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In this paper, we have studied gravitational collapse and expansion of nonstatic anisotropic fluid in 5𝐷 Einstein-Gauss-Bonnet
gravity. For this purpose, the field equations have been modeled and evaluated for the given source and geometry. The two
metric functions have been expressed in terms of parametric form of third metric function. We have examined the range of
parameter 𝛽 (appearing in the form of metric functions) for which Θ, the expansion scalar, becoming positive/negative leads to
expansion/collapse of the source. The trapped surface condition has been explored by using definition of Misner-Sharp mass and
auxiliary solutions. The auxiliary solutions of the field equations involve a single function that generates two types of anisotropic
solutions. Each solution can be represented in term of arbitrary function of time; this function has been chosen arbitrarily to fit
the different astrophysical time profiles. The existing solutions forecast gravitational expansion and collapse depending on the
choice of initial data. In this case, wall to wall collapse of spherical source has been investigated. The dynamics of the spherical
source have been observed graphically with the effects of Gauss-Bonnet coupling term 𝛼 in the case of collapse and expansion. The
energy conditions are satisfied for the specific values of parameters in both solutions; this implies that the solutions are physically
acceptable.

1. Introduction

In the gravitational study of more than four dimensions,
the unification problem of gravity with electromagnetism
and other basic connections are discussed by [1–3]. The
study on supergravity by Witten [4] has strongly sported
the work on unification problem of gravity. The problem
of gravitational unification study is entirely based on the
string theory [5, 6]. The ten-dimensional gravity that arises
from string theory contains a quadratic term in its action
[7, 8]; in low energy limit. Zwiebach [9] described the ghost-
free nontrivial gravitational interactions for greater than 4
dimensions in the study of 𝑛-dimensional action in [7].

In recent years, the higher-order gravity included higher
derivative curvature terms, which is an interesting and
developing study. The most widely studied theory in the
higher curvature gravities is known as Einstein-Gauss-
Bonnet (EGB) theory of gravity. The EGB theory of gravity is
a special case of the Lovelocks gravity.The Lagrangian of EGB
gravity was obtained from the first three terms of Lagrangian

of the Lovelock theory. Pedro [10] described that the 2𝑛𝑑 Euler
density is the Gauss-Bonnet combination and is topological
invariant in four dimensions. He also pointed out that,
to make dynamical GB combination in four-dimensional
theory, couple it to dynamical scalar field. The dynamical
stability and adiabatic and anisotropic fluid collapse of stars in5𝐷 EGB theory of gravity have been studied in [11, 12]. Gross
and Sloan [13, 14] investigated that EGB theory of gravity
occurs in the low energy effectual action [8] of super heterotic
sting theory. The exact black hole (BH) solution in greater
than or equal to five-dimensional gravitational theories is
studied by [8]. Dadhich [15] examined in Newtonian theory
that gravity is independent of space-time dimensions with
constant density of static sphere, and this result is valid
for Einstein and higher-order EGB theory of gravity. The
conditions for universality of Schwarzschild interior solution
describe sphere with uniform density for the dimensions
greater than or equal to four.The authors in [16–20] described
that the existence of EGB term in the string theory leads
to singularity-free solutions in cosmology and hairy black

Hindawi
Advances in High Energy Physics
Volume 2018, Article ID 7420546, 12 pages
https://doi.org/10.1155/2018/7420546

http://orcid.org/0000-0002-4525-566X
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2018/7420546


2 Advances in High Energy Physics

holes. The solutions described in [8] are generalization of 𝑛-
dimensional spherically symmetric BH solution determined
in [21, 22]. In literatures [23–25], the authors examined the
other spherical symmetric BH solutions in GB theory of
gravity. Cai [26, 27] discussed the structure of topologi-
cally nontrivial black holes. The effects of GB term on the
Vaidya solutions have been studied in [28–32]. Wheeler
[23] discussed the spherical symmetric BH solutions and
their physical properties. The GB term has no effect on the
existence of local naked singularity, but the strength of the
curvature is affected.

In the composition of stars, the nuclear matter is enclosed
inside the stars. The stars are gravitated and attracted contin-
uously to the direction of their center because of gravitational
interaction of their matter particles; this phenomenon is
known as gravitational contraction of stars, which leads
to gravitational collapse. It is studied in [33] that, during
the gravitational collapse, the space-time singularities are
generated. When the massive stars collapse due to their own
gravity, the end state of this collapse may be a neutron star,
white dwarf, a BH, or a naked singularity [34]. The spherical
symmetric collapse of perfect fluid is discussed in [35, 36].
The dissipative and viscous fluid gravitational collapse in GR
is discussed in literatures [37–48].

Zubair et al. [49] studied a dynamical stability of cylindri-
cal symmetric collapse of sphere filledwith locally anisotropic
fluid in 𝑓(𝑅, 𝑇) theory of gravity. A lot of literatures are
available about the gravitational collapse and BH in GB
theory of gravity [50–58]. If the 𝑓(𝑅, 𝑇) theory of gravity
obeys the stress-energy tensor conservation, then unknown𝑓(𝑅, 𝑇) function can be obtained in the closed form [59].
Abbas and Riaz [60] determined the exact solution of
nonstatic anisotropic gravitational fluid in 𝑓(𝑅, 𝑇) theory of
gravity, which may lead to collapse and expansion of the
star. Sharif and Aisha [61] studied the models for collapse
and expansion of charged self-gravitating objects in 𝑓(𝑅, 𝑇)
theory of gravity.

Oppenheimer and Snyder [62] observed the gravitational
contraction of inhomogeneous spherically symmetric dust
collapse, and according to this end state of the gravitational
collapse is BH. Markovic and Shapiro [63] studied this work
for positive cosmological constant, and Lake [64] discussed
this for negative as well as positive cosmological constant.
Sharif and Abbas [65] studied the gravitational perfect
fluid charged collapse with cosmological constant in the
Friedmann universe model with weak electromagnetic field.
Sharif and Ahmad [66–69] worked on the spherical sym-
metric gravitational collapse of perfect fluid withe positive
cosmological constant. Sharif and Abbas [70] discussed the
5-dimenssional symmetric spherical gravitational collapse
with positive cosmological constant in the existence of an
electromagnetic field. Abbas and Zubair [71] investigated the
dynamical anisotropic gravitational collapse in EGB theory
of gravity. A homogeneous spherical cloud collapse with
zero rotation and disappearing internal pressure leads to
a singularity covered by an event horizon [72]. Jhingan
and Ghosh [73] discussed the five or greater than five-
dimensional gravitational inhomogeneous dust collapse in
EGB theory of gravity. They investigated the exact solution in

closed form. Sunil et. al [74] investigated the exact solution to
the field equations for five-dimensional spherical symmetric
and static distribution of the prefect fluid in EGB modified
gravity. Abbas and Tahir [75] studied the exact solution of
motion during gravitational collapse of prefect fluid in EGB
theory of gravity. It should be observed in [73, 75–78] that
coupling term 𝛼 changes the structure of the singularities.
Glass [79] generated the collapsing and expansion solutions
of anisotropic fluid of Einstein field equations. In this paper,
we extended the work of Glass [79] to model the solutions for
collapse and expansion of anisotropic fluid in the EGB theory
of gravity. The paper has been arranged as follows.

In Section 2, we present interior matter distribution and
field equations. We discuss the generation of solutions for the
gravitational collapse and expansion in Section 3. The last
section presents the summary of the results of this paper.

