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We probe the shock wave geometry with the mutual correlation in a spherically symmetric Reissner-Nordström AdS black hole on
the basis of the gauge/gravity duality. In the static background, we find that the regions living on the boundary of the AdS black
holes are correlated provided the considered regions on the boundary are large enough. We also investigate the effect of the charge
on the mutual correlation and find that the bigger the value of the charge is, the smaller the value of the mutual correlation will be.
As a small perturbation is added at the AdS boundary, the horizon shifts and a dynamical shock wave geometry form after long
time enough. In this dynamic background, we find that the greater the shift of the horizon is, the smaller themutual correlation will
be. Especially for the case that the shift is large enough, the mutual correlation vanishes, which implies that the considered regions
on the boundary are uncorrelated.The effect of the charge on the mutual correlation in this dynamic background is found to be the
same as that in the static background.

1. Introduction

Butterfly effect is ubiquitous phenomenon in physical sys-
tems. One progress on this topic recent years is that it also
can be addressed in the context of gravity theory [1–15] with
the help of the AdS/CFT correspondence [16–18]. In this
framework, one can define the so-called thermofield double
state on the boundary of an eternal AdS black hole [19]. As a
small perturbation with energy 𝐸 is added along the constant𝜇 trajectory in the Kruskal coordinate to one of the boundary
at early time 𝑡𝑤, one finds that a bound of infinite energy
accumulates near the horizon and a shock wave geometry
forms at 𝑡 = 0, which is the so-called butterfly effect in the
AdS black holes [20]. The evolution of the shock wave is dual
to the evolution of the thermofield double state according
to the intercalation of the AdS/CFT correspondence. The
mutual information, defined by𝑀(𝐴, 𝐵) ≡ 𝑆 (𝐴) + 𝑆 (𝐵) − 𝑆 (𝐴 ∪ 𝐵) , (1)

is often used to probe the effect of the shock wave on
the entanglement of the subsystems 𝐴 and 𝐵 living on

the boundary [20], where 𝑆(𝐴), 𝑆(𝐵) are the entanglement
entropy of the space-like regions on 𝐴 and 𝐵, which can be
calculated by the area of the minimal surface proposed by
Ryu and Takayanagi [21], while 𝑆(𝐴 ∪ 𝐵) is the entanglement
entropy of a region which cross the horizon and connects 𝐴
and 𝐵.

There are two important quantities characterizing the
butterfly effect. One is the scrambling time, which takes the
universal form [20]: 𝑡⋆ = 𝛽 log 𝑆, (2)

where 𝑆 is the black hole entropy and 𝛽 is the inverse
temperature. The scrambling time is the time when the
mutual information between the two sides on 𝐴 and 𝐵
vanishes. The other is the Lyapunov exponent 𝜆𝐿, which has
the following bound [22]:

𝜆𝐿 ≤ 2𝜋𝛽 , (3)

and the saturation of this bound has been suggested as the
criterion on whether a many-body system has a holographic
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dual with a bulk theory [22]. A remarkable example that
saturates this bound is the Sachdev-Ye-Kitaev model [22].

In the initial investigation, the dual black hole geometry is
the nonrotating BTZ black hole [20].The area of the minimal
surface equals the length of the geodesic on the boundary.The
mutual information thus is defined by the geodesic length.
In this paper, we intend to study butterfly effect in the 4-
dimensional Reissner-Nordström AdS black holes. Though
the area of the minimal surface does not equal the length of
the geodesic, we want to explore whether there is a quantity
defined by the length of the geodesic that can still probe the
butterfly effect. We define this quantity as mutual correlation:

𝐼 (𝐴, 𝐵) ≡ 𝐿 (𝐴) + 𝐿 (𝐵) − 𝐿 (𝐴 ∪ 𝐵) , (4)

in which 𝐴 and 𝐵 are two points on the left and right
boundaries, 𝐿(𝐴), 𝐿(𝐵) are the space-like geodesic that go
through points 𝐴 and 𝐵, respectively, and 𝐿(𝐴 ∪ 𝐵) is the
geodesic length cross the horizon and connects 𝐴 and 𝐵.
The results are not expectable since we cannot view simply
the mutual correlation as the spatial section of the mutual
information by fixing some of the transverse coordinates.The
metric components of the transverse coordinates are not one
but the functions of the radial coordinate 𝑟 so that they have
contributions to the area of the minimal surface.

