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The relativistic quantum decay laws of moving unstable particles are analyzed for a general class of mass distribution densities
which behave as power laws near the (nonvanishing) lower bound 𝜇0 of the mass spectrum. The survival probability P𝑝(𝑡), the
instantaneous mass𝑀𝑝(𝑡), and the instantaneous decay rate Γ𝑝(𝑡) of the moving unstable particle are evaluated over short and long
times for an arbitrary value 𝑝 of the (constant) linear momentum. The ultrarelativistic and nonrelativistic limits are studied. Over
long times, the survival probability P𝑝(𝑡) is approximately related to the survival probability at rest P0(𝑡) by a scaling law. The
scaling law can be interpreted as the effect of the relativistic time dilation if the asymptotic value𝑀𝑝(∞) of the instantaneous mass
is considered as the effective mass of the unstable particle over long times. The effective mass has magnitude 𝜇0 at rest and moves
with linear momentum 𝑝 or, equivalently, with constant velocity 1/√1 + 𝜇20/𝑝2.The instantaneous decay rate Γ𝑝(𝑡) is approximately
independent of the linearmomentum𝑝, over long times, and, consequently, is approximately invariant by changing reference frame.

1. Introduction

The description of the decay laws of unstable particles via
quantum theory has been a central topic of research for
decades [1, 2]. Many unstable particles which are generated in
astrophysical phenomena or high-energy accelerator experi-
ments are moving in the laboratory frame of the observer at
relativistic or ultrarelativistic velocity. For this reason, plenty
of studies have been devoted to formulate the decay laws in
terms of relativistic quantum theory. See [1, 3–6], to name but
a few.

A fundamental subject in the description of the relativis-
tic decays of moving unstable particles is the way the decay
laws transform by changing the reference frame. Naturally, it
is essential to understand how the decay laws, holding in the
rest reference frame of the moving particle, are transformed
in the laboratory frame of an observer. The nondecay or
survival probability of an unstable particle has been evaluated
in [7, 8] for nonvanishing and vanishing values of the linear
momentum in terms of themass distribution density (MDD).
The condition of vanishing linear momentum, 𝑝 = 0,

provides the survival probability in the reference framewhere
the particle is at rest, while the condition of nonvanishing
linear momentum, 𝑝 > 0, can be referred to the laboratory
frame of an observer where the particles move with linear
momentum 𝑝. The effects of the relativistic time dilation in
quantum decay laws of moving unstable particles remain a
matter of central interest. See [7–17], to name but a few.

As a continuation of the scenario described above, here,
we evaluate the survival probability, the instantaneous energy,
and the instantaneous decay rate of a moving unstable
particle over short and long times for a wide variety of
MDDs and for an arbitrary value of the (constant) linear
momentum. In light of the short-time transformations of
the survival probability according to the relativistic time
dilation, we search for further scaling relations in the decay
laws which can relate the conditions of nonvanishing and
vanishing linear momentum. In this way, we aim to find
further descriptions of the ways the decay laws of moving
unstable particle transform by changing reference frame.

The paper is organized as follows. Section 2 is devoted
to the relativistic quantum decay laws of a general moving
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unstable particle. In Section 3, the survival probability is
evaluated over short and long times for an arbitrary value
of the linear momentum and a general class of MDD.
In Section 4, the transformation of the long-time survival
probability is described via a scaling law. Section 5 is devoted
to the evaluation of the instantaneousmass and instantaneous
decay rate over short and long times. In Section 6, the scaling
law, describing the transformation of the survival probability,
is interpreted in terms of the relativistic time dilation and
of the instantaneous mass of the moving unstable particle.
Summary and conclusions are reported in Section 7.

2. Relativistic Quantum Decay Laws

An extended and detailed description of the relativistic
quantum decay laws of moving unstable particles has been
recently provided in [14, 17]. Following these references, a
brief summary of unstable quantum states, of the survival
probability, and of the instantaneous energy and decay rate
is reported below for the sake of clarity, by adopting the
system of units where ℏ = 𝑐 = 1. The motion is assumed
to be one-dimensional, due to the conservation of the linear
momentum [1, 7, 8, 14–17].

In the Hilbert space H of the quantum states which
describe the unstable particle, let the state kets |𝑚, 𝑝⟩ be the
common eigenstates of the linear momentum 𝑃 operator and
the Hamiltonian 𝐻 self-adjoint operator, 𝑃|𝑚, 𝑝⟩ = 𝑝|𝑚, 𝑝⟩
and 𝐻|𝑚, 𝑝⟩ = 𝐸(𝑚, 𝑝)|𝑚, 𝑝⟩, for every value of the mass
parameter 𝑚 and of the linear momentum 𝑝. The mass
parameter 𝑚 belongs to the spectrum of the Hamiltonian
which is supposed to be continuous with lower bound 𝜇0,
which means 𝑚 ≥ 𝜇0. In the rest reference frame of the
moving particle the linear momentum vanishes and the
mentioned state kets become |𝑚, 0⟩, while the eigenstates
of the Hamiltonian are 𝐸(𝑚, 0) = 𝑚. Let |𝜙⟩ be the ket
of the Hilbert space H which describes the quantum state
of the unstable particle. Such state can be expressed in
terms of the eigenstates |𝑚, 0⟩ of the Hamiltonian as |𝜙⟩ =∫∞𝜇0 𝑓(𝑚)|𝑚, 0⟩𝑑𝑚, via the expansion function 𝑓(𝑚). The
survival amplitude𝐴0(𝑡) is defined in the rest reference frame
of the moving unstable particle as 𝐴0(𝑡) = ⟨𝜙|𝑒−𝚤𝐻𝑡|𝜙⟩ and is
given by the integral expression

𝐴0 (𝑡) = ∫∞
𝜇0

𝜔 (𝑚) 𝑒−𝚤𝑚𝑡𝑑𝑚, (1)

where 𝚤 is the imaginary unit. The function 𝜔(𝑚) represents
the MDD and reads 𝜔(𝑚) = |𝑓(𝑚)|2. The probability P0(𝑡)
that the decaying particle is in the initial state at the time 𝑡,
i.e., the survival probability, is given by the following form,
P0(𝑡) = |𝐴0(𝑡)|2, in the rest reference frame of the moving
unstable particle.