2. Matter Distribution Inside the Star
and the Field Equations

We start with the 5𝐷 action given as

𝑆 = ∫𝑑5𝑥√−𝑔[ 12𝜅25 (𝑅 + 𝛼𝐿𝐺𝐵)] + 𝑆𝑚𝑎𝑡𝑡𝑒𝑟, (1)

where 𝜅5 ≡ √8𝜋𝐺5 is gravitational constant and 𝑅 is a Ricci
scalar in 5𝐷, and 𝛼 is known as the coupling constant of the
GB term. The GB Lagrangian is given as follows:

𝐿𝐺𝐵 = 𝑅2 − 4𝑅𝑎𝑏𝑅𝑎𝑏 + 𝑅𝑎𝑏𝑐𝑑𝑅𝑎𝑏𝑐𝑑. (2)

This kind of action is discussed in the low energy limit of
supersting theory [13, 14]. In this paper, we consider only the
case with 𝛼 > 0. The action in (1) gives the following field
equations:

𝐺𝑎𝑏 + 𝛼𝐻𝑎𝑏 = 𝑇𝑎𝑏, (3)

where

𝐺𝑎𝑏 = 𝑅𝑎𝑏 − 12𝑔𝑎𝑏𝑅 (4)

is the Einstein tensor and

𝐻𝑎𝑏 = 2 (𝑅𝑅𝑎𝑏 − 2𝑅𝑎𝛼𝑅𝛼𝑏 − 2𝑅𝛼𝛽𝑅𝑎𝛼𝑏𝛽 + 𝑅𝛼𝛽𝛾𝑎 𝑅𝑏𝛼𝛽𝛾)
− 12𝑔𝑎𝑏𝐿𝐺𝐵

(5)

is the Lanczos tensor.Wewant to find the solution for collapse
and expansion of a spherical anisotropic fluid in 5D-EGB
gravity.

𝑑𝑠2 = −𝐴 (𝑡, 𝑟)2 𝑑𝑡2 + 𝐵 (𝑡, 𝑟)2 𝑑𝑟2 + 𝑅 (𝑡, 𝑟)2 𝑑Ω23, (6)

where 𝑑Ω23 = (𝑑𝜃2 + sin2 𝜃(𝑑𝜙2 + sin2 𝜙𝑑𝜓2)) is a metric on
three spheres and 𝑅 = 𝑅(𝑡, 𝑟) ≥ 0, 𝐴 = 𝐴(𝑡, 𝑟), and 𝐵 =𝐵(𝑡, 𝑟). The energy-momentum tensor for anisotropic fluid is

𝑇𝑎𝑏 = (𝜇 + 𝑝⊥)𝑉𝑎𝑉𝑏 + 𝑝⊥𝑔𝑎𝑏 + (𝑝𝑟 − 𝑝⊥) 𝜒𝑎𝜒𝑏, (7)
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where 𝜇, 𝑝𝑟, 𝑝⊥, 𝜒𝑎, and 𝑉𝑎 are the energy density, radial
pressure, tangential pressure, unit four vector along the radial
direction, and four velocity of the fluid, respectively. For the
metric in (6), 𝑉𝑎 and 𝜒𝑎 are given by [60] as follows:

𝑉𝑎 = 𝐴−1𝛿𝑎0 ,
𝜒𝑎 = 𝐵−1𝛿𝑎1 (8)

which satisfy

𝑉𝑎𝑉𝑎 = −1,
𝜒𝑎𝜒𝑎 = 1,
𝜒𝑎𝑉𝑎 = 0.

(9)

The expansion scalar is

Θ = 1𝐴 (𝐵̇𝐵 + 3𝑅̇𝑅 ) . (10)

The dimensionless measure of anisotropy is defined as

󳵻𝑎 = 𝑝𝑟 − 𝑝⊥𝑝𝑟 . (11)

Equation (3) for the metric in (6) with the help of (7) is given
as follows:

𝜇 = 12𝛼𝐴4𝐵5𝑅3 [𝑅̇ (𝑅̇ (𝐴󸀠2𝑅 − 𝐵2𝐵̇𝑅̇
+ 𝐴2 (𝐵𝑅󸀠󸀠 − 𝐵󸀠𝑅󸀠)) 𝐵2 + 𝐴2𝐵2𝐵̇ (𝑅󸀠2 − 𝐵2))
+ 2𝐴𝐴󸀠𝐵2𝑅𝑅̇ (𝐵̇𝑅󸀠 − 𝐵𝑅̇󸀠) + 𝐴4 (𝐵2 − 𝑅󸀠2) (𝐵𝑅󸀠󸀠
− 𝐵󸀠𝑅󸀠)] − 3𝐴2𝐵3𝑅2 [𝐵3 (𝐴2 + 𝑅̇2) + 𝐴2𝑅󸀠 (𝐵󸀠𝑅
− 𝐵𝑅󸀠) + 𝐵𝑅 (𝐵𝐵̇𝑅̇ − 𝐴2𝑅󸀠󸀠)] ,

(12)

𝑝𝑟 = 12𝛼𝐴5𝐵4𝑅3 [𝐵2𝑅̇2 (𝐴̇𝑅̇𝐵2 − 𝐴 (2𝐴󸀠2𝑅 + 𝐵2𝑅̈))
+ 𝐴2 ((𝐴2𝐴󸀠𝑅󸀠 + 𝐵2 (𝐴̇𝑅̇ − 𝐴𝑅̈)) (𝑅󸀠2 − 𝐵2)
+ 𝐵2𝐴󸀠𝑅󸀠𝑅̇2)] + 3𝐴3𝐵2𝑅2 [𝐴2 ((𝐴󸀠𝑅 + 𝐴𝑅󸀠) 𝑅󸀠
− 𝐴𝐵2) + 𝐵2 ((𝐴̇𝑅̇ − 𝐴𝑅̈) 𝑅 − 𝐴𝑅̇2)] ,

(13)

𝑝⊥ = −4𝛼𝐴5𝐵5𝑅2 [𝐵3𝐵̇ (3𝐵𝐴̇𝑅̇2 + 𝐴 (𝐴󸀠2𝑅̇
− 𝐵 (𝐵̈𝑅̇ + 2𝐵̇𝑅̈))) + (𝐴𝐵)2 (𝑅̇ (𝐵𝐴󸀠󸀠𝑅̇
+ 𝐴󸀠 (4𝐵̇𝑅󸀠 − 2𝐵𝑅̇󸀠 − 𝐵󸀠𝑅̇)) + 𝐴̇ ((𝐵2 − 𝑅󸀠2) 𝐵̇
+ 2𝑅̇ (𝐵󸀠𝑅󸀠 − 𝐵𝑅󸀠󸀠))) + 𝐴3𝐵 (𝐵̇2𝑅󸀠2 − 𝐵3𝐵̈
+ 𝐵𝑅󸀠 (𝐵̈𝑅󸀠 − 2𝐵󸀠𝑅̈ − 2𝐵̇𝑅̇󸀠) + 𝐵2 (𝑅̇󸀠2 + 2𝑅̈𝑅󸀠󸀠))
+ 𝐴4 (𝐴󸀠󸀠𝐵 (𝐵2 − 𝑅󸀠2) − 𝐴󸀠 (𝐵 (𝐵𝐵󸀠 + 2𝑅󸀠𝑅󸀠󸀠)

