳨐 (𝑁/2𝜋)Θ(𝐸 − 𝐸min)(Γ0/((𝐸 − 𝐸0)2 + (Γ0/2)2)),
where𝑁 is a normalization constant. The parameters 𝐸0 andΓ0 correspond to the energy of the system in the unstable state
and its decay rate at the exponential (or canonical) regime of
the decay process. 𝐸min is the minimal (the lowest) energy
of the system. Inserting 𝜔BW(𝐸) into formula (12) for the
amplitude A(𝑡) and assuming for simplicity that 𝑡0 = 0, after
some algebra, one finds that

A (𝑡) = 𝑁2𝜋𝑒−(𝑖/ℏ)𝐸0𝑡𝐼𝛽 (Γ0𝑡ℏ ) , (13)

where

𝐼𝛽 (𝜏) def󳨐󳨐󳨐󳨐 ∫∞
−𝛽

1𝜂2 + 1/4𝑒−𝑖𝜂𝜏𝑑𝜂. (14)

Here 𝜏 = Γ0𝑡/ℏ ≡ 𝑡/𝜏0, 𝜏0 is the lifetime, 𝜏0 = ℏ/Γ0, and𝛽 = (𝐸0 − 𝐸𝑚𝑖𝑛)/Γ0 > 0. The integral 𝐼𝛽(𝜏) has the following
structure: 𝐼𝛽 (𝜏) = 𝐼pole

𝛽 (𝜏) + 𝐼𝐿𝛽 (𝜏) , (15)

where

𝐼pole𝛽 (𝜏) = ∫∞
−∞

1𝜂2 + 1/4𝑒−𝑖𝜂𝜏𝑑𝜂 ≡ 2𝜋𝑒− 𝜏/2, (16)

and

𝐼𝐿𝛽 (𝜏) = −∫∞
+𝛽

1𝜂2 + 1/4𝑒+𝑖𝜂𝜏𝑑𝜂. (17)

(The integral 𝐼𝐿𝛽(𝜏) can be expressed in terms of the integral-
exponential function [23–26] (for a definition, see [27, 28]))
The result (15) means that there is a natural decomposition of
the survival amplitudeA(𝑡) into two parts:

A (𝑡) = A𝑐 (𝑡) +A𝐿 (𝑡) , (18)

where

A𝑐 (𝑡) = 𝑁2𝜋𝑒−(𝑖/ℏ)𝐸0𝑡𝐼pole
𝛽

(Γ0𝑡ℏ ) ≡ 𝑁𝑒−(𝑖/ℏ)𝐸0𝑡𝑒−Γ0𝑡/2, (19)

and

A𝐿 (𝑡) = 𝑁2𝜋𝑒−(𝑖/ℏ)𝐸0𝑡𝐼𝐿𝛽 (Γ0𝑡ℏ ) , (20)

andA𝑐(t) is the canonical part of the amplitudeA(𝑡) describ-
ing the pole contribution intoA(𝑡) andA𝐿(𝑡) represents the
remaining part ofA(𝑡).

From decomposition (18) it follows that in the general
case within the model considered the survival probability (6)
contains the following parts:

P (𝑡) = |A (𝑡)|2 ≡ 󵄨󵄨󵄨󵄨A𝑐 (𝑡) + A𝐿 (𝑡)󵄨󵄨󵄨󵄨2= 󵄨󵄨󵄨󵄨A𝑐 (𝑡)󵄨󵄨󵄨󵄨2 + 2R [A𝑐 (𝑡) (A𝐿 (𝑡))∗] + 󵄨󵄨󵄨󵄨A𝐿 (𝑡)󵄨󵄨󵄨󵄨2 . (21)

This last relation is especially useful when one looks for a
contribution of late time properties of the quantum unstable
system to the survival amplitude.
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The late time form of the integral 𝐼𝐿𝛽(𝜏) and thus the late
time formof the amplitudeA𝐿(𝑡) can be relatively easy to find
using analytical expression forA𝐿(𝑡) in terms of the integral-
exponential functions or simply performing the integration
by parts in (17). One finds for 𝑡 󳨀→ ∞ (or 𝜏 󳨀→ ∞) that
the leading term of the late time asymptotic expansion of the
integral 𝐼𝐿𝛽(𝜏) has the following form:

𝐼𝐿𝛽 (𝜏) ≃ − 𝑖𝜏 𝑒𝑖𝛽𝜏𝛽2 + 1/4 + . . . , (𝜏 󳨀→ ∞) . (22)

Thus inserting (22) into (20) one can find late time form of
A𝐿(𝑡).