Let Λ be the Lorentz transformation which relates the
reference frame where the unstable moving particle is at
rest, to the one with velocity V = 𝑝/(𝑚𝛾𝐿), where 𝛾𝐿 is
the corresponding relativistic Lorentz factor. Let 𝑈(Λ) be an
unitary representation of the transformation Λ acting on the
Hilbert space H such that |𝑚, 𝑝⟩ = 𝑈(Λ)|𝑚, 0⟩ for every
value of the mass parameter𝑚 in the Hamiltonian spectrum.

The state ket |𝜙, 𝑝⟩ describes the moving unstable particle
with nonvanishing linear momentum 𝑝. Such state is related
to the state ket |𝜙⟩ as follows: |𝜙, 𝑝⟩ = 𝑈(Λ)|𝜙⟩. The form
𝐸(𝑚, 𝑝) = 𝑚𝛾𝐿 = √𝑝2 + 𝑚2 is obtained by considering the
energy-momentum 4-vector and the Lorentz invariance [6,
18].The quantity𝐴𝑝(𝑡) is defined as𝐴𝑝(𝑡) = ⟨𝑝, 𝜙|𝑒−𝚤𝐻𝑡|𝜙, 𝑝⟩
and represents the survival amplitude in the reference frame
where the particle has linear momentum 𝑝. The approach
described above leads to the following integral expression of
the survival amplitude:

𝐴𝑝 (𝑡) = ∫∞
𝜇0

𝜔 (𝑚) 𝑒−𝚤√𝑝2+𝑚2𝑡𝑑𝑚. (2)

The quantity P𝑝(𝑡) represents the survival probability that
the decaying particle is in the initial state at the time 𝑡 in
the reference frame where the unstable particle has linear
momentum 𝑝 and is given by the square modulus of the
survival amplitude,P𝑝(𝑡) = |𝐴𝑝(𝑡)|2. See [7, 8, 17] for details.

The decay laws of the unstable particles are obtained from
the MDD via (1) and (2). In literature, the MDD is usually
represented via the Breit-Wigner function [19]:

𝜔BW (𝑚) = Θ (𝑚 − 𝜇0) 𝜆BWΓ/ (2𝜋)
(𝑚 − 𝑚0)2 + Γ2/4 , (3)

where 𝜆BW is a normalization factor, Θ(𝑚) is the Heaviside
unit step function, 𝑚0 is the rest mass of the particle,
and Γ is the decay rate at rest. A detailed analysis of the
survival amplitude of a moving unstable particle has been
performed in [8] by considering the Breit-Wigner form of the
MDD [7]. The long-time behavior of the survival amplitude
results in dominant inverse power laws, besides additional
decaying exponential terms. Refer to [8] for details. In [17,
20, 21] general forms of MDD are considered with power-law
behaviors near the lower bound of the mass spectrum. The
long-time decay of the survival amplitude 𝐴0(𝑡) is described
by inverse power laws which are determined by the low-
mass profile of the MDD [20, 21]. Additional removable
logarithmic singularities in the low-mass form of the MDD
lead to logarithmic-like relaxations of the survival amplitude
at rest 𝐴0(𝑡) which can be arbitrarily slower or faster than
inverse power laws [22, 23].

Since the unstable particle decays, the initial state is
not an eigenstate of the Hamiltonian and the instantaneous
mass (energy) is not defined during the time evolution. For
this reason, instantaneous mass (energy) and decay rate are
defined in the rest reference frame of the moving particle
in terms of an effective Hamiltonian. Such operator acts on
the subspace of the Hilbert space H which is spanned by
the initial state. Refer to [14, 17, 20, 21, 24] for details. In the
same way, the instantaneous mass (energy) and decay rateΓ𝑝(𝑡) of the moving unstable particle are defined in the frame
system where the particle has linear momentum 𝑝. For both
vanishing and nonvanishing values of the linear momentum𝑝, the instantaneous mass 𝑀𝑝(𝑡) and decay rate Γ𝑝(𝑡) are
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obtained from the survival amplitude𝐴𝑝(𝑡) via the following
forms [14, 17, 20–23]:

𝑀𝑝 (𝑡) = − Im{𝐴̇𝑝 (𝑡)𝐴𝑝 (𝑡)} (4)

Γ𝑝 (𝑡) = −2Re{𝐴̇𝑝 (𝑡)𝐴𝑝 (𝑡)} . (5)

The long-time behavior of the instantaneous mass𝑀𝑝(𝑡) and
decay rate Γ𝑝(𝑡) has been evaluated in [14, 15] for the Breit-
Wigner form of the MDD.

2.1. Relativistic Time Dilation. The interpretation of decay
processes via the theory of special relativity suggests that
the lifetime which is detected in the rest reference frame of
the unstable particle increases in the reference frame where
the particle is moving. The increase is due to the relativistic
dilation of times and is determined by the relativistic Lorentz
factor [25].