− 3𝐵󸀠𝑅󸀠2))] − 1(𝐴𝐵)3 𝑅2 [𝑅2 ((𝐴𝐵̈ − 𝐴̇𝐵̇) 𝐵2
+ 𝐴2 (𝐴󸀠𝐵󸀠 − 𝐴󸀠󸀠𝐵)) + 2𝑅 (𝐴𝐵 ((𝐵̇𝑅̇ + 𝐵𝑅̈) 𝐵
− 𝐴 (𝐴󸀠𝑅󸀠 + 𝐴𝑅󸀠󸀠)) + 𝐴3𝐵󸀠𝑅󸀠 − 𝐵3𝐴̇𝑅̇)
+ 𝐴𝐵 (𝐵2 (𝐴2 + 𝑅̇2) − 𝐴2𝑅󸀠2)] ,

(14)

0 = −12𝛼𝐴4𝐵4𝑅3 (𝐴󸀠𝐵𝑅̇ − 𝐴𝐵𝑅̇󸀠 + 𝐴𝐵̇𝑅󸀠) (2𝐴2 (𝐴󸀠𝐵󸀠
− 𝐴󸀠󸀠𝐵)𝑅2 − 𝐵2 (𝐴𝐵𝑅̇2 + 2𝐴̇𝐵̇𝑅2) + 𝐴3𝐵 (𝑅󸀠2
− 𝐵2)) + 3𝐴𝐵𝑅 (𝐴󸀠𝐵𝑅̇ − 𝐴𝐵𝑅̇󸀠 + 𝐴𝐵̇𝑅󸀠)

(15)

where the prime and dot denote the partial derivative with
respect to r and t, respectively. The auxiliary solution of (15)
is

𝐴 = 𝑅̇𝑅𝛽 ,
𝐵 = 𝑅𝛽. (16)

By Using the auxiliary solution in (16) in (10), the expansion
scalar becomes

Θ = 𝑅𝛽−1 (3 + 𝛽) . (17)

For 𝛽 > −3 and 𝛽 < −3, we obtained expansion and collapse
regions.Thematter components from (12), (13), and (14) with
the help of (16) are

𝜇 = 12𝛼𝑅4(1−𝛽) [𝑅2𝛽 ((((2𝑅𝑅̇
󸀠

𝑅̇ − 𝛽𝑅󸀠)𝑅󸀠 − 𝑅2𝛽 − 1)
⋅ 𝑅4𝛽 − 𝛽𝑅󸀠2) + 𝑅󸀠4)𝛽 + 𝑅2𝛽 (1 + 𝑅2𝛽) − 𝑅󸀠2)
⋅ 𝑅𝑅󸀠󸀠) − 𝑅4𝛽𝑅2𝑅̇󸀠2𝑅̇2 ] − 3𝑅2(1+𝛽) [(𝛽 − 1) 𝑅󸀠2 − 𝑅𝑅󸀠󸀠
+ 𝑅2𝛽 (1 + 𝑅2𝛽 (1 + 𝛽)] ,

(18)

𝑝𝑟 = 12𝛼𝑅4(1−𝛽) [[𝑅
4𝛽 (𝑅2𝛽 (1 − 𝑅2𝛽) + 𝑅󸀠(4𝑅𝑅̇󸀠𝑅̇

+ 𝑅󸀠 ( 1𝑅2𝛽 + 𝑅󸀠2𝑅4𝛽 − 2)))𝛽 + 𝑅𝑅󸀠𝑅̇󸀠𝑅̇ ((1 − 𝑅2𝛽)
⋅ 𝑅2𝛽 − 𝑅󸀠2) − 2(𝑅2𝛽𝑅𝑅̇󸀠𝑅̇ )2]] + 3𝑅2 [ 1𝑅2𝛽 (𝑅󸀠2
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− 𝑅𝑅̈ − 𝑅̇2) + 1𝑅4𝛽 (𝑅𝑅̇𝑅̈ + 𝑅󸀠
󸀠𝑅̇ −𝛽𝑅̇ (𝑅̇2 + 󸀠𝑅2))

− 1] ,
(19)

𝑝⊥ = 4𝛼𝑅4(1+𝛽) [𝑅4𝛽 (𝛽 ((4𝛽 − 1)𝑅4𝛽 + 𝑅2𝛽 (2𝛽 − 1))
− 𝛽𝑅󸀠󸀠 + 𝑅󸀠2 (𝛽2 − 1)) + 𝑅2𝛽 (𝑅𝑅󸀠󸀠𝛽 − 𝑅󸀠2 (1 + 𝛽
+ 𝛽2)) + 𝑅󸀠2 (𝑅󸀠2 (1 + 𝛽 + 3𝛽2) − 3𝛽𝑅𝑅󸀠󸀠)
+ 𝑅2𝛽𝑅𝑅̇ ((𝑅̇󸀠𝑅󸀠𝛽 − 𝑅𝑅̇󸀠󸀠) (𝑅2𝛽 + 1))
+ 𝑅𝑅󸀠𝑅̇ (𝑅󸀠 (𝑅𝑅̇󸀠󸀠 − 5𝛽𝑅̇𝑅󸀠) + 2𝑅𝑅̇󸀠𝑅󸀠󸀠)]
− 1𝑅2(1+𝛽) [𝑅2𝛽 − 𝑅󸀠2 (𝛽2 − 3𝛽 + 2) + 𝑅4𝛽 (2𝛽2 + 3𝛽
+ 1) + 𝑅𝑅󸀠󸀠 (𝛽 − 2) + 𝑅̇𝑅 (𝑅󸀠𝑅̇󸀠 (3𝛽 − 2) − 𝑅𝑅̇󸀠󸀠)] .

(20)

TheMisner-Sharp mass function m(t,r) is given as follows:

𝑚 (𝑡, 𝑟) = (𝑛 − 2)2𝑘2𝑛 𝑉𝑘𝑛−2 (𝑅𝑛−3 (𝑘 − 𝑔𝑎𝑏𝑅,𝑎𝑅,𝑏)
+ (𝑛 − 3) (𝑛 − 4) 𝛼 (𝑘 − 𝑔𝑎𝑏𝑅,𝑎𝑅,𝑏)2)

(21)

where comma represents partial differentiation and the sur-
face of (𝑛 − 2) dimensional unit space is represented by 𝑉𝑘𝑛−2.
By using 𝑉1𝑛−2 = (2𝜋(𝑛 − 1)/2)/Γ((𝑛 − 1)2), 𝑘 = 1 with 𝑛 = 5,
and (16) in (21), we get

𝑚(𝑟, 𝑡) = 32 (𝑅2 (1 − 𝑅󸀠2𝑅2𝛽 + 𝑅2𝛽)
+ 2𝛼(1 − 𝑅󸀠2𝑅2𝛽 + 𝑅2𝛽)

2) .
(22)

The specific values of 𝛽 and 𝑅(𝑟, 𝑡) form an anisotropic
configuration. When 𝑅󸀠 = 𝑅2𝛽, there exist trapped surfaces
at 𝑅 = ±√(2/3)𝑚 − 2𝛼, provided that 𝑚 ≥ 3𝛼. Therefore, in
this case, 𝑅󸀠 = 𝑅2𝛽 is trapped surface condition.

3. Generating Solutions

For the different values of 𝛽, expansion scalar Θ < 0 for
collapse and Θ > 0 for expansion solutions are discussed as
follows.