In the 4-dimensional space-time, though the geodesic
length does not equal the area of the minimal surface, it
has been shown that both the geodesic length and area
of the minimal surface, which are dual to the two point
correlation function and entanglement entropy respectively,
are nonlocal probes and have the same effect as they are used
to probe the thermalization behavior and phase transition
process [23–40]. Thus it is interesting to explore whether the
mutual correlation can probe the butterfly effect as themutual
information for both of them are defined by the nonlocal
probes.

In [1], the author has probed the shock wave geometry
with mutual information in the 4-dimensional plane sym-
metric Reissner-Nordström AdS black branes. They have
obtained some analytical results approximately and found
that for large regions the mutual information is positive in
the static black hole, and the mutual information will be
disrupted as a small perturbation is added in dynamic back-
ground. In this paper, we will employ the mutual correlation
to probe the shock wave geometry in the 4-dimensional
spherically symmetric Reissner-Nordström AdS black holes.
Our motivation is twofold. On one hand, we intend to give
the exact numeric result between the size of the boundary
region andmutual correlation as well as the perturbation and
mutual correlation. One the other hand, we intend to explore
how the charge affects themutual correlation in cases without
and with a perturbation. Both cases have not been reported
previously in [1].

Our paper is outlined as follows. In Section 1, we will con-
struct the shock wave geometry in the Reissner-Nordström
AdS black holes. In Section 2, we will study the mutual
correlation in the static background. We concentrate on the
effect of the boundary separation and charge on the mutual
correlation. In Section 3, we will probe the butterfly effect

with the mutual correlation in the dynamical background.
We concentrate on studying the effect of the perturbation
and charge on the mutual correlation. The conclusion and
discussion are presented in Section 4. Hereafter in this paper
we use natural units (𝐺 = 𝑐 = ℏ = 1) for simplicity.

2. Shock Wave Geometry in the
Reissner-Nordström AdS Black Holes

Starting from the action,

𝑆 = − 116𝜋𝐺 ∫𝑑𝑑+1𝑥√𝑔(R + 𝑑 (𝑑 − 1)ℓ2 − 14𝐹𝜇]𝐹𝜇]) , (5)

one can get theReissner-NordströmAdS black holes solution.
For the case 𝑑 = 3, we have

𝑑𝑠2 = −𝑓 (𝑟) 𝑑𝑡2 + 𝑑𝑟2𝑓 (𝑟) + 𝑟2 (𝑑𝜃2 + sin2𝜃𝜙2) , (6)

in which 𝑓(𝑟) = 1 − 2𝑀/𝑟 + 𝑄2/𝑟2 + 𝑟2, where𝑀 is the mass and 𝑄 is the charge of the black
hole.

In order to discuss the butterfly effect of a black hole, one
should construct the shock wave geometry in the Kruskal
coordinate firstly. We will review the key procedures and give
the main results as done in [20] for the consistency of this
paper though there have been some discussions on this topic.

The event horizon, 𝑟ℎ, of the black hole is determined
by 𝑓(𝑟ℎ) = 0. With the definition of the surface gravity,𝜅 = 𝑓(𝑟)󸀠|𝑟ℎ/2, we also can get the Hawking temperature𝑇 = 𝜅/2𝜋, which is regarded as the temperature of the
dual conformal field theory according to the AdS/CFT
correspondence. In theKruskal coordinate system, themetric
in (6) can be rewritten as

𝑑𝑠2 = 1𝜅2 𝑓 (𝑟)𝜇] 𝑑𝜇𝑑] + 𝑟2 (𝑑𝜃2 + sin2𝜃𝜙2) , (7)

in which 𝜇 = ±𝑒−𝜅𝑈,
] = ∓𝑒𝜅𝑉, (8)

𝜇] = −𝑒2𝜅𝑟⋆ ,
𝜇
]

= −𝑒−2𝜅𝑡, (9)

where 𝑈 = 𝑡 − 𝑟⋆, 𝑉 = 𝑡 + 𝑟⋆, are the Eddington coordinate,
which are defined by the tortoise coordinate 𝑟⋆ = ∫(𝑑𝑟/𝑓(𝑟)).
We will suppose 𝜇 < 0, ] > 0 at the right exterior as in [20].
As 𝑟 approaches to the event horizon and boundary, we know𝑟⋆ approaches to −∞ and 0, respectively. Thus from (9), we
know that the event horizon and boundary locate at 𝜇] = 0
and 𝜇] = −1, respectively.