The appearance of the relativistic time dilation in quan-
tum decays is a matter of great interest and fruitful dis-
cussions. See [7–17], to name but a few. A broadly shared
opinion is that the relativistic time dilation influences the
survival probability uniquely in the short-time exponential
decay. Briefly, this means that the survival probability P𝑝(𝑡)
and the survival probability at rest P0(𝑡) are given by the
exponential forms P𝑝(𝑡) ∼ 𝑒−𝑡/𝜏𝑝 and P0(𝑡) ∼ 𝑒−𝑡/𝜏0 , over
short times. Under this assumption, the survival probability
obeys the scaling law

P𝑝 (𝑡) ∼ P0 ( 𝑡𝛾𝐿) , (6)

over short times. The parameter 𝜏0 represents the lifetime of
the particle at rest, while 𝜏𝑝 is the lifetime which is detected in
the reference frame where the particle is moving with linear
momentum 𝑝. According to the relativistic time dilation, the
lifetimes are related as follows: 𝜏𝑝 = 𝜏0𝛾𝐿, where 𝛾𝐿 is the
corresponding relativistic Lorentz factor. Refer to [7, 8, 12–
17] for an extended explanation. In this context, we intend
to study the survival probability P𝑝(𝑡) and the survival
probability at restP0(𝑡) over short and long times for a wide
variety of MDDs. We search for further ways to describe the
transformations of the decay laws which occur by changing
reference frame.

3. Survival Probability versus
Linear Momentum

In the present section the short- and long-time behaviors
of the survival probability are studied for a general value 𝑝
of the constant linear momentum of the moving unstable
particle. The analysis performed in the whole paper is based
entirely on form (2) of the survival amplitude [7, 12]. For the
sake of convenience, the survival amplitude is expressed via
the dimensionless variables 𝜏, 𝜉, 𝜌, and 𝜂. These variables
are defined in terms of a generic scale mass 𝑚𝑠 as follows:

𝜏 = 𝑚𝑠𝑡, 𝜉 = 𝑚/𝑚𝑠, 𝜌 = 𝑝/𝑚𝑠, and 𝜂 = √𝜌2 + 𝜉2. The
MDD is expressed in terms of the auxiliary functionΩ(𝜉) via
the scaling law 𝜔(𝑚𝑠𝜉) = Ω(𝜉)/𝑚𝑠, for every 𝜉 ≥ 𝜉0, where𝜉0 = 𝜇0/𝑚𝑠. In this way, the survival amplitude 𝐴𝑝(𝑡) results
in the expression below:

𝐴𝑝 (𝑡) = ∫∞
𝜉0

Ω (𝜉) 𝑒−𝚤𝜂𝜏𝑑𝜉. (7)

The MDDs under study are defined over the infinite
support [𝜇0,∞) by auxiliary functions Ω(𝜉) of the following
form:

Ω (𝜉) = (𝜉 − 𝜉0)𝛼Ω0 (𝜉) . (8)

In order to study the long-time behavior of the decay laws of
themoving unstable particle, theMDDs are requested to obey
the conditions below.The lower bound of the mass spectrum
is chosen to be nonvanishing, 𝜉0 > 0. The constraints 𝛼 ≥ 0
and Ω0(𝜉0) > 0 are also requested. The function Ω0(𝜉) and
the derivativesΩ(𝑗)0 (𝜉) are required to be summable, for every𝑗 = 1, . . . , ⌊𝛼⌋+4, and continuously differentiable in thewhole
support [𝜇0,∞), for every 𝑗 = 1, . . . , ⌊𝛼⌋ + 3. Consequently,
the limits lim𝜉→𝜉+0Ω(𝑗)0 (𝜉) must exist as finite and be Ω(𝑗)0 (𝜉0)
for every 𝑗 = 0, . . . , ⌊𝛼⌋ + 4. The functions Ω(𝑗)0 (𝜉) have
to decay sufficiently fast as 𝜉 → +∞, so that the auxiliary
functionΩ(𝜉) and the derivativesΩ(𝑗)(𝜉) vanish as 𝜉 → +∞,
for every 𝑗 = 0, . . . , ⌊𝛼⌋.

As far as the short-time behavior of the survival amplitude
is concerned, let the auxiliary function decay as follows:Ω(𝜉) = O(𝜉−1−𝑙0) for 𝜉 → +∞, with 𝑙0 > 5. Under this
condition, the survival amplitude evolves algebraically over
short times:

𝐴𝑝 (𝑡) ∼ 1 − 𝚤𝑎0𝑡 − 𝑎1𝑡2 + 𝚤𝑎2𝑡3, (9)

for 𝑡 ≪ 1/𝑚𝑠. The constants 𝑎0, 𝑎1, and 𝑎2 are given by the
expressions below:

𝑎0 = ∫∞
𝜇0

𝜔 (𝑚)√𝑝2 + 𝑚2𝑑𝑚,
𝑎1 = 12 ∫∞

𝜇0
𝜔 (𝑚) (𝑝2 + 𝑚2) 𝑑𝑚,

𝑎2 = 16 ∫∞
𝜇0

𝜔 (𝑚) (𝑝2 + 𝑚2)3/2 𝑑𝑚.
(10)

The short-time evolution of the survival probability is derived
from (7) and (9) and is algebraic:

P𝑝 (𝑡) ∼ 1 − 𝜋0𝑡2, (11)

for 𝑡 ≪ 1/𝑚𝑠, where 𝜋0 = 2𝑎1 − 𝑎20 .
The long-time behavior of the survival amplitude is

obtained from (7) and from the following equivalent form:

𝐴𝑝 (𝑡) = ∫∞
𝜂0

𝜂Ω(√𝜂2 − 𝜌2)
√𝜂2 − 𝜌2 𝑒−𝚤𝜂𝜏𝑑𝜂, (12)
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where 𝜂0 = √𝜌2 + 𝜉20 . Notice that the constraint of non-
vanishing lower bound of the mass spectrum, 𝜉0 > 0, is
fundamental for the equivalence of expressions (7) and (12)
of the survival amplitude. The asymptotic analysis [26, 27] of
the integral form, appearing in (12) for 𝜏 ≫ 1, provides the
expression of the survival amplitude over long times:

𝐴𝑝 (𝑡) ∼ 𝑐0𝑒−𝚤((𝜋/2)(1+𝛼)+√𝜇20+𝑝2𝑡) ( 𝜒𝑝𝑚𝑠𝑡)
1+𝛼 , (13)

for 𝑡 ≫ 1/𝑚𝑠, where 𝑐0 = Γ(1 + 𝛼)Ω0(𝜉0), and
𝜒𝑝 = √1 + 𝑝2𝜇20 . (14)