As was mentioned we consider the hypothesis that a dark
energy depends on time, 𝜌de = 𝜌de(𝑡), and decays with the
increasing time 𝑡 to 𝜌bare: 𝜌de(𝑡) 󳨀→ 𝜌bare ̸= 0 as 𝑡 󳨀→ ∞. We
assume that it is a quantum decay process. The consequence
of this assumption is that we should consider 𝜌de (𝑡0) (where 𝑡0
is the initial instant) as the energy of an excited quantum level
(e.g., corresponding to the false vacuum state) and the energy
density 𝜌bare as the energy corresponding to the true lowest
energy state (the true vacuum) of the system considered. Our
hypothesis means that (𝜌de(𝑡) − 𝜌bare) 󳨀→ 0 as 𝑡 󳨀→ ∞.
As it was said we assumed that the decay process of the
dark energy is a quantum decay process: From the point of
view of the quantum theory of decay processes this means
that lim𝑡󳨀→∞(𝜌de(𝑡) − 𝜌bare) = 0 according to the quantum
mechanical decay law. Therefore if we define

𝜌de (𝑡) def󳨐󳨐󳨐󳨐 𝜌de (𝑡) − 𝜌bare, (23)

our assumption means that the decay law for 𝜌de(𝑡) has the
following form (see [12]):

𝜌de (𝑡) = 𝜌de (𝑡0)P (𝑡) ≡ 𝜌de (𝑡0)
⋅ (󵄨󵄨󵄨󵄨A𝑐 (𝑡)󵄨󵄨󵄨󵄨2 + 2R [A𝑐 (𝑡) (A𝐿 (𝑡))∗] + 󵄨󵄨󵄨󵄨A𝐿 (𝑡)󵄨󵄨󵄨󵄨2) , (24)

where P(𝑡) is given by relation (6), or, equivalently, our
assumption means that the decay law for 𝜌de(𝑡) has the
following form (compare [12]):

𝜌de (𝑡) ≡ 𝜌bare + 𝜌de (𝑡0)
⋅ (󵄨󵄨󵄨󵄨A𝑐 (𝑡)󵄨󵄨󵄨󵄨2 + 2R [A𝑐 (𝑡) (A𝐿 (𝑡))∗] + 󵄨󵄨󵄨󵄨A𝐿 (𝑡)󵄨󵄨󵄨󵄨2) , (25)

where 𝜌de(𝑡0) = (𝜌de(𝑡0) − 𝜌bare) andP(𝑡) is replaced by (21).
Taking into account the standard relation between𝜌de and the
cosmological constant Λ we can write

Λ eff (𝑡) ≡ Λ bare + Λ̃ (𝑡0)
⋅ (󵄨󵄨󵄨󵄨A𝑐 (𝑡)󵄨󵄨󵄨󵄨2 + 2R [A𝑐 (𝑡) (A𝐿 (𝑡))∗] + 󵄨󵄨󵄨󵄨A𝐿 (𝑡)󵄨󵄨󵄨󵄨2) , (26)

where Λ̃(𝑡0) ≡ Λ̃ 0 = (Λ(𝑡0) − Λ bare). Thus within the
considered case using definition (6) or relation (21) we can
determine changes in time of the dark energy density 𝜌de(𝑡)
(or running Λ(𝑡)) knowing the general properties of survival
amplitudeA(𝑡).