Next we will check how the space-time changes as a small
perturbation with asymptotic energy 𝐸 is added on the left
boundary at time 𝑡𝑤 following a constant 𝜇 trajectory. We



Advances in High Energy Physics 3

label the Kruskal coordinate on the left side and right side
as 𝜇𝐿, ]𝐿 and 𝜇𝑅, ]𝑅. The constant 𝜇 trajectory propagation of
the perturbations implies

𝜇𝐿 = 𝜇𝑅 = 𝑒−𝜅𝑡𝑤 . (10)

To find the relation between ]𝐿 and ]𝑅, we will employ the
following relation:

𝜇𝐿]𝐿 = −𝑒2𝜅𝐿𝑟⋆𝐿 ,
𝜇𝑅]𝑅 = −𝑒2𝜅𝑅𝑟⋆𝑅 . (11)

Generally speaking, 𝜅𝐿 = 𝜅𝑅 = 𝜅 for the energy 𝐸 of the
perturbation is much smaller than that of the black hole
mass 𝑀. On the other hand, we are interested in the case𝑡𝑤 󳨀→ ∞, which implies 𝑟 󳨀→ 𝑟ℎ. In this case, we can
approximate 𝑟⋆ ≈ (1/2𝜅)(log𝑟−𝑟ℎ + 𝑐) for there is a relation𝑓(𝑟) = 𝑓󸀠(𝑟ℎ)(𝑟 − 𝑟ℎ) + ⋅ ⋅ ⋅ . In this case, 𝑒2𝜅𝑟⋆ = 𝐶(𝑟− 𝑟ℎ), here𝐶 = 𝑒𝑐. So we have the identification

V𝐿 = V𝑅 + 𝐶𝑒𝜅𝑡𝑤 (𝑟ℎ𝐿 − 𝑟ℎ𝑅) ≡ V𝑅 + ℎ, (12)

where we have used the relation 𝐶𝐿 = 𝐶𝑅 = 𝐶. From (12), we
know that there is a shift in the Kruskal coordinate ] as the
small perturbation is across the 𝜇 = 0 horizon of the black
hole. For computations, the shift in ] is often written as ] 󳨀→
] + ℎ(𝜃)Θ(𝜇), where Θ(𝜇) is a step function. In this case, (7)
changes into a standard shock wave:

𝑑𝑠2 = 𝐴 (𝜇]) 𝑑𝜇𝑑] − 𝐴 (𝜇]) ℎ (𝜃) 𝛿 (𝜇) 𝑑𝜇2
+ 𝐵 (𝜇]) (𝑑𝜃2 + sin2𝜃𝜙2) , (13)

in which we have used the relation Θ(𝜇)󸀠 = 𝛿(𝜇) and the
replacement

𝐴 (𝜇]) = 1𝜅2 𝑓 ( 𝑟 ((𝜇]))𝜇] ,
𝐵 (𝜇]) = 𝑟 (𝜇])2 . (14)

The Kruskal diagram for the perturbed space-time is shown
in Figure 1.

3. Mutual Correlation in the Static
Reissner-Nordström AdS Black Holes

In this section, we will investigate the mutual correlation in
the static background. Our objective is to explore whether the
boundary regions of theAdS black holes are correlated so that
we can investigate the effect of the shock wave on the mutual
correlation in the next section.