Asymptotic form (13) of the survival amplitude holds for
every value of the linear momentum 𝑝, nonvanishing, arbi-
trarily large or small, or vanishing; for the variety of MDDs
under study; for every 𝛼 ≥ 0; and for every value 𝜇0 of the
lower bound of the mass spectrum such that 𝜇0/𝑚𝑠 > 0.
The last condition is crucial and will be interpreted in the
next section in terms of the instantaneous mass at rest of the
moving unstable particle. The square modulus of asymptotic
expression (13) approximates the survival probability over
long times:

P𝑝 (𝑡) ∼ 𝑐20 ( 𝜒𝑝𝑚𝑠𝑡)
2(1+𝛼) , (15)

for 𝑡 ≫ 1/𝑚𝑠. Notice that the time scale 1/𝑚𝑠 and,
consequently, the short or long times, 𝑡 ≪ 1/𝑚𝑠 or 𝑡 ≫1/𝑚𝑠, are independent of the auxiliary functionΩ(𝜉) and are
determined uniquely by the MDD.

4. Scaling Law for the Survival Probability

Expression (15) of the survival probability holds for every
value of the constant linear momentum 𝑝. Such arbitrariness
allows evaluating the survival probability in the nonrelativis-
tic andultrarelativistic limits. For vanishing value of the linear
momentum, 𝑝 = 0, or, equivalently, in the rest reference
frame of the unstable particle, the survival probability is
approximated over long times as follows:

P0 (𝑡) ∼ 𝑐20(𝑚𝑠𝑡)2(1+𝛼) , (16)

for 𝑡 ≫ 1/𝑚𝑠. Instead, consider large values of the linear
momentum, 𝑝 ≫ 𝜇0. In such condition the survival
probability is approximated over long times as follows:

P𝑝 (𝑡) ∼ 𝑐20 ( 𝑝𝜇0𝑚𝑠𝑡)
2(1+𝛼) , (17)

for 𝑡 ≫ 1/𝑚𝑠. By comparing (15) and (16), we observe that,
for the MDDs under study, the survival probability obeys,
approximately over long times, the following scaling law:

P𝑝 (𝑡) ∼ P0 ( 𝑡𝜒𝑝) , (18)
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Figure 1: (Color online) the survival probabilityP𝑝(𝑡) versus (𝑚𝑠𝑡)
for 0 ≤ 𝑚𝑠𝑡 ≤ 20, MDDs given by (21), 𝛼 = 0, 𝜇0 = 𝑚𝑠, and different
values of the linear momentum 𝑝. Curve (𝑎) corresponds to 𝑝 =0𝑚𝑠; (𝑏) corresponds to 𝑝 = 𝑚𝑠; (𝑐) corresponds to 𝑝 = 2𝑚𝑠; (𝑑)
corresponds to 𝑝 = 3𝑚𝑠; (𝑒) corresponds to 𝑝 = 4𝑚𝑠.

for 𝑡 ≫ 1/𝑚𝑠. This is the main result of the paper. In fact,
the above scaling law describes how the survival probability
at rest transforms, approximately over long times, in the
reference frame where the particle moves with constant
linear momentum 𝑝. The transformation can be interpreted,
approximately, as the effect of a time dilation which is deter-
mined by the scaling factor 𝜒𝑝. Notice that the scaling factor,
given by (14), diverges in the limit 𝜇0 → 0+. In Section 6,
the scaling law (18) is interpreted, via the special relativity, as
the effect of the relativistic time dilation. This interpretation
holds if the asymptotic value of the instantaneous mass is
considered as the effective mass of the moving unstable
particle over long times.

The correction to the scaling law (18) can be estimated via
the expression (P𝑝(𝑡) −P0(𝑡/𝜒𝑝))/P0(𝑡/𝜒𝑝). For the MDDs
under study, such correction vanishes inversely quadratically
over long times:

P𝑝 (𝑡) − P0 (𝑡/𝜒𝑝)
P0 (𝑡/𝜒𝑝) ∼ 𝜅𝑝

(𝑚𝑠𝑡)2 , (19)

for 𝑡 ≫ 1/𝑚𝑠, where
𝜅𝑝 = (1 + 𝛼) (2 + 𝛼)𝑚𝑠𝑝2𝜇30 (2Ω󸀠0 (𝜇0/𝑚𝑠)Ω0 (𝜇0/𝑚𝑠) − 𝑚𝑠𝜇0𝜒2𝑝

× (3 + 𝛼 + (52 + 𝛼) 𝑝2𝜇20 )) .
(20)

Numerical analysis of the survival probability P𝑝(𝑡) has
been displayed in Figures 1, 2, 3, 4, and 5. The computed
MDDs are given by the following toy form of the auxiliary
function:

Ω (𝜉) = 𝑤𝛼𝜉 (𝜉2 − 𝜉20)𝛼 𝑒−𝜉2 , (21)
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Figure 2: (Color online) the survival probabilityP𝑝(𝑡) versus (𝑚𝑠𝑡)
for 0 ≤ 𝑚𝑠𝑡 ≤ 15, MDDs given by (21), 𝛼 = 1, 𝜇0 = 𝑚𝑠, and different
values of the linear momentum 𝑝. Curve (𝑎) corresponds to 𝑝 =0𝑚𝑠; (𝑏) corresponds to 𝑝 = 𝑚𝑠; (𝑐) corresponds to 𝑝 = 2𝑚𝑠; (𝑑)
corresponds to 𝑝 = 3𝑚𝑠; (𝑒) corresponds to 𝑝 = 4𝑚𝑠.
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Figure 3: (Color online) quantity |log (P𝑝(𝑡))| versus log (𝑚𝑠𝑡) for𝑒−1 ≤ 𝑚𝑠𝑡 ≤ 𝑒5, MDDs given by (21), 𝜇0 = 𝑚𝑠, and different
values of the parameter 𝛼 and of the linear momentum 𝑝. Curve(𝑎) corresponds to 𝛼 = 0 and 𝑝 = 5𝑚𝑠; (𝑏) corresponds to 𝛼 = 0
and 𝑝 = 3𝑚𝑠; (𝑐) corresponds to 𝛼 = 0 and 𝑝 = 0; (𝑑) corresponds
to 𝛼 = 1 and 𝑝 = 5𝑚𝑠; (𝑒) corresponds to 𝛼 = 1 and 𝑝 = 2𝑚𝑠; (𝑓)
corresponds to 𝛼 = 2 and 𝑝 = 4𝑚𝑠; (𝑔) corresponds to 𝛼 = 2 and𝑝 = 2𝑚𝑠; (ℎ) corresponds to 𝛼 = 1 and 𝑝 = 0𝑚𝑠; (𝑖) corresponds to𝛼 = 2 and 𝑝 = 0.

where𝑤𝛼 is a normalization factor and reads𝑤𝛼 = 2𝑒𝜉20/Γ(1+𝛼). Different values of the nonnegative power 𝛼 and linear
momentum 𝑝 are considered. The corresponding MDDs
belong to the class under study which is defined in Section 3
via (8). The asymptotic lines appearing in Figure 3 agree
with the long-time inverse-power-law decays of the survival
probability, given by (15). The ordinates of the asymptotic
horizontal lines of Figures 4 and 5 are in accordance with
form (14) of the scaling factor 𝜒𝑝. The long-time dilation
in the survival probability, given by the scaling law (18),
is confirmed by the common horizontal asymptotic line, at
ordinate 1, which appears in Figures 6 and 7.
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Figure 4: (Color online) ratio P𝑝(𝑡)/P0(𝑡) versus (𝑚𝑠𝑡) for 0 ≤𝑚𝑠𝑡 ≤ 50, MDDs given by (21), 𝜇0 = 𝑚𝑠, 𝛼 = 0, and different
values of the linear momentum 𝑝. Curve (𝑎) corresponds to 𝑝 = 𝑚𝑠;(𝑏) corresponds to 𝑝 = 2𝑚𝑠; (𝑐) corresponds to 𝑝 = 3𝑚𝑠; (𝑑)
corresponds to 𝑝 = 4𝑚𝑠; (𝑒) corresponds to 𝑝 = 5𝑚𝑠.
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Figure 5: (Color online) ratio P𝑝(𝑡)/P0(𝑡) versus (𝑚𝑠𝑡) for 0 ≤𝑚𝑠𝑡 ≤ 50, MDDs given by (21), 𝜇0 = 𝑚𝑠, and different values of the
parameter 𝛼 and of the linear momentum 𝑝. Curve (𝑎) corresponds
to 𝛼 = 1 and 𝑝 = 2𝑚𝑠; (𝑏) corresponds to 𝛼 = 1 and 𝑝 = 3𝑚𝑠; (𝑐)
corresponds to 𝛼 = 2 and 𝑝 = 2𝑚𝑠; (𝑑) corresponds to 𝛼 = 1 and𝑝 = 4𝑚𝑠.

5. Instantaneous Mass and Decay Rate versus
Linear Momentum

In the present section the instantaneous mass and decay
rate are analyzed over short and long times for every value
of the constant linear momentum 𝑝 of the particle, which
is detected in the laboratory frame of the observer. The
instantaneous mass and decay rate are evaluated from the
survival amplitude via (4) and (5).

Again, let the auxiliary function decay asΩ(𝜉) = O(𝜉−1−𝑙0)
for 𝜉 → +∞, with 𝑙0 > 5. The short-time evolution of
the instantaneous mass and decay rate are obtained from
behavior (9) of the survival amplitude and from (4) and (5). In
this way, the following algebraic evolution results over short
times:
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Figure 6: (Color online) ratioP𝑝(𝑡)/P0(𝑡/𝜒𝑝) versus (𝑚𝑠𝑡) for 0 ≤𝑚𝑠𝑡 ≤ 50, MDDs given by (21), 𝜇0 = 𝑚𝑠, 𝛼 = 0, and different values
of the linear momentum 𝑝. Curve (𝑎) corresponds to 𝑝 = 5𝑚𝑠;(𝑏) corresponds to 𝑝 = 4𝑚𝑠; (𝑐) corresponds to 𝑝 = 3𝑚𝑠; (𝑑)
corresponds to 𝑝 = 2𝑚𝑠; (𝑒) corresponds to 𝑝 = 𝑚𝑠.
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Figure 7: (Color online) ratio P𝑝(𝑡)/P0(𝑡/𝜒𝑝) for 0 ≤ 𝑚𝑠𝑡 ≤ 60,
MDDs given by (21), 𝜇0 = 𝑚𝑠, and different values of the parameter𝛼 and of the linear momentum 𝑝. Curve (𝑎) corresponds to 𝛼 = 2
and 𝑝 = 4𝑚𝑠; (𝑏) corresponds to 𝛼 = 1 and 𝑝 = 5𝑚𝑠; (𝑐) corresponds
to 𝛼 = 2 and 𝑝 = 3𝑚𝑠; (𝑑) corresponds to 𝛼 = 1 and 𝑝 = 2𝑚𝑠; (𝑒)
corresponds to 𝛼 = 1 and 𝑝 = 𝑚𝑠.