The above described approach is self-consistent if we
identify 𝜌de(𝑡0) with the energy 𝐸0 of the unstable system
divided by the volume 𝑉0 (where 𝑉0 is the volume of the

system at 𝑡 = 𝑡0): 𝜌de(𝑡0) ≡ 𝜌qft
de

def󳨐󳨐󳨐󳨐 𝜌0de = 𝐸0/𝑉0 and𝜌bare = 𝐸min/𝑉0. Here 𝜌qft
de is the vacuum energy density

calculated using quantumfield theorymethods. In such a case

𝛽 = 𝐸0 − 𝐸minΓ0 ≡ 𝜌0de − 𝜌bare𝛾0 > 0, (27)

(where 𝛾0 = Γ0/𝑉0), or equivalently Γ0/𝑉0 ≡ (𝜌0de − 𝜌bare)/𝛽.
3. Cosmological Implications of
Decaying Vacuum

Let us consider cosmological implications of the parameterΛ with the time parameterized decaying part, derived in the
previous section, in the form

Λ ≡ Λ eff (𝑡) = Λ bare + 𝛿Λ (𝑡) , (28)

where 𝛿Λ(𝑡) describes quantum corrections and it is given by
a series with respect to 1/𝑡; i.e.,

𝛿Λ (𝑡) = ∞∑
𝑛=1

𝛼2𝑛 (1𝑡 )2𝑛 , (29)

where 𝑡 is the cosmological scale time and the functionsΛ eff (𝑡) and 𝛿Λ(𝑡) have a reflection symmetry with respect
to the cosmological time 𝛿Λ(−𝑡) = 𝛿Λ(𝑡). The next step
in deriving dynamical equations for the evolution of the
Universe is to consider this parameter as a source of gravity
which contributes to the effective energy density; i.e.,

3𝐻 (𝑡)2 = 𝜌m (𝑡) + 𝜌de (𝑡) , (30)

where𝜌de(𝑡) is identified as the energy density of the quantum
decay process of vacuum

𝜌de (𝑡) = Λ bare + 𝛿Λ (𝑡) . (31)

In this paper, we assume that 𝑐 = 8𝜋𝐺 = 1. The Einstein field
equation for the FRWmetric reduces to

𝑑𝐻 (𝑡)𝑑𝑡 = −12 (𝜌eff (𝑡) + 𝑝eff (𝑡))
= −12 (𝜌m (𝑡) + 0 + 𝜌de (𝑡) − 𝜌de (𝑡)) , (32)

where 𝜌eff = 𝜌m + 𝜌de, 𝑝eff = 0 + 𝑝de, or𝑑𝐻 (𝑡)𝑑𝑡 = −12𝜌m (𝑡) = −12 (3𝐻 (𝑡)2 − Λ bare − 𝛿Λ (𝑡)) . (33)

Szydlowski et al. [12] considered the radioactive-like
decay of metastable dark energy. For the late time, this decay
process has three consecutive phases: the phase of radioactive
decay, the phase of damping oscillations, and finally the phase
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of power law decaying. When 𝛽 > 0 for 𝑡 > (ℏ/Γ0)(2𝛽/(𝛽2 +1/4)), dark energy can be described in the following form (see
(25) and [12]):

𝜌de (𝑡) ≈ 𝜌bare + 𝜖(4𝜋2𝑒−(Γ0/ℏ)𝑡
+ 4𝜋𝑒−(Γ0/2ℏ)𝑡sin (𝛽 (Γ0/ℏ) 𝑡)(1/4 + 𝛽2) (Γ0/ℏ) 𝑡
+ 1((1/4 + 𝛽2) (Γ0/ℏ) 𝑡)2) ,

(34)

where 𝜖, Γ0, and𝛽 aremodel parameters. Equation (34) results
directly from (25): One only needs to insert (22) into formula
for A𝐿(𝑡) and result (19) instead of A𝑐(𝑡) into (25). In this
paper, we consider the first phase of decay process, in other
words, the phase of radioactive (exponential) decay.