4. Collapse with 𝛽=−7/2
The expansion scalar must be negative in case of the collapse,
so for 𝛽 < −3, from (17), we getΘ < 0. By assuming 𝛽 = −7/2

and the trapped condition 𝑅󸀠 = 𝑅2𝛽 and then integration, we
obtain

𝑅𝑡𝑟𝑎𝑝 = (8𝑟 + 𝑧1 (𝑡))1/8 . (23)

It is to noted that (23) is only valid for the trapped surface,
and it can not be used everywhere. In order to discuss the
solutions outside the trapped surface, we follow Glass [79]
and take the value of 𝑅(𝑟, 𝑡) as posivite scalar (𝑘 > 1) multiple
of 𝑅𝑡𝑟𝑎𝑝, such that 𝑅(𝑟, 𝑡) > 𝑅𝑡𝑟𝑎𝑝. Hence the convenient form
of the areal radius 𝑅(𝑟, 𝑡) for the solution outside the trapped
surface is given by

𝑅 = 𝑘 (8𝑟 + 𝑧1 (𝑡))1/8 ,
𝑧1 (1) = 1 + 𝑡2. (24)

Thus (18)–(20) with (24) and 𝛽 = −7/2 yield the following set
of equations:

𝜇 = −21𝛼𝑘18 (8𝑟 + 𝑧1)9/4 [−2 + 𝑘
7 ((11 − 2𝑘16) 𝑘9

− 2 (8𝑟 + 𝑧1)7/8 (1 − 𝑘25))]
+ 32𝑘9 (8𝑟 + 𝑧1)9/8 [5 (𝑘

16 − 1) + 2𝑘7 (8𝑟 + 𝑧1)7/8] ,
(25)

𝑝𝑟 = −42𝛼𝑘18 (8𝑟 + 𝑧1)9/4 [−1 + 𝑘7 ((9 − 𝑘16) 𝑘9
− (8𝑟 + 𝑧1)7/8 (1 − 𝑘25))]
− 31024𝑘2 (8𝑟 + 𝑧1)5/4 [𝑘9 (896𝑘7𝑧̇1 + (8𝑟 + 𝑧1)

1/8

⋅ (1024 + 96𝑧̇12 − 𝑘8𝑧̇1 (128 + 7𝑧̇12))) + (128𝑟
+ 16𝑧1) ((8𝑟 + 𝑧1)1/8 (𝑘8𝑧̇1 − 8) 𝑘9𝑧̈1 − 64)] ,

(26)

𝑝⊥ = 𝛼𝑘18 (8𝑟 + 𝑧1)9/4 [210 − 𝑘
7 ((375 − 165𝑘16) 𝑘9

− (8𝑟 + 𝑧1)7/8 (112 − 67𝑘25))]
+ 14𝑘9 (8𝑟 + 𝑧1)9/8 [60 − 𝑘

7 (315𝑘9
− 4 (8𝑟 + 𝑧1)7/8)] .

(27)

In this case, (22) is reduced to the following form:

𝑚 (𝑟, 𝑡) = 32 [𝑘2 (8𝑟 + 𝑧1)1/4 − 𝑘11(8𝑟 + 𝑧1)5/8
+ (8𝑟 + 𝑧1)1/8𝑘5
+ 2𝛼(1 − 𝑘9(8𝑟 + 𝑧1)7/8 +

1𝑘7 (8𝑟 + 𝑧1)7/8)] .
(28)
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Figure 1: Plot of density along 𝑟 and 𝑡 for 𝑘 = 2.5 and the different
values of 𝛼.
Equation (11), with the help of (26) and (27), becomes

Δ𝑎 = 1 − 𝐶1 + 𝐶2𝐶3 + 𝐶4 (29)

where 𝐶1 = 45𝛼/(8𝑟 + 𝑧1)11/8, 𝐶2 = (1/(8𝑟 + 𝑧1)1/8)[45/4(8𝑟 + 𝑧1) + 1], 𝐶3 = −294𝛼(8𝑟 + 𝑧1)−9/4, and 𝐶4 =−(3/1024)[896𝑧̇1/(8𝑟+𝑧1)5/4 + (1/(8𝑟+𝑧1)9/8)(1024−128𝑧̇1+96𝑧̇12 − 7𝑧̇13) + ((128𝑟 + 16𝑧1)/(8𝑟 + 𝑧1)5/4)((8𝑟 + 𝑧1)1/8(𝑧̇1 −8)𝑧̈1 − 64)].
The energy conditions for the curvature matter coupled

gravity are

(i) Null energy condition: 𝜇 + 𝑝𝑟 ≥ 0; 𝜇 + (1/2)𝑝𝑡 ≥ 0
(ii) Weak energy condition: 𝜇 ≥ 0, 𝜇 + 𝑝𝑟 ≥ 0, and 𝜇 +(1/2)𝑝𝑡 ≥ 0
(iii) Strong energy condition: 𝜇 + (1/4)𝑝𝑟 + (1/2)𝑝𝑡 ≥ 0
In this case, we analyzed our results for time profile 𝑧1 =1 + 𝑡2, 𝑘 = 2.5, and the different values of 𝛼. For 𝛽 =−7/2, we obtained Θ < 0; the energy density is decreasing

with respect to radius r and time t and remains positive for
different values of coupling constant 𝛼 as shown in Figure 1.
As the density is decreasing, spherical object goes to collapse
outward the point. It is observed in Figure 2 that the radial
pressure is increasing outward the center, and it is also noted
in Figure 3 that the tangential pressure is increasing with
respect to radius r and time t at various values of 𝛼. Due to
this increase of radial and tangential pressure on the surface,
the sphere loses the equilibrium state, which may cause the
collapse of the sphere outward the center. Figure 4 shows that
the mass is decreasing function of r and t during the collapse
at different values of 𝛼. The anisotropy is directed outward
when 𝑝𝑡 < 𝑝𝑟; this implies that Δ𝑎 > 0 and it is directed
inward when 𝑝𝑟 < 𝑝𝑡; this implies that Δ𝑎 < 0. In this caseΔ𝑎 > 0 for increasing r and t at various values of 𝛼 as shown in
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Figure 2: Behavior of radial pressure along 𝑟 and 𝑡 for 𝑘 = 2.5 and
the different values of 𝛼.
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Figure 3: Tangential pressure along 𝑟 and 𝑡 for 𝑘 = 2.5 and the
different values of 𝛼.
Figure 5. This represents that the anisotropy force allows the
formation of more massive object and has attractive force forΔ𝑎 < 0 near the center. In the present case, the GB coupling
term 𝛼 affects the anisotropy and the homogeneity of the
collapsing sphere. All the energy conditions are plotted in
Figure 6; these plots represent that all the energy conditions
are satisfied for considered parameters in collapse solutions.

5. Expansion with 𝛽=−5/2
In this case, the expansion scalar Θ must be positive. When𝛽 > −3, from (17), the expansion scalar Θ is positive. We
assume that

𝑅 = (𝑟2 + 𝑟20)−1 + 𝑧2 (𝑡) , (30)

where 𝑟0 is constant and we take 𝑧2 = 𝑧2(𝑡) = 1 + 𝑡2.
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Figure 5: Plot of anisotropy parameter along 𝑟 and 𝑡 for 𝑘 = 2.5 and
the different values of 𝛼.