As depicted in Figure 1, an eternal black hole has two
asymptotically AdS regions, which can be holographically
described by two identical, noninteracting copies of the con-
formal field theory. One thus can define the so-called thermal
double state and study their entanglement and correlation.
Our objective is to compute the mutual correlation of point𝐴 on the left asymptotic boundary and its partner 𝐵 on the

right asymptotic boundary. We will let 𝐴 = 𝐵 so that the
left and right boundaries are identical. For the spherically
symmetric black holes in this paper, the AdS boundary is
a 2-dimensional sphere with finite volume. In light of the
symmetry of 𝜙 direction, we will use 𝜃 to parameterize the
geodesic length between any two points on the boundary,
named 𝜃1, 𝜃2.

On the left boundary, the geodesic length that goes
through point A with boundary separation 𝜃0 is

𝐿𝐴 = ∫𝑑𝑆 = ∫𝑑𝜃√𝑓−1𝑟󸀠2 + 𝑟2, (15)

where 𝑟󸀠 = 𝑑𝑟/𝑑𝜃. When regarding the integrand in (15) as
the Lagrangian,we candefine a conserved quantity associated
with translations in 𝜃, that is,

𝑟2√𝑟2 + 𝑓−1𝑟󸀠2 = 𝑟min, (16)

where 𝑟min is the turning point of the surface where 𝑑𝑟/𝑑𝜃 =(𝜃󸀠)−1 = 0. According to the symmetry, it locates at 𝜃 = 𝜃0/2.
With (16), 𝜃0 can be written as

𝜃0 = ∫𝑑𝜃 = 2∫∞
𝑟min

𝑑𝑟𝑟√𝑓 1√(𝑟/𝑟min)2 − 1 . (17)

The geodesic length also can be rewritten as

𝐿𝐴 = 2∫∞
𝑟min

𝑑𝑟 1√𝑓 1√1 − (𝑟min/𝑟)2 . (18)

Since𝐵 is identifiedwith𝐴,𝐿𝐵 thus takes the same form as𝐿𝐴
provided the two points on the boundary located at the same
place. As stressed in the introduction, we will employ the
mutual correlation to study the correlation between points 𝐴
and𝐵.Thus our next step is to find𝐿𝐴∪𝐵, which is the geodesic
length connecting the left point and right point by passing
through the horizon of the black hole, where 𝜃󸀠 = 0. The total
length, including both sides of the horizon, can be expressed
as

𝐿𝐴∪𝐵 = 4∫∞
𝑟ℎ

𝑑𝑟√𝑓−1. (19)

Putting all these results together, the mutual correlation can
be expressed as

𝐼 (𝜃0) = 4∫∞
𝑟min

𝑑𝑟 1√𝑓 1√1 − (𝑟min/𝑟)2 − 4∫∞
𝑟ℎ

𝑑𝑟 1√𝑓. (20)

From Figure 2, one can read off the relation between the
mutual correlation and the position of the turning point 𝑟min.
From this figure, we know that 𝐼(𝜃0) decreases as the value of𝑟𝑚𝑖𝑛 becomes smaller, and 𝐼(𝜃0) vanishes as 𝑟𝑚𝑖𝑛 is larger than𝑟ℎ a little. Especially, as 𝑟min 󳨀→ 𝑟ℎ themutual correlationwill
diverge. That is to say, 𝑟min can not penetrate into the black
hole, which was also observed in [41] where the properties of
the geodesic length have been investigated extensively.
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Figure 1: Penrose diagrams for an eternal black hole with a
perturbation.
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Figure 2: Relation between 𝐼(𝜃0) and 𝑟𝑚𝑖𝑛 for the case 𝑄 = 0.5.
We also can study the effect of𝑄on themutual correlation𝐼(𝜃0), which is shown in Figure 3. From this figure, we know

that 𝐼(𝜃0) decreases as 𝑄 grows for a fixed 𝑟𝑚𝑖𝑛. There is also
a critical charge 𝑄𝑐 where the mutual correlation vanishes,
which means that there is no correlation between the paired
subregions we considered. For different 𝑟𝑚𝑖𝑛, the value of
the critical charge is different. As 𝑟𝑚𝑖𝑛 increases, the value of
the critical charge decreases. For a fixed 𝑄, we find that the
mutual correlation is smaller for greater 𝑟min.