𝑀𝑝 (𝑡) ∼ 𝑎0 − 𝜋1𝑡2,
Γ𝑝 (𝑡) ∼ 𝜋2𝑡, (22)

for 𝑡 ≪ 1/𝑚𝑠, where𝜋1 = 𝑎30+3(𝑎2−𝑎0𝑎1) and𝜋2 = 2(2𝑎1−𝑎20).
The long-time behavior of the instantaneous mass and

decay rate are studied in case that the MDD fulfills the
constraints which are reported in the second paragraph of
Section 3. In addition, the functions 𝜉Ω0(𝜉) and 𝜉Ω(𝜉) are
required to obey the conditions which are requested in the
same paragraph for the function Ω0(𝜉) and the auxiliary
function Ω(𝜉), respectively. The asymptotic analysis [26, 27]
of the instantaneous mass or the instantaneous decay rate is
obtained from the results of Section 3 and from (4) or (5),
respectively.

The instantaneous mass tends over long times, 𝑡 ≫ 1/𝑚𝑠,
to the asymptotic value 𝑀𝑝(∞), given by

𝑀𝑝 (∞) = √𝜇20 + 𝑝2, (23)

according to the following dominant algebraic decay:

𝑀𝑝 (𝑡) ∼ 𝑀𝑝 (∞) (1 + 𝜁𝑝 (𝑚𝑠𝑡)−2) . (24)

The constant 𝜁𝑝 is defined as

𝜁𝑝 = (1 + 𝛼)
⋅ 𝑚𝑠𝜇0 ((1 + 𝛼2 ) 𝑚𝑠𝜇0

𝑝2𝜇20 + 𝑝2 −
Ω󸀠0 (𝜇0/𝑚𝑠)Ω0 (𝜇0/𝑚𝑠)) . (25)

For large values of the linear momentum, 𝑝 ≫ 𝜇0, the
instantaneous mass decays over long times, 𝑡 ≫ 1/𝑚𝑠, as
follows:

𝑀𝑝 (𝑡) ∼ 𝑝 (1 + 𝜁𝑝 (𝑚𝑠𝑡)−2) , (26)

where

𝜁𝑝 = (1 + 𝛼) 𝑚𝑠𝜇0 ((1 + 𝛼2 ) 𝑚𝑠𝜇0 − Ω󸀠0 (𝜇0/𝑚𝑠)Ω0 (𝜇0/𝑚𝑠)) . (27)

If the linear momentum vanishes, 𝑝 = 0, the instanta-
neous mass (at rest) tends over long times, 𝑡 ≫ 1/𝑚𝑠, to the
minimum value of the mass spectrum:

𝑀0 (∞) = 𝜇0, (28)

with the following dominant algebraic decay:

𝑀0 (𝑡) ∼ 𝑀0 (∞) (1 + 𝜁0 (𝑚𝑠𝑡)−2) , (29)

where

𝜁0 = − (1 + 𝛼) 𝑚𝑠𝜇0
Ω󸀠0 (𝜇0/𝑚𝑠)Ω0 (𝜇0/𝑚𝑠) . (30)

The instantaneous decay rate Γ𝑝(𝑡) vanishes over long
times, 𝑡 ≫ 1/𝑚𝑠, according to the following dominant
algebraic decay:

Γ𝑝 (𝑡) ∼ 2 (1 + 𝛼)𝑡 . (31)

Differently from the survival probability and from the
instantaneous mass, the dominant asymptotic form of the
instantaneous decay rate is independent of the linearmomen-
tum 𝑝. Consequently, the instantaneous decay rate at rest
remains approximately unchanged over long times in the
reference framewhere the unstable particlemoves with linear
momentum 𝑝. Notice that decay laws (29) and (31) are in
accordance with the ones which are obtained in [23] for a
wider class of MDDs.
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Figure 8: (Color online) quantity 𝑀𝑝(𝑡)/𝑚𝑠 versus (𝑚𝑠𝑡) for 0 ≤𝑚𝑠𝑡 ≤ 15, MDDs given by (21), 𝜇0 = 𝑚𝑠, 𝛼 = 1, and different values
of the linear momentum 𝑝. Curve (𝑎) corresponds to 𝑝 = 0𝑚𝑠; (𝑏)
corresponds to 𝑝 = 𝑚𝑠; (𝑐) corresponds to corresponds to 𝑝 = 2𝑚𝑠;(𝑑) corresponds to 𝑝 = 3𝑚𝑠; (𝑒) corresponds to 𝑝 = 4𝑚𝑠.
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Figure 9: (Color online) quantity 𝑀𝑝(𝑡)/𝑚𝑠 versus (𝑚𝑠𝑡) for 0 ≤𝑚𝑠𝑡 ≤ 15, MDDs given by (21), 𝜇0 = 𝑚𝑠, 𝛼 = 2, and different values
of the linear momentum 𝑝. Curve (𝑎) corresponds to 𝑝 = 0𝑚𝑠; (𝑏)
corresponds to 𝑝 = 𝑚𝑠; (𝑐) corresponds to corresponds to 𝑝 = 2𝑚𝑠;(𝑑) corresponds to 𝑝 = 3𝑚𝑠; (𝑒) corresponds to 𝑝 = 4𝑚𝑠.

Numerical analysis of the instantaneous mass or the
instantaneous decay rate is displayed in Figures 8, 9, 12, and
13 or Figures 10, 11, 14, and 15, respectively. The computed
MDDs are given by the toy form (21) of the auxiliary
function for different values of the nonnegative power 𝛼
and of the linear momentum 𝑝. The asymptotic lines of
Figure 12 and the asymptotic horizontal lines of Figure 13 are
in accordance with the long-time inverse-power-law decays
of the instantaneous mass, given by (24) and (29). The
asymptotic horizontal lines of Figure 13 agree with (32) and
with expression (14) of the scaling factor.The asymptotic lines
appearing in Figure 14 and the asymptotic horizontal lines
of Figure 15, at ordinate 1, agree with the long-time inverse-
power-law behavior of the instantaneous decay rate, given by
(31).