For 𝛽 = −5/2, (18), (19), and (20) take the forms

𝜇 = 𝛼[30𝑅9 ( 1𝑅5 + 1) + 6𝑅 (5𝑅󸀠2 + 2𝑅𝑅󸀠󸀠) (1
− 𝑅5𝑅󸀠2) + 1𝑅3 (12𝑅󸀠󸀠 − 75𝑅

󸀠2

𝑅 ) − 12 ̇𝑅󸀠𝑅2𝑅̇ ( 1̇𝑅
+ 5𝑅󸀠𝑅 )] − 32 [ 1𝑅2 ( 3𝑅5 − 2) + 𝑅3 (7𝑅󸀠2
+ 2𝑅𝑅󸀠󸀠)] ,

(31)

𝑝𝑟 = −6𝛼[ 2 ̇𝑅󸀠𝑅2𝑅̇ (2 ̇𝑅󸀠𝑅̇ + 9𝑅󸀠𝑅 ) + 𝑅𝑅󸀠(2𝑅 ̇𝑅󸀠𝑅̇
+ 5𝑅̇3𝑅󸀠)(𝑅5𝑅󸀠2 − 1) + 5𝑅̇3𝑅14 (𝑅5 (5𝑅5𝑅󸀠2 − 1)
− 1)] + 34 [2𝑅3𝑅󸀠(2𝑅

̇𝑅󸀠𝑅̇ + 7𝑅󸀠) − 𝑅̈𝑅6𝑅̇2 ( 5𝑅7/2
+ 2) − 1𝑅2 ( 25𝑅17/2 + 4𝑅5 + 4)] ,

(32)

𝑝⊥ = 𝛼[ 1𝑅4 (110𝑅10 + 60𝑅5 + 21𝑅󸀠2) + 𝑅𝑅󸀠2 (69𝑅5𝑅󸀠2
− 19) + 10𝑅󸀠󸀠 ( 1𝑅3 + 𝑅2 (3𝑅5𝑅󸀠2 − 1))
+ 2𝑅2𝑅̇ (𝑅̇󸀠󸀠 (𝑅5 (𝑅5𝑅󸀠2 − 1) − 1)
+ 𝑅󸀠𝑅̇󸀠𝑅 (𝑅5 (4𝑅6𝑅󸀠󸀠 + 25𝑅5𝑅󸀠2 − 15) − 5)))]
+ 1𝑅2 ( 6𝑅5 + 1) − 92𝑅3 (𝑅𝑅󸀠󸀠 + 72𝑅󸀠2)
− 𝑅4𝑅̇ (𝑅𝑅̇󸀠󸀠 − 192 𝑅󸀠𝑅̇󸀠) .

(33)

Assuming that 𝐹(𝑟, 𝑡) = 1+𝑧2(𝑡)(𝑟2 +𝑟20 ) and 𝑅 = 𝐹/(𝑟2 +𝑟20 ),
(31), (32), and (33) in this case are

𝜇 = 𝛼[10(𝑟2 + 𝑟20𝐹 )9(1 + (𝑟2 + 𝑟20𝐹 )5)
+ 8𝐹2(𝑟2 + 𝑟20)5 (

4𝑟2𝐹5(𝑟2 + 𝑟20)9 − 1)(𝐹 (5𝑟
2 + 𝑟20)

− 𝑧2 (𝑟2 + 𝑟20) (𝑟20 − 3𝑟2)) + 4𝑟2( 20𝐹(𝑟2 + 𝑟20)5 −
25𝐹4

− 40𝑟2𝐹6(𝑟2 + 𝑟20)14) − 8 (5𝑟2 + 𝑟20)𝐹2 + 8𝑧2𝐹3 (𝑟2 + 𝑟20) (𝑟20
− 3𝑟2)] − 32 [[(𝑟

2 + 𝑟20)2(3 (𝑟2 + 𝑟20)5𝐹7 − 2𝐹2)
+ 4𝐹3(𝑟2 + 𝑟20)6 ((𝑟

2
0 − 3𝑟2) 𝑧2 − 𝐹2 (5𝑟2 + 𝑟20)(𝑟2 + 𝑟20)

+ 7𝑟2(𝑟2 + 𝑟20))]] ,

(34)
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Figure 6: Plot of energy conditions along 𝑟 and 𝑡 for 𝑘 = 2.5.

𝑝𝑟 = 6𝛼[5(𝑟2 + 𝑟20𝐹 )9(1 + (𝑟2 + 𝑟20𝐹 )5)
− 4𝑟2 (25𝐹4 − 5𝐹(𝑟2 + 𝑟20)5 (1 −

4𝑟2𝐹5(𝑟2 + 𝑟20)9)]

+ 34 [[−2
̈𝑧2̇𝑧2 (𝑟
2 + 𝑟20𝐹 )19/2(5 + 2( 𝐹𝑟2 + 𝑟20 )

7/2)

+ 56𝑟2𝐹3(𝑟2 + 𝑟20)7 − 25(
𝑟2 + 𝑟20𝐹 )21/2 − 4(𝑟2 + 𝑟20𝐹 )7

− 4(𝑟2 + 𝑟20𝐹 )2]] ,

(35)

𝑝⊥ = 𝛼[[60(
𝑟2 + 𝑟20𝐹 )9 + 110(𝑟2 + 𝑟20)8𝐹14

+ ( 10𝐹2(𝑟2 + 𝑟20)5 −
10𝐹3 − 60𝑟2𝐹7(𝑟2 + 𝑟20)14)

⋅ (2𝐹 (5𝑟2 + 𝑟20) − 2𝑧2 (𝑟2 + 𝑟20) (𝑟20 − 3𝑟2)) + (69
− 16𝐹2)( 16𝑟4𝐹6(𝑟2 + 𝑟20)14) + 𝑟2𝐹(𝑟2 + 𝑟20)5 (64𝐹2 − 76)

+ 𝑟2𝐹2 (84𝐹2 + 64)]] + (𝑟2 + 𝑟20𝐹 )2 + 6(𝑟2 + 𝑟20𝐹 )7

+ 𝐹3(𝑟2 + 𝑟20)7 (𝑟2 (16𝐹2 − 63) +
9𝐹2 (2𝐹 (5𝑟2 + 𝑟20)

− 2𝑧2 (𝑟2 + 𝑟20) (𝑟20 − 3𝑟2))) .

(36)

The mass function (22) in this case reduces to

𝑚(𝑟, 𝑡) = 32 [[[
𝐹2(𝑟2 + 𝑟20)2 (1

− ( 𝐹󸀠𝑟2 + 𝑟02 − 2𝑟𝐹(𝑟2 + 𝑟02)2)
2 ( 𝐹𝑟2 + 𝑟02 )

5

+ (𝑟2 + 𝑟02)5𝐹5 ) + 2𝛼(1
− ( 𝐹󸀠𝑟2 + 𝑟02 − 2𝑟𝐹(𝑟2 + 𝑟02)2)

2 ( 𝐹𝑟2 + 𝑟02 )
5

+ (𝑟2 + 𝑟02)5𝐹5 )
2]]]

.