We are interested in how the boundary separation 𝜃0
affects the mutual correlation, especially to each extent, the
mutual correlation vanishes. We thus should express the
mutual correlation as a function of the boundary separation.
Substituting (17) into (20), we obtain

𝐼 (𝜃0) = 2𝜃0𝑟𝑚𝑖𝑛 + 4∫∞
𝑟min

𝑑𝑟 1√𝑓√1 − (𝑟min𝑟 )2
− 4∫∞
𝑟ℎ

𝑑𝑟 1√𝑓. (21)

FromFigure 2, we know that 𝐼(𝜃0)will vanish as 𝑟𝑚𝑖𝑛 ≃ 𝑟ℎ.
With this approximation, the critical value of the boundary
separation in (21) can be expressed as

𝜃0𝑐 = 2𝑟ℎ [[∫∞
𝑟ℎ

𝑑𝑟 1√𝑓 (1 − √1 − (𝑟ℎ𝑟 )2)]] . (22)

With (22), we can discuss how the critical value of the
boundary separation 𝜃0𝑐 changes with respect to the horizon
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Figure 3: Relation between 𝐼(𝜃0) and 𝑄. Curves from top to down
represent 𝑟𝑚𝑖𝑛 increases from 1.42 to 1.48 with step 0.02. For both
cases, we have set 𝑟ℎ=1.
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Figure 4: Relation between 𝜃0𝑐 and 𝑟ℎ for the case 𝑄=0.5.
𝑟ℎ. From Figure 4, we know that 𝜃0𝑐 decreases as 𝑟ℎ increases.
For large enough 𝑟ℎ, 𝜃0𝑐 vanishes. In the small 𝑟ℎ region, 𝜃0𝑐
changes sharply as 𝑟ℎ increases. Figure 5 is helpful for us
to understand Figure 4. As we addressed previously, 𝜃0𝑐 is
obtained at 𝑟ℎ ≈ 𝑟𝑚𝑖𝑛. The relation between 𝜃0𝑐 and 𝑟ℎ thus
is similar to that of 𝜃0 and 𝑟𝑚𝑖𝑛. As 𝑟𝑚𝑖𝑛 = ∞, the geodesic
length and further the boundary separation approach to zero
naturally.

We already know that bigger 𝑟min actually corresponds
to smaller separation on the boundary. Therefore, Figure 3
also indicates that smaller subregions have smaller mutual
correlation between them, which is consistent with the
physical intuition.

4. Probe the Shock Wave
Geometry via Mutual Correlation

As a small perturbation is added from the left boundary,
there is a shift in the ] direction for enough long time 𝑡𝑤.
A shock wave geometry forms and the passage connecting
the left region and right region, namely, the wormhole, is
disrupted. In this section, we intend to investigate the effect
of the disrupted geometry on the mutual correlation. As in
Section 3, we suppose point 𝐴 belongs to the left asymptotic
boundary and its identical partner 𝐵 belongs to the right
asymptotic boundary. At 𝑡 = 0, geodesic lengths 𝐿𝐴 and 𝐿𝐵
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Figure 5: Relation between 𝜃0 and 𝑟𝑚𝑖𝑛 for the case 𝑄=0.5.
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Figure 6: The Penrose diagram and geodesic length (horizontal
colourful line) in the shock wave geometry. The left half of the
surface is divided into three segments, labeled by black line, red line,
and yellow line. The smallest value of 𝑟 attained by the surface is𝑟 = 𝑟0, which marks the division between 2 and 3.

are unaffected by the shock wave because they do not cross
the horizon. However, the quantity 𝐿𝐴∪𝐵 will be affected by
the shock wave for it stretches across the wormhole, which is
shown in Figure 6.