The model with the radioactive (exponential) decay of
dark energy was investigated by Shafieloo et al. [7]. During
the phase of the exponential decay of the vacuum𝑑𝛿Λ (𝑡)𝑑𝑡 = 𝐴𝛿Λ (𝑡) , (35)

where 𝐴 = const < 0 (𝛿Λ(𝑡) is decaying).
The set of equations (33) and (35) constitute a two-

dimensional closed autonomous dynamical system in the
form 𝑑𝐻 (𝑡)𝑑𝑡 = −12 (3𝐻 (𝑡)2 − Λ bare − 𝛿Λ (𝑡)) ,

𝑑𝛿Λ (𝑡)𝑑𝑡 = 𝐴𝛿Λ (𝑡) . (36)

System (36) has the time dependent first integral in the
form 𝜌m (𝑡) = 3𝐻 (𝑡)2 − Λ bare − 𝛿Λ (𝑡) . (37)

At the finite domain, system (36) possesses only one critical
point representing the standard cosmological model (the
running part of Λ vanishes, i.e., 𝛿Λ(𝑡) = 0).

System (36) can be rewritten in variables

𝑥 = 𝛿Λ (𝑡)3𝐻20 ,
𝑦 = 𝐻 (𝑡)𝐻0

(38)

where𝐻0 is the present value of the Hubble function. Then𝑑𝑥𝑑𝜎 = 𝐴𝐻0𝑥𝑑𝑦𝑑𝜎 = −12 (3𝑦2 − 3ΩΛ bare − 3𝑥) , (39)

where ΩΛ bare = Λ bare/3𝐻20 and 𝜎 = 𝐻0𝑡 are a new
reparametrized time. The phase portrait of system (39) is
shown in Figure 1.
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Figure 1: The phase portrait of system (39). Critical point 1 (𝑥 =0, 𝑦 = √Λ bare/√3𝐻0) is the stable node and critical point 2 (𝑥 =0, 𝑦 = −√Λ bare/√3𝐻0) is the saddle. These critical points represent
the de Sitter universes. Here, 𝐻0 is the present value of the Hubble
function. The value of 𝐴 is assumed as −𝐻0. Note that the phase
portrait is not symmetric under reflection𝐻 󳨀→ −𝐻. While critical
point 1 is a global attractor, only a unique separatrix reaches critical
point 2.

Szydlowski et al. [12] demonstrated that the contribution
of the energy density of the decaying quantum vacuum
possesses three disjoint phases during the cosmic evolution.
The phase of exponential decay like in the radioactive decay
processes is long phase in the past and future evolution. Our
estimation of model parameter shows that we are living in the
Universe with the radioactive decay of the quantum vacuum.

It is interesting that, during this phase, the Universe
violates the reflection symmetry of the time: 𝑡 󳨀→ −𝑡. In
cosmology and generally in physics there is a fundamental
problem of the origin of irreversibility in the Universe [29].
Note that in our model irreversibility is a consequence of the
radioactive decay of the quantum vacuum.

If we considered radioactivity (in which the time reversal
symmetry is broken) then a direction of decaying vacuum is
in accordance with the thermodynamical arrow of time. First,
note that it is in some sense very natural that the dynamics
of the Universe is in fact irreversible when the full quantum
evolution is taken into account. Therefore, radioactive decay
of vacuum irreversibility has a thermodynamic interpretation
as far as the evolution of theUniverse is concerned: in horizon
thermodynamics the area of the cosmological horizon is
interpreted as (beginning proportional to) the entropy, i.e.,
the Hawking entropy. In a system where Λ decays as a result
of irreversible quantum processes we obtain the very natural
conclusion that the entropy of the Universe grows, in many
cases without an upper bound [30, 31].

In the general parameterization (29), of course, the sym-
metry of changing 𝑡 󳨀→ −𝑡 is present and this symmetry is
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also in a one-dimensional nonautonomous dynamical system
describing the evolution of the Universe:

𝑑𝐻 (𝑡)𝑑𝑡 = −12 (3𝐻 (𝑡)2 − Λ bare − ∞∑
𝑛=1

𝛼2𝑛𝑡−2𝑛) . (40)

In cosmology, especially in quantum cosmology, the
analysis of the concept of time seems to be the key for the
construction of an adequate quantum gravity theory, which
we would like to apply to the description of early Universe.