(37)

With the help of (35) and (36), (11) takes the form

Δ𝑎 = 1 − 𝐸1 + 𝐸2𝐸3 + 𝐸4 (38)

where 𝐸1 = 𝛼[60((𝑟2 + 𝑟20)/𝐹)9 + 110((𝑟2 + 𝑟20)8/𝐹14) +(10𝐹2/(𝑟2 + 𝑟20)5 − 10/𝐹3 − 60𝑟2𝐹7/(𝑟2 + 𝑟20 )14)(2𝐹(5𝑟2 + 𝑟20) −2𝑧2(𝑟2 + 𝑟20 )(𝑟20 − 3𝑟2)) + (69 − 16𝐹2)(16𝑟4𝐹6/(𝑟2 + 𝑟20)14) +(𝑟2𝐹/(𝑟2 + 𝑟20)5)(64𝐹2 − 76) + (𝑟2/𝐹2)(84/𝐹2 + 64)], 𝐸2 =((𝑟2 + 𝑟20 )/𝐹)2 + 6((𝑟2 + 𝑟20)/𝐹)7 + (𝐹3/(𝑟2 + 𝑟20)7)(𝑟2(16𝐹2 −63) + (9𝐹/2)(2𝐹(5𝑟2 + 𝑟20) − 2𝑧2(𝑟2 + 𝑟20)(𝑟20 − 3𝑟2))), 𝐸3 =6𝛼[5((𝑟2 + 𝑟20)/𝐹)9(1 + ((𝑟2 + 𝑟20)/𝐹)5) − 4𝑟2(25/𝐹4 − (5𝐹/(𝑟2 +𝑟20)5)(1 − 4𝑟2𝐹5/(𝑟2 + 𝑟20 )9)], and 𝐸4 = (3/4)[−2( ̈𝑧2/ ̇𝑧2)((𝑟2 +𝑟20)/𝐹)19/2(5+2(𝐹/(𝑟2 +𝑟20))7/2) + 56𝑟2𝐹3/(𝑟2 +𝑟20)7 −25((𝑟2 +𝑟20)/𝐹)21/2 − 4((𝑟2 + 𝑟20)/𝐹)7 − 4((𝑟2 + 𝑟20)/𝐹)2].
In this case, we take 𝑟0 = 0.5, 𝑧2 = 1 + 𝑡2, and the

various values of 𝛼 and analyze our results. For 𝛽 = −5/2,
we obtained Θ > 0; Figure 7 shows that, for the variation of𝛼, the energy density increases for the time profile.The radial
pressure is initially maximum and then decreases along 𝑡; the
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Figure 8: Radial pressure behavior along 𝑟 and 𝑡 for 𝑟0 = 0.5 and the
different values of 𝛼.
tangential pressure is decreasing near the center along 𝑡 at
different values of 𝛼 as shown in Figures 8 and 9. The mass
of the sphere is increasing along 𝑡 and the different values of𝛼 as shown in Figure 10. In this case, 𝑝𝑡 > 𝑝𝑟; this implies
that Δ𝑎 > 0. The anisotropy parameter increases in this case
for the different values of 𝛼 as shown in Figure 11. It is shown
that, firstly, the anisotropy decreases and then increases with
radial increase of star for various values of 𝛼.The energy con-
ditions for the expansion case are also satisfied as shown in
Figure 12.

6. Summary

There has been a great interest in studying the relativistic
anisotropic systems due to the existence of such systems in
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Figure 9: Tangential pressure behavior along 𝑟 and 𝑡 for 𝑟0 = 0.5
and the different values of 𝛼.
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the astronomical objects. The exact solutions of anisotropic
sphere are helpful to determine the anisotropy of the universe
during any era. Barrow and Maartens [80] studied the effects
of anisotropy on the late time expansion of inhomogeneous
universe. Mahmood et al. [81] modeled the exact solution
for the gravitational collapse and expansion of charged
anisotropic cylindrical source.

The EGB gravity theory is the low energy limits of super-
symmetric string theory of gravity [82]. The gravitational
collapse is a highly dissipative process, in which a big amount
of energy is released [37].The dynamic of an anisotropic fluid
collapse is observed in 5-dimensional Einstein-Gauss-Bonnet
gravity [71]. Collin [83] modeled the inhomogeneous cosmo-
logical nonstatic expanding solutions. For the suitable values
of 𝑅(𝑡, 𝑟) and 𝛽, Glass [79] observed anisotropic collapsing
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Figure 12: Plot of energy conditions along 𝑟 and 𝑡 for 𝑟0 = 0.5 at.
and expanding of spherical object. We have modeled the field
equations of anisotropic fluid in 5𝐷 EGB gravity.

The aim of this paper is to study the generating solutions
for anisotropic spherical symmetric fluid in 5𝐷EGB theory of
gravity. We have used auxiliary solution of one field equation
to obtain the solutions for remaining field equations. The
solution for expansion scalar Θ has been depending on the
range of free constant 𝛽, for which Θ being positive or
negative leads to expansion and collapse of the fluid. We use

the condition
󸀠𝑅= 𝑅2𝛽 in (22), which leads to two trapped

horizons at 𝑅 = ±√(2/3)𝑚 − 2𝛼, provided that 𝑚 ≥ 3𝛼. The
curvature singularity is hidden at the common center of the
inner (𝑅+) and outer (𝑅−) horizon. The matter components
like density, radial pressure, tangential pressure, anisotropic
parameter, and mass functions have been determined in the5𝐷 EGB theory of gravity. Equation (17) implies that, for𝛽 = −3,Θ = 0, and for𝛽 < −3 the expansion scalar is negative
and for 𝛽 > −3 the expansion scalar is positive, which lead to
bouncing, collapsing, and expanding, respectively. In other
words, 𝛽 > 0 and 𝛽 ∈ (−3,∞); and 𝛽 < 0 and 𝛽 ∈ (−∞,−3).
The solutions have been modeled by taking 𝛽 = −7/2 and

𝛽 = −5/2 for collapse and expansion of gravitating source,
respectively.

We assume that the areal radius 𝑅(𝑟, 𝑡) = 𝑘(8𝑟 + 𝑧(𝑡))1/8
outside the sphere for 𝑘 > 1. It is interesting that, for 𝑘 =1, 𝑅(𝑟, 𝑡) = 𝑅𝑡𝑟𝑎𝑝 and it is valid only for trapped surface, so
we take 𝑘 > 1 for collapsing solutions outside the trapped
surface. Further, 𝑘 < 0 should not be considered because this
leads to the solutions corresponding to the inner surface of
the trapped region, which is not the case of interest in the
present discussion.

The dynamics of the spherical fluid are discussed in
both cases. The density of the matter is decreasing/increasing
in collapse/expansion with the arbitrary choice of con-
stant/parameter, time profile, and different values of GB term𝛼. The radial pressure, tangential pressure, and mass have
different behaviors in both cases.The anisotropy is increasing
in both cases; in other words, this nonvanishing pressure
anisotropy in both cases leads to collapse and expansion of
the fluid. The energy conditions are satisfied for collapse
and expansion; this shows that our solutions are physically
acceptable.



10 Advances in High Energy Physics

Data Availability

The data used to support the findings of this study are
available from the corresponding author upon request.

Conflicts of Interest

The authors declare that there are no conflicts of interest
regarding the publication of this manuscript.

Acknowledgments

Oneof the authors, G.Abbas, acknowledges the financial sup-
port from HEC, Islamabad, Pakistan, under NRPU project
with Grant no. 20-4059/NRPU/R&D/HEC/14/1217.