In light of the identification between𝐴 and𝐵 aswell as the
symmetry of the transverse space, we only should calculate
the geodesic length for regions 1, 2, and 3 in Figure 6 for the
length of the other part is the same as this part. At a constant𝜃 surface, the induced metric can be written as

𝑑𝑥2 = [−𝑓 (𝑟) + 1𝑓 (𝑟) ̇𝑟2] 𝑑𝑡2 + 𝑟2sin2𝜃𝜙2, (23)

in which we have used 𝑟 to parameterize the surface and ̇𝑟 =𝑑𝑟/𝑑𝑡. The geodesic length for regions 1, 2, and 3 in Figure 6
is then given by

𝐿𝐴∪𝐵 (ℎ) = ∫𝑑𝑡√−𝑓 + 𝑓−1 ̇𝑟2. (24)

It should be stressed that, in Figure 6, the boundary is
a 2-dimensional spherical surface in the Penrose diagram
strictly. In this paper, we only consider the geodesic length
and neglect the contribution of the 𝜙 direction.

When regarding the integrand in (24) as the Lagrangian,
we can define the “Hamiltonian”H as

H = −𝑓√−𝑓 + 𝑓−1 ̇𝑟2 = √−𝑓0, (25)

in which 𝑓0 = 𝑓(𝑟0) and 𝑟0 is the radial position behind the
horizon that satisfies ̇𝑟 = 0. From (25), we know that as 𝑟0 󳨀→𝑟ℎ, H 󳨀→ 0, which correspond to the case that the shock
wave is absent for ℎ 󳨀→ 0 in this case. With the conservation
equation, 𝑡 coordinate can be written as a function of 𝑟:

𝑡 (𝑟) = ±∫ 𝑑𝑟𝑓√1 +H−2𝑓, (26)

where ± denote ̇𝑟 > 0 and ̇𝑟 < 0, respectively. Substituting
(26) into (24), we can get a time-independent integrand:

𝐿𝐴∪𝐵 (ℎ) = ∫𝑑𝑟 1√H2 + 𝑓. (27)

With this relation, we will compute the geodesic length that
starts at 𝑡 = 0 on the left asymptotic boundary and ends at
] = ℎ/2 on the horizon, namely, the geodesics length of region
1+2+3 in Figure 6, which can be expressed as

𝐿𝐴∪𝐵 (ℎ) = ∫∞
𝑟ℎ

𝑑𝑟 1√H2 + 𝑓 + 2∫𝑟ℎ
𝑟0

𝑑𝑟 1√H2 + 𝑓. (28)

The second term contains a prefactor 2 which stems from the
fact that the second and third segments in Figure 6 have the
same length. The total geodesic length, defined as 𝐿𝐴∪𝐵(ℎ),
connecting the left boundary and right boundary thus is

𝐿𝐴∪𝐵 (ℎ) = 2∫∞
𝑟ℎ

𝑑𝑟 1√H2 + 𝑓 + 4∫𝑟ℎ
𝑟0

𝑑𝑟 1√H2 + 𝑓. (29)

It should be stressed that the first segment contains a diver-
gent ℎ-independent contribution which must be subtracted
as we study it numerically. Considering the contribution
of 𝐿𝐴 and 𝐿𝐵, the mutual correlation in the shock wave
geometry can be expressed as

𝐼 (ℎ, 𝜃0) = 4∫∞
𝑟min

𝑑𝑟 1√𝑓 1√1 − (𝑟min/𝑟)2
− 2∫∞
𝑟ℎ

𝑑𝑟 1√H2 + 𝑓
− 4∫𝑟ℎ
𝑟0

𝑑𝑟 1√H2 + 𝑓.
(30)

Of course, the first term on the right is divergent on the
boundary, the contribution from the pure AdS should be
subtracted as we calculate it numerically.

For a fixed 𝑟ℎ, we know that 𝐼(ℎ, 𝜃0) depends on the
location of 𝑟0. The main objective of this section is to probe
the shockwave geometrywith themutual correlation;we thus
should find the relation between 𝐼(ℎ, 𝜃0) and ℎ. To proceed,
we should find the relation between ℎ and 𝑟0.
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Firstly, we should find the coordinates of the three seg-
ments in Figure 6. The first segment goes from the boundary
at (𝜇, ]) = (1, −1) to (𝜇, ]) = (𝜇1, 0), in which

𝜇1 = exp[[[−𝜅∫∞
𝑟ℎ

𝑑𝑟𝑓 (1 − 1√1 +H−2𝑓)]]] , (31)

where we have used (9). The second segment stretches from(𝜇1, 0) to (𝜇2, ]2) at which 𝑟 = 𝑟0. The coordinate 𝜇2 can be
determined by the following relation:

𝜇2𝜇1 = exp[[[−𝜅∫𝑟ℎ
𝑟0

𝑑𝑟𝑓 (1 − 1√1 +H−2𝑓)]]] . (32)

The coordinate ]2 can be determined by choosing a reference
surface 𝑟 = 𝑟 for which 𝑟⋆ = 0 in the black hole interior. In
this case,

]2 = 1𝜇2 exp(2𝜅∫𝑟0
𝑟

𝑑𝑟𝑓 ) . (33)

The third segment stretches from (𝜇2, ]2) to (𝜇3 = 0, ]3 =ℎ/2). With the relation

]3
]2

= ℎ2]2 = exp[[[𝜅∫𝑟ℎ
𝑟0

𝑑𝑟𝑓 (1 − 1√1 +H−2𝑓)]]]
= 𝜇1𝜇2 ,

(34)

we can express ℎ as

ℎ = 2 exp (Π1 + Π2 + Π3) , (35)

where

Π1 = 2𝜅∫𝑟0
𝑟

𝑑𝑟𝑓 , (36)

Π2 = 2𝜅∫𝑟ℎ
𝑟0

𝑑𝑟𝑓 (1 − 1√1 +H−2𝑓) , (37)

Π3 = 𝜅∫∞
𝑟ℎ

𝑑𝑟𝑓 (1 − 1√1 +H−2𝑓) . (38)

It is obvious that ℎ depends on the location of 𝑟0 for
fixed 𝑟ℎ. The relation between 𝐼(ℎ, 𝜃0) and ℎ is shown in
Figure 7. From this figure, we can see that for a fixed charge
the relation between 𝑟0 and ℎ is nonmonotonic. Here we are
interested in two locations on the horizontal axis. One is the
initial location of the curve where ℎ approaches to infinity,
which implies that ℎ is divergent. We label the corresponding
horizontal axis of the divergent point as 𝑟0𝑑ℎ. The other is the
final location of the curve, where ℎ vanishes. Obviously, in
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Figure 7: Relation between ℎ and 𝑟0 for the case 𝑟 = 0.2, 𝑟ℎ = 1. The
green line, red line, and blue line correspond to 𝑄 = 0.5, 0.52, 0.54,
respectively.
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Figure 8: Relation between 𝐼(ℎ, 𝜃0) and 𝑟0 for the case 𝑟𝑚𝑖𝑛 =50, 𝑟ℎ = 1. The green line, red line, and blue line correspond to𝑄 = 0.5, 0.52, 0.54, respectively.
this case, 𝑟0 󳨀→ 𝑟ℎ. The corresponding horizontal axis of the
critical point is labeled as 𝑟0𝑐ℎ. In fact, for the plane symmetric
black holes, [1] has obtained these results analytically. It was
found that, at 𝑟0𝑑ℎ, Ξ3 diverges; thus ℎ approaches to infinity.
At 𝑟0𝑐ℎ, ℎ vanishes for both Ξ1 and Ξ2 behaving as log(𝑟ℎ−𝑟0).
Our results show that these conclusions are still valid for the
spherically symmetric black holes. We also investigate the
effect of the charge on the shift ℎ. We can see that as the
charge increases, both the values of the divergent point and
critical point become smaller. In addition, we find, for a fixed𝑟0, greater value of the charge corresponds to smaller shift ℎ,
which implies the charge delays the formation of the shock
wave geometry.