Γp(Ｎ)/ms

msＮ
0 5 10 15 20 25 30

1.0

0.8

0.6

0.4

0.2 (a)

(b)

(c)

(d)

(e)

Figure 10: (Color online) quantity Γ𝑝(𝑡)/𝑚𝑠 versus (𝑚𝑠𝑡) for 0 ≤𝑚𝑠𝑡 ≤ 30, MDDs given by (21), 𝜇0 = 𝑚𝑠, 𝛼 = 1, and different values
of the linear momentum 𝑝. Curve (𝑎) corresponds to 𝑝 = 4𝑚𝑠;(𝑏) corresponds to 𝑝 = 3𝑚𝑠; (𝑐) corresponds to 𝑝 = 2𝑚𝑠; (𝑑)
corresponds to 𝑝 = 1𝑚𝑠; (𝑒) corresponds to 𝑝 = 0𝑚𝑠.
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Figure 11: (Color online) quantity Γ𝑝(𝑡)/𝑚𝑠 versus (𝑚𝑠𝑡) for 0 ≤𝑚𝑠𝑡 ≤ 30, MDDs given by (21), 𝜇0 = 𝑚𝑠, 𝛼 = 2, and different values
of the linear momentum 𝑝. Curve (𝑎) corresponds to 𝑝 = 4𝑚𝑠;(𝑏) corresponds to 𝑝 = 3𝑚𝑠; (𝑐) corresponds to 𝑝 = 2𝑚𝑠; (𝑑)
corresponds to 𝑝 = 1𝑚𝑠; (𝑒) corresponds to 𝑝 = 0𝑚𝑠.

6. Relativistic Time Dilation
and Survival Probability

In Section 2.1 how the survival probability at rest, P0(𝑡),
transforms, due to the relativistic time dilation, in the refer-
ence frame where the unstable particle moves with constant
linear momentum 𝑝 is reported. The transformed survival
probability,P𝑝(𝑡), is related to the survival probability at rest,
P0(𝑡), by the scaling law (6).The scaling factor consists in the
corresponding relativistic Lorentz factor 𝛾𝐿.

The analysis performed in Section 3 shows that, for the
class of MDDs under study, the survival probability P𝑝(𝑡)
and the survival probability at rest P0(𝑡) are related by the
scaling law (18) over long times. The corresponding scaling
factor 𝜒𝑝 is given by (14). It is worth noticing that the
scaling factor 𝜒𝑝 coincides with the ratio of the asymptotic
form of the instantaneous mass 𝑀𝑝(𝑡) and the asymptotic



8 Advances in High Energy Physics

|ＦＩＡ(|
Mp (t)

√p2 + 2
0

−1|)|

log(mst)
1.5 2.0 2.5 3.0

6

5

4

3

2

1

(a)
(b)

(c)

(f)

(d)

(e)

Figure 12: (Color online) quantity |log (|𝑀𝑝(𝑡)/√𝑝2 + 𝜇20 − 1|)|
versus log (𝑚𝑠𝑡) for 𝑒 ≤ 𝑚𝑠𝑡 ≤ 𝑒3.3, MDDs given by (21), 𝜇0 = 𝑚𝑠,
and different values of the parameter 𝛼 and of the linear momentum𝑝. Curve (𝑎) corresponds to 𝛼 = 2 and 𝑝 = 4𝑚𝑠; (𝑏) corresponds
to 𝛼 = 2 and 𝑝 = 2𝑚𝑠; (𝑐) corresponds to 𝛼 = 1 and 𝑝 = 2𝑚𝑠; (𝑑)
corresponds to 𝛼 = 2 and 𝑝 = 𝑚𝑠; (𝑒) corresponds to 𝛼 = 0 and𝑝 = 3𝑚𝑠; (𝑓) corresponds to 𝛼 = 0 and 𝑝 = 5𝑚𝑠.
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Figure 13: (Color online) ratio 𝑀𝑝(𝑡)/𝑀0(𝑡) versus (𝑚𝑠𝑡) for 0 ≤𝑚𝑠𝑡 ≤ 10, MDDs given by (21), 𝜇0 = 𝑚𝑠, and different values of the
parameter 𝛼 and of the linear momentum 𝑝. Curve (𝑎) corresponds
to 𝛼 = 1 and 𝑝 = 𝑚𝑠; (𝑏) corresponds to 𝛼 = 0 and 𝑝 = 𝑚𝑠; (𝑐)
corresponds to 𝛼 = 1 and 𝑝 = 2𝑚𝑠; (𝑑) corresponds to 𝛼 = 0 and𝑝 = 2𝑚𝑠; (𝑒) corresponds to 𝛼 = 2 and 𝑝 = 3𝑚𝑠; (𝑓) corresponds
to 𝛼 = 1 and 𝑝 = 3𝑚𝑠; (𝑔) corresponds to 𝛼 = 1 and 𝑝 = 4𝑚𝑠; (ℎ)
corresponds to 𝛼 = 0 and 𝑝 = 4𝑚𝑠.

expression of the instantaneous mass at rest 𝑀0(𝑡) of the
moving unstable particle:

𝜒𝑝 = 𝑀𝑝 (∞)
𝑀0 (∞) . (32)