The good approximation of (40) is to replace in it the
cosmological time by the Hubble cosmological scale time

𝑡H = 1𝐻. (41)

In consequence, parameterization (29) can be rewritten in the
new form

𝛿Λ (𝑡) = 𝛿Λ (𝐻 (𝑡)) = ∞∑
𝑛=1

𝛼2𝑛𝐻(𝑡)2𝑛 . (42)

After putting this form into (40), we obtain dynamical system
in an autonomous formwith the preserved symmetry of time𝑡 󳨀→ −𝑡, 𝐻 󳨀→ −𝐻. In Figure 2 presents a diagram of the
evolution of the Hubble function obtained from the following
one-dimensional dynamical system:

𝑑𝐻 (𝑡)𝑑𝑡 = −12 (3𝐻 (𝑡)2 − Λ bare − ∞∑
𝑛=1

𝛼2𝑛𝐻(𝑡)2𝑛) . (43)

For comparison, the evolution of the Hubble functions
derived in theΛCDMmodel, model (40), and model (43) are
presented in Figure 3. For the existence of the de Sitter global
attractor as 𝑡 󳨀→ ∞ asymptotically a contribution coming
from the decaying part of 𝛿Λ(𝐻(𝑡)) = ∑∞𝑛=1 𝛼2𝑛𝐻(𝑡)2𝑛 should
be vanishing.

This condition guarantees for us a consistency of our
model with astronomical observations of the accelerating
phase of the Universe [3].

If all parameters 𝛼2𝑛 for 𝑛 > 1 equal zero then the Hubble
parameter is described by the following formula:

𝐻(𝑎) = ±√𝜌m,0𝑎𝛼21−3 + Λ bare3 − 𝛼21 , (44)

or

𝐻(𝑧) = ±√𝜌m,0 (1 + 𝑧)3−𝛼21 + Λ bare3 − 𝛼21 , (45)

where 𝑧 = 𝑎−1 − 1 is redshift. From (44) we can obtain the
following formula for the expanding Universe:

𝑎 (𝑡)
= ( 𝜌m,0Λ bare

sinh(√(3 − 𝛼21) Λ bare2 𝑡))
2/(3−𝛼21) . (46)
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Figure 2: The diagram of the evolution of the Hubble function
with respect to the cosmological time 𝑡, which is described by (43)
with 𝛼21 ̸= 0 and 𝛼2𝑛 = 0 for every 𝑛 > 1. For illustration, two
example values of the parameter 𝛼21 = are chosen: −1 and −2. The
top blue curve describes the evolution of the Hubble function in theΛCDMmodel.Themiddle curve describes one for 𝛼21 = −1 and the
bottom red curve describes one for 𝛼21 = −2. The Hubble function
is expressed in km/s Mpc and the cosmological time 𝑡 is expressed
in s Mpc/km.
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Figure 3:The diagram of the evolution of the Hubble function with
respect to the cosmological time 𝑡, which is described by (40) and
(43) with 𝛼21 ̸= 0 and 𝛼2𝑛 = 0 for every 𝑛 > 1. For illustration,
the value of the parameter 𝛼21 = is chosen as −0.3. The top blue
curve describes the evolution of the Hubble function in the ΛCDM
model. The middle curve describes one for (43) and the bottom red
curve describes one for (40). The Hubble function is expressed in
km/s Mpc and the cosmological time 𝑡 is expressed in s Mpc/km.
Note that these models are not qualitatively different.

Figure 4 presents the evolution of the scale factor, which
is described by (46). Eq. (46) gives us the following formula:

𝐻(𝑡) = √ Λ bare3 − 𝛼21 coth (12√Λ bare (3 − 𝛼21)𝑡) . (47)

In the extension of Friedmann equation (37) matter
is contributed as well as dark energy. The total energy-
momentum tensor 𝑇𝜇] = 𝑇𝜇]m + 𝑇𝜇]de is of course conserved.
However, between the matter and dark energy sectors exist
an interaction—the energy density is transferred between
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Figure 4: The diagram of the evolution of the scale factor with
respect to the cosmological time 𝑡, which is described by (46). For
illustration, two example values of the parameter 𝛼21 = are chosen:−1 and −2. The bottom blue curve describes the evolution of the
scale factor in the ΛCDM model. The middle curve describes one
for 𝛼21 = −1 and the top red curve describes one for 𝛼21 = −2. The
cosmological time 𝑡 is expressed in s Mpc/km.
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Figure 5: The diagram of the evolution of the parameter 𝛿 with
respect to the cosmological time 𝑡. For illustration, two example
values of the parameter 𝐴 are chosen: 𝐴 = −100km/s Mpc (the
top green curve) and 𝐴 = −200km/s Mpc (the middle red curve).
For comparison the ΛCDM model with the parameter 𝛿 = 0
is represented by the bottom blue curve. Here, the value of the
parameter 𝐵 is equal to 1. The cosmological time 𝑡 is expressed in
s Mpc/km.