With (30), we can get the relation between 𝐼(ℎ, 𝜃0) and𝑟0, which is shown in Figure 8. We can see that, for a fixed
charge, 𝐼(ℎ, 𝜃0) increases as 𝑟0 increases. Especially, there is
a critical value of 𝑟0, where 𝐼(ℎ, 𝜃0) vanishes. We label the
corresponding horizontal axis of the critical point as 𝑟0𝑐𝑖. We
also investigate the effect of the charge on the critical point𝑟0𝑐𝑖 and find that larger the value of the charge is, the smaller
the value of 𝑟0𝑐𝑖 will be. For a fixed value of 𝑟0, the mutual
correlation is bigger as the charge 𝑄 becomes greater. This
seems to contradictwith the statements in Section 3where the
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Figure 9: Relation between 𝐼(ℎ, 𝜃0) and ℎ for the case 𝑟 = 0.2, 𝑟𝑚𝑖𝑛 =50. The green line, red line, and blue line correspond to 𝑄 =0.5, 0.52, 0.54, respectively.
mutual correlation decreases with respect to the charge. The
readers should note that in Section 3 there is no shake wave
added in the background.This observation indicates that the
dynamical shock wave geometry has dominant impact on the
mutual correlation in the shock wave geometry.

Having obtained the relation between ℎ and 𝑟0 as well as𝐼(ℎ, 𝜃0) and 𝑟0, we can obtain the relation between 𝐼(ℎ, 𝜃0)
and ℎ, which is shown in Figure 9. It is obvious that asℎ increases, 𝐼(ℎ, 𝜃0) decreases. There is also a critical value
of ℎ, labeled as ℎ𝑐, where 𝐼(ℎ, 𝜃0) vanishes. With these
observations, we can conclude that the perturbation added at
the left boundarywill disrupt thewormhole geometry, and, as
the wormhole geometry grows to a critical value, the mutual
correlation vanishes for the left region and the right region is
uncorrelated now.

For a fixed ℎ, we also investigate the effect of the charge
on the mutual correlation 𝐼(ℎ, 𝜃0). Obviously, the larger the
value of the charge is, the smaller the value of the mutual
correlation 𝐼(ℎ, 𝜃0) will be. This is similar to that of the static
case in Section 3, for, in this case, the effect of the charge is
dominated. The effect of the charge on the critical point ℎ𝑐
is also investigated. The larger the value of the charge is, the
smaller the value of the horizontal coordinate of the critical
point ℎ𝑐 will be. That is, in the shock wave geometry, the
charge will prompt the correlated two quantum systems on
the boundary of the AdS space-time to be uncorrelated.

5. Conclusion and Discussion

Usually, one often uses the mutual information, defined
by the holographic entanglement entropy, to probe the
entanglement of two regions living on the boundary of the
AdS black holes. In [1], the author investigated the mutual
information of the Reissner-Nordström AdS black holes with
and without shock wave geometry. For the static case, they
found that for large boundary regions themutual information
is positive while for small ones it vanishes. In the shock
wave background, they found that the mutual information
is disrupted by the perturbation added at the boundary,
and, for large enough perturbation, the mutual information

vanishes, which implies the left region and right region are
uncorrelated.

In this paper, we employed the mutual correlation, which
is defined by the geodesic length, to probe the correlation
of two regions living on the boundary of the Reissner-
Nordström AdS black holes. We first investigated the mutual
correlation in the static background. We found that as the
size of the boundary region is large enough, the value of
the mutual correlation is positive always, namely, the two
regions living on the boundary of the AdS black holes are
correlated. Our result implies that the mutual correlation has
the same effect as that of the mutual information as they
are used to probe the correlation of two regions. We also
investigated the effect of the charge on the mutual correlation
and found that it decreases as the charge increases. That
is, the charge will destroy the correlation of correlated two
regions.

By adding the perturbations into the bulk, we studied
the dynamic mutual correlation in the shock wave geometry.
We found that as the added perturbation becomes greater,
the shift of the horizon becomes larger, and the mutual
correlation decreases rapidly. In particular, there is a critical
value for the shift where the mutual correlation vanishes
as the perturbation is large enough. Obviously, our result
is also the same as that probed by the mutual information
in [1]. We also investigated the effect of the charge on the
mutual correlation and found that the bigger the value of
the charge is, the smaller the value of the mutual correlation
will be. Namely, the charge will destroy the correlation of the
correlated two regions, which is the same as that in the static
background.

In [20], it has been found that, for a spin system, the two
point functions and mutual information have a qualitatively
similar response to a perturbation of the thermofield double
state. Thus it is also interesting to use directly the two point
functions to probe the butterfly effect though it is relatively
cruder compared with the mutual information and mutual
correlation [20].
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