At this stage, consider the reference frame S where a
mass at rest which is equal to the asymptotic value 𝑀0(∞)
becomes 𝑀𝑝(∞) due to the relativistic transformation of
the mass. According to (32), in the reference frame S the
corresponding relativistic Lorentz factor coincides with the
scaling factor 𝜒𝑝. We remind that, initially, the unstable
quantum system is not in an eigenstate of the Hamiltonian.
Consequently, in the present model the mass of the unstable
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Figure 14: (Color online) quantity |log (Γ𝑝(𝑡)/𝑚𝑠)| versus log (𝑚𝑠𝑡)
for 𝑒1.5 ≤ 𝑚𝑠𝑡 ≤ 𝑒3.8, MDDs given by (21), 𝜇0 = 𝑚𝑠, and different
values of the parameter 𝛼 and of the linear momentum 𝑝. Curve (𝑎)
corresponds to 𝛼 = 2 and 𝑝 = 0𝑚𝑠; (𝑏) corresponds to 𝛼 = 2 and𝑝 = 2𝑚𝑠; (𝑐) corresponds to 𝛼 = 2 and 𝑝 = 4𝑚𝑠; (𝑑) corresponds
to 𝛼 = 1 and 𝑝 = 0𝑚𝑠; (𝑒) corresponds to 𝛼 = 1 and 𝑝 = 2𝑚𝑠; (𝑓)
corresponds to 𝛼 = 1 and 𝑝 = 5𝑚𝑠; (𝑔) corresponds to 𝛼 = 0 and𝑝 = 0𝑚𝑠; (ℎ) corresponds to 𝛼 = 0 and 𝑝 = 3𝑚𝑠; (𝑖) corresponds to𝛼 = 0 and 𝑝 = 5𝑚𝑠.
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Figure 15: (Color online) ratio Γ𝑝(𝑡)/Γ0(𝑡) versus (𝑚𝑠𝑡) for 0 ≤𝑚𝑠𝑡 ≤ 30, MDDs given by (21), 𝜇0 = 𝑚𝑠, and different values of the
parameter 𝛼 and of the linear momentum 𝑝. Curve (𝑎) corresponds
to 𝛼 = 1 and 𝑝 = 4𝑚𝑠; (𝑏) corresponds to 𝛼 = 2 and 𝑝 = 3𝑚𝑠; (𝑐)
corresponds to 𝛼 = 2 and 𝑝 = 2𝑚𝑠; (𝑑) corresponds to 𝛼 = 0 and𝑝 = 2𝑚𝑠; (𝑒) corresponds to 𝛼 = 0 and 𝑝 = 𝑚𝑠.

particle is not defined. On the contrary, the instantaneous
mass is properly defined in terms of the survival amplitude.
See [14, 16, 17] for details.

In light of the above observations, the long-time scaling
law (18) can be interpreted as an effect of the relativistic time
dilation if the asymptotic value 𝑀𝑝(∞) of the instantaneous
mass is considered to be the effective mass of the unstable
particle over long times. In fact, in the reference frameS the
mass at rest 𝑀0(∞), which is equal to the value 𝜇0, moves
with linear momentum 𝑝, or, equivalently, with constant
velocity 1/√1 + 𝜇20/𝑝2, and becomes the relativistic mass

𝑀𝑝(∞), which is equal to the value √𝜇20 + 𝑝2. Concurrently,
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in the reference frameS the survival probability at restP0(𝑡)
transforms, according to the relativistic time dilation, in the
survival probability P𝑝(𝑡) and obeys the scaling law (6),
or, equivalently, (18), over long times. In this context, the
crucial condition of nonvanishing lower bound of the mass
spectrum, 𝜇0/𝑚𝑠 > 0, suggests that the long-time relativistic
dilation and the scaling law (6), or, equivalently, (18), hold
uniquely for an unstable moving particle with nonvanishing
effective mass, 𝑀0(∞) > 0.

7. Summary and Conclusions

The relativistic quantum decay laws of a moving unstable
particle have been analyzed over short and long times for an
arbitrary value 𝑝 of the (constant) linear momentum. The
MDDs under study exhibit power-law behaviors near the
(nonvanishing) lower bound 𝜇0 of themass spectrum. Due to
the arbitrariness of the linearmomentum, the ultrarelativistic
and nonrelativistic limits have been obtained as particular
cases.

The survival probability, which is detected in the rest
reference frame of the unstable particle, transforms in the
reference framewhere the unstable particlemoves with linear
momentum 𝑝, approximately according to a scaling law, over
long times. The scaling factor is determined by the lower
bound 𝜇0 of the mass spectrum and by the linear momentum𝑝 of the particle. The scaling law can be interpreted as
the effect of the relativistic time dilation if the asymptotic
form of the instantaneous mass 𝑀𝑝(𝑡) is considered as the
effectivemass of themoving unstable particle over long times.
In fact, consider the reference frame S where a mass at
rest of magnitude 𝜇0 moves with velocity 1/√1 + 𝜇20/𝑝2, or,
equivalently, with linear momentum 𝑝. The mass at rest 𝜇0
coincideswith the asymptotic value of the instantaneousmass
at rest, 𝑀0(∞), of the moving unstable particle. In the refer-
ence frame S the transformed mass, which is equal to the
value √𝜇20 + 𝑝2, coincides with the asymptotic value 𝑀𝑝(∞)
of the instantaneous mass of the particle. Simultaneously,
in the reference frame S the dilation of times, which is
suggested by the special relativity, transforms the survival
probability at rest according to the mentioned scaling law.
The above description indicates the value 1/√1 + 𝜇20/𝑝2 as the
asymptotic velocity of the moving unstable particle.

We stress that the present interpretation is an attempt
to ascribe the transformation laws of the long-time survival
probability to the dilation of times which is provided by the
theory of special relativity. However, a clear scaling transfor-
mation of the survival probability at rest holds, approximately
over long times, if the decay is observed in the reference
frame where the unstable particle moves with constant linear
momentum. The scaling law can still be interpreted as the
effect of a time dilation which appears by changing reference
frame. The dilation is determined uniquely by the scaling
factor which depends on the mass spectrum and on the
dynamics of the unstable particle. The theoretical results are
confirmed by the numerical analysis.

While the instantaneous mass transforms by changing
reference frame, no transformation is found, approximately,
for the instantaneous decay rate over long times. In fact,
the instantaneous decay rate vanishes, over long times,
approximately independently of the linear momentum of the
moving particle. Consequently, the long-time instantaneous
decay rate is approximately invariant by changing reference
frame.

In conclusion, the present analysis shows further ways
to describe the long-time transformations of the decay laws
of moving unstable particles in terms of model-independent
properties of the mass spectrum.The role of the (nonvanish-
ing) mass at rest in the relativistic transformation is assumed
in the present description by the (nonvanishing) lower bound
of the mass spectrum.
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