these sectors. This process can be described by the system of
equations

𝑑𝜌m (𝑡)𝑑𝑡 + 3𝐻 (𝑡) 𝜌m (𝑡) = −𝑑𝜌de (𝑡)𝑑𝑡 = −𝑑Λ eff (𝑡)𝑑𝑡 ,
𝑑𝜌de (𝑡)𝑑𝑡 = 𝑑Λ eff (𝑡)𝑑𝑡 , (48)

where it is assumed that pressure of matter 𝑝m = 0 and 𝑝de =−𝜌de. The time variability of the matter and energy density of
decaying vacuum are demonstrated in Figure 5.

In the special case of radioactive decay of vacuum (48)
reduces to𝑑𝜌m (𝑡)𝑑𝑡 + 3𝐻 (𝑡) 𝜌m (𝑡) = −𝐴𝐵𝑒𝐴𝑡 = −𝐴𝛿Λ (𝑡) ,

𝑑𝜌de (𝑡)𝑑𝑡 = 𝐴𝛿Λ (𝑡) (49)

or 1𝑎 (𝑡)3 𝑑𝑑𝑡 (𝑎 (𝑡)3 𝜌m (𝑡)) = −𝐴𝐵𝑒𝐴𝑡 = −𝐴𝛿Λ (𝑡) 󳨐⇒
𝜌m (𝑡) 𝑎 (𝑡)3 = 𝜌m,0𝑎30 − ∫𝐴𝐵𝑒𝐴𝑡𝑎 (𝑡)3 𝑑𝑡,
𝑑𝜌de (𝑡)𝑑𝑡 = 𝐴𝛿Λ (𝑡) .

(50)

In the case of the interaction between matter and decay-
ing dark energy, the natural consequence of conservation of
the total energy-momentum tensor 𝑇𝜇] is a modification of
the standard formula for scaling matter.

Let 𝜌m(𝑡) = 𝜌𝑚,0𝑎−3+𝛿(𝑡), where 𝛿(𝑡) is a deviation from
the canonical scaling of dust matter [32, 33]. Then we have

𝛿 (𝑡) = ln (𝜌m (𝑡) /𝜌m,0)
ln 𝑎 (𝑡) + 3. (51)

4. Conclusions

Fromour investigation of cosmological implications of effects
of the quantum decay of metastable dark energy, one can
derive following results:

(i) The cosmological models with the running cosmo-
logical parameter can be included in the framework
of some extension of Friedmann equation. The new
ingredient in the comparison with the standard cos-
mological model (ΛCDM model) is that the total
energy-momentum tensor is conserved and the inter-
action takes place between thematter and dark energy
sectors. In consequence the canonical scaling law𝜌m ∝ 𝑎−3 is modified. Because Λ(𝑡) is decaying(𝑑Λ/𝑑𝑡 < 0) energy ofmatter in the comoving volume∝ 𝑎3 is growing with time.

(ii) We have found that the appearance of the universal
exponential contribution in energy density of the
decaying vacuum can explain the irreversibility of the
cosmic evolution. While the reversibility 𝑡 󳨀→ −𝑡 is
still present in the dynamical equation describing the
evolutional scenario, in the first phase of radioactive
decay, this symmetry is violated.

(iii) We have also compared the time evolution of the
Hubble function in the model under consideration
(where Λ(𝑡) is parameterized by the cosmological
time) with Sola et al. [34] parameterization by the
Hubble function. Note that both parameterizations
coincide if time 𝑡 is replaced by the Hubble scale time𝑡𝐻 = 1/𝐻. If the evolution of the Universe is invariant
in the scale, i.e., the scale factor 𝑎 is changing in power
law, then this correspondence is exact.
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