References

[1] T. Kaluza, “On theUnification Problem in Physics,” Sitzungsber.
Preuss. Akad. Wiss. Berlin (Math. Phys.), pp. 966–972, 1921.

[2] O. Klein, “Quantum theory and five-dimensional theory of
relativity,” Zeitschrift für Physik, vol. 37, p. 895, 1926.

[3] O. Klein, “The atomicity of electricity as a quantum theory law,”
Nature, vol. 118, no. 2971, p. 516, 1926.

[4] E. Witten, “Search for a realistic Kaluza-Klein theory,” Nuclear
Physics B, vol. 186, p. 412, 1981.

[5] M. B. Green and J. H. Schward, “Anomaly cancellations in
supersymmetric D =10 gauge theory and superstring theory,”
Physics Letters, vol. 149B, p. 117, 1984.

[6] D. J. Gross, J. A. Harvey, E. Martinec, and R. Rohm, “Heterotic
string,” Physical Review Letters, vol. 54, no. 6, pp. 502–505, 1985.

[7] B. Zumino, “Gravity theories in more than four dimensions,”
Physics Reports, vol. 137, no. 1, pp. 109–114, 1986.

[8] D. G. Boulware and S. Deser, “String-generated gravitymodels,”
Physical Review Letters, vol. 55, p. 1039, 1985.

[9] B. Zwiebach, “Berkeley Preprint UCB.PTH-85/10”.
[10] V. P. C. Pedro, A. R. H. Carlos, K. Burkhard, K. Jutta, and

R. Eugen, “Shadows of Einstein–dilaton–Gauss–Bonnet black
holes,” Physics Letters B, vol. 768, pp. 373–379, 2017, arXiv:
1701.00079v2 [gr-qc].

[11] G.Abbas, A. Kanwal, andM. Zubair, “Anisotropic compact stars
in f (T) gravity,” Astrophysics and Space Science, vol. 357, no. 2,
article 109, 2015.

[12] G. Abbas and M. Zubair, “Dynamics of anisotropic collapsing
spheres in Einstein Gauss-Bonnet gravity,” Modern Physics
Letters A, vol. 30, no. 8, 1550038, 8 pages, 2015.

[13] D. J. Gross and J. H. Sloan, “The quartic effective action for the
heterotic string,” Nuclear Physics B, vol. 291, pp. 41–89, 1987.

[14] M. C. Bento and O. Bertolami, “Maximally symmetric cosmo-
logical solutions of higher-curvature string effective theories
with dilatons,” Physics Letters B, vol. 368, p. 198, 1996.

[15] N. Dadhich, A. Molina, and A. Khugaev, “Uniform density
static fluid sphere in Einstein-Gauss-Bonnet gravity and its
universality,” Physical Review D: Particles, Fields, Gravitation
and Cosmology, vol. 81, no. 10, 2010.

[16] I. Antoniadis, J. Rizos, and K. Tamvakis, “Singularity-free cos-
mological solutions of the superstring effective action,” Nuclear
Physics B, vol. 415, p. 497, 1994.

[17] P. Kanti, J. Rizos, and K. Tamvakis, “Singularity-free cosmolog-
ical solutions in quadratic gravity,” Physical Review D: Particles,
Fields, Gravitation and Cosmology, vol. 59, no. 8, Article ID
083512, 1999.

[18] P. Kanti, N. E. Mavromatos, J. Rizos, K. Tamvakis, and E.
Winstanley, “Dilatonic black holes in higher curvature string
gravity,” Physical Review D: Particles, Fields, Gravitation and
Cosmology, vol. 54, no. 8, pp. 5049–5058, 1996.

[19] P. Kanti, N. E. Mavromatos, J. Rizos, K. Tamvakis, and E.
Winstanley, “Dilatonic black holes in higher curvature string
gravity. II. Linear stability,” Physical Review D: Particles, Fields,
Gravitation and Cosmology, vol. 57, no. 10, pp. 6255–6264, 1998.

[20] T. Torii, H. Yajima, K. I. Maeda, and Phy., “Dilatonic black holes
with a Gauss-Bonnet term,” Physical Review D, vol. 55, p. 739,
1997.

[21] F. R. Tangherlini, “Schwarzschild field in n dimensions and the
dimensionality of space problem,” Il Nuovo Cimento, vol. 27, no.
3, pp. 636–651, 1963.

[22] R. C.Myers andM. J. Perry, “Black holes in higher-dimensional
space-times,”Annals of Physics, vol. 172, no. 2, pp. 304–347, 1986.

[23] J. T. Wheeler, “Symmetric solutions to the Gauss-Bonnet
extended Einstein equations,” Nuclear Physics B, vol. 268, p. 737,
1986.

[24] T. Torii and H. Maeda, “Spacetime structure of static solutions
in Gauss-Bonnet gravity: Neutral case,” Physical Review D, vol.
71, Article ID 011901, 2005.

[25] R. C. Myers and J. Z. Simon, “Black-hole thermodynamics in
Lovelock gravity,” Physical Review D: Particles, Fields, Gravita-
tion and Cosmology, vol. 38, 1988.

[26] R. G. Cai, “Gauss-Bonnet black holes in AdS spaces,” Physical
Review D: Particles, Fields, Gravitation and Cosmology, vol. 65,
2002.

[27] R. G. Cai and Q. Guo, “Gauss-Bonnet black holes in dS spaces,”
Physical Review D: Particles, Fields, Gravitation and Cosmology,
vol. 69, 2004.

[28] T. Kobayashi, “A Vaidya-type radiating solution in Einstein-
Gauss-Bonnet gravity and its application to braneworld,” Gen-
eral Relativity and Gravitation, vol. 37, p. 1869, 2005.

[29] H. Maeda, “Effects of Gauss-Bonnet term on the final fate of
gravitational collapse,” Classical and Quantum Gravity, vol. 23,
no. 6, pp. 2155–2169, 2006.

[30] E. Ma, “Verifiable radiative seesaw mechanism of neutrino
mass and dark matter,” Physical Review D: Particles, Fields,
Gravitation and Cosmology, vol. 73, Article ID 077301, 2006.

[31] A. E. Dominguez and E. Gallo, “Radiating black hole solutions
in Einstein-Gauss-Bonnet gravity,” Physical Review D, vol. 73,
Article ID 064018, 2006.

[32] S. G. Ghosh and D. W. Deshkar, “Horizons of radiating black
holes in Einstein-Gauss-Bonnet gravity,” Physical Review D:
Particles, Fields, Gravitation and Cosmology, vol. 77, 2008.

[33] S. W. Hawking and G. F. R. Ellis, The Large Scale Structure of
Space-Time, Cambridge University Press, London, UK, 1979.

[34] L. Herrera, N. O. Santos, and G. Le Denmat, “Dynamical
instability for non-adiabatic spherical collapse,” MNRAS, vol.
237, p. 257, 1989.

[35] C. W. Misner and D. H. Sharp, “Relativistic equations for adi-
abatic, spherically symmetric gravitational collapse,” Physical
Review A: Atomic, Molecular and Optical Physics, vol. 136, no.
2, pp. B571–B576, 1964.

[36] C.W.Misner and D. Sharp, “Relativistic equations for spherical
gravitational collapse with escaping neutrinos,” Physical Review
Journals Archive, vol. 137, p. 1360, 1965.



Advances in High Energy Physics 11

[37] L. Herrera and N. O. Santos, “Local anisotropy in self-gravitat-
ing systems,” Physics Reports, vol. 286, no. 2, pp. 53–130, 1997.

[38] L. Herrera, A. Di Prisco, J. L. Hernandez-Pastora, and N.
O. Santo, “On the role of density inhomogeneity and local
anisotropy in the fate of spherical collapse,”Physics Letter A, vol.
237, p. 113, 1998.

[39] L. Herrera and N. O. Santos, “Dynamics of dissipative gravita-
tional collapse,” Physical Review D: Particles, Fields, Gravitation
and Cosmology, vol. 70, 2004.

[40] L. Herrera, A. Di Prisco, and J. Ospino, “Cylindrically symmet-
ric relativistic fluids: a study based on structure scalars,”General
Relativity and Gravitation, vol. 44, no. 10, pp. 2645–2667, 2012.

[41] L. Herrera, “The inertia of heat and its role in the dynamics of
dissipative collapse,” International Journal of Modern Physics D,
vol. 15, p. 1659, 2006.

[42] L. Herrera, N. O. Santos, and A. Wang, “Shearing expansion-
free spherical anisotropic fluid evolution,” Physical Review D,
vol. 78, Article ID 084026, 2008.

[43] G. Abbas, “Phantom energy accretion onto a black hole in
Horava Lifshitz gravity,” Science China Physics, Mechanics and
Astronomy, vol. 57, no. 4, pp. 604–607, 2014.

[44] S. M. Shah and G. Abbas, “Dynamics of charged bulk viscous
collapsing cylindrical source with heat flux,” The European
Physical Journal C, vol. 77, p. 251, 2017.

[45] G. Abbas, “Collapse and expansion of anisotropic plane sym-
metric source,” Astrophysics and Space Science, vol. 350, p. 307,
2014.

[46] G. Abbas, “Cardy-verlinde formula of noncommutative
schwarzschild black hole,” Advances in High Energy Physics,
vol. 2014, Article ID 306256, 4 pages, 2014.

[47] G. Abbas, “Effects of electromagnetic field on the collapse and
expansion of anisotropic gravitating source,” Astrophysics and
Space Science, vol. 352, p. 955, 2014.

[48] G. Abbas and U. Sabiullah, “Geodesic study of regular Hayward
black hole,”Astrophysics and Space Science, vol. 352, p. 769, 2014.

[49] M. Zubair, H. Azmat, and I. Noureen, “Dynamical analysis of
cylindrically symmetric anisotropic sources in f(R, T) gravity,”
The European Physical Journal C, vol. 77, no. 3, 2017.

[50] K. Zhou, Z-Y. Yang, D.-C. Zou, and R-H. Yue, “Spherically
symmetric gravitational collapse of a dust cloud in third-order
lovelock gravity,” International Journal of Modern Physics D, vol.
22, p. 2317, 2011.

[51] K. Zhou, Z. Yang, D. Zou, and R. Yue, “Spherically symmetric
gravitational collapse of a dust cloud in einstein–gauss–bonnet
gravity,”Modern Physics Letters A, vol. 26, no. 28, pp. 2135–2147,
2011.

[52] R.-H. Yue,D.-C. Zou, T.-Y. Yu, andZ.-Y. Yang, “A newmetric for
rotating black holes in Gauss—Bonnet gravity,” Chinese Physics
B, vol. 20, 2011.

[53] K. Zhou, Z.-Y. Yang, D.-C. Zou, and R.-H. Yue, “Static spheri-
cally symmetric star in Gauss—Bonnet gravity,”Chinese Physics
B, vol. 21, 2012.

[54] D.-C. Zou, Z.-Y. Yang, R.-H. Yue, and T.-Y. Yu, “A new metric
for rotating charged Gauss—Bonnet black holes in AdS space,”
Chinese Physics B, vol. 20, 2011.

[55] R. Yue,D. Zou, T. Yu, P. Li, andZ. Yang, “Slowly rotating charged
black holes in anti-de Sitter third order Lovelock gravity,”
General Relativity and Gravitation, vol. 43, no. 8, pp. 2103–2114,
2011.

[56] D.-C. Zou, Z.-Y. Yang, and R.-H. Yue, “Thermodynam-
ics of slowly rotating charged black holes in anti-de sitter

Einstein—Gauss—Bonnet gravity,” Chinese Physics Letters, vol.
28, 2011.

[57] D. Zou, Z. Yang, R. Yue, and P. Li, “Thermodynamics of
gauss–bonnet–born–infeld black holes in ads space,” Modern
Physics Letters A, vol. 26, no. 07, pp. 515–529, 2011.

[58] L.-D. Gou, K. Xue, and G.-C.Wang, “Thermodynamics of third
order lovelock anti-de sitter black holes revisited,”Communica-
tions in Theoretical Physics, vol. 55, p. 499, 2011.

[59] S. Chakraborty, “An alternative f(R, T) gravity theory and the
dark energy problem,” General Relativity and Gravitation, vol.
45, p. 2039, 2013.

[60] G. Abbas and R. Ahmed, “Models of Collapsing and Expanding
Anisotropic Gravitating Source in f(R,T) Theory of Gravity,”
European Physical Journal C, vol. 77, no. 441, 2017.

[61] M. Sharif and A. Siddiqa, “Study of homogeneous and isotropic
universe in 𝑓(𝑅, 𝑇𝜑) gravity,”Advances in Higah Energy Physics,
vol. 2018, 2018.

[62] J. R. Oppenheimer and H. Snyder, “On continued gravitational
contraction,” Physical Review A: Atomic, Molecular and Optical
Physics, vol. 56, no. 5, pp. 455–459, 1939.

[63] D. Markovic and S. L. Shapiro, “Gravitational collapse with a
cosmological constant,” Physical Review D, vol. 61, 2000.

[64] K. Lake, “Gravitational collapse of dust with a cosmological
constant,” Physical Review D: Particles, Fields, Gravitation and
Cosmology, vol. 62, 2000.

[65] M. Sharif and G. Abbas, “Gravitational charged perfect fluid
collapse in Friedmann universemodels,”Astrophysics and Space
Science, vol. 327, pp. 285–291, 2010.

[66] M. Sharif and Z. Ahmad, “Gravitational perfect fluid collapse
with cosmological constant,” Modern Physics Letters A, vol. 22,
no. 20, pp. 1493–1502, 2007.

[67] M. Sharif and Z. Ahmed, “Addendum: “gravitational perfect
fluid collapse with cosmological constant”,” Modern Physics
Letters A, vol. 22, no. 38, pp. 2947-2948, 2007.

[68] M. Sharif and Z. Ahmad, “Five-Dimensional Perfect Fluid Col-
lapse with the Cosmological Constant,” Journal of the Korean
Physical Society, vol. 52, no. 4, p. 980, 2008.

[69] M. Sharif and Z. Ahamd, “Higher dimensional perfect fluid
collapse with cosmological constant,” Acta Physica Polonica B,
vol. 39, 2008.

[70] M. Sharif andG. Abbas, “Effects of the Electromagnetic Field on
Five-dimensional Gravitational Collapse,” Journal of the Korean
Physical Society, vol. 56, p. 529, 2010.

[71] G. Abbas and M. Zubair, “Dynamics of anisotropic collapsing
spheres in Einstein Gauss–Bonnet gravity,” Modern Physics
Letters A, vol. 30, 2015, Arxiv: 1504.07937v1.

[72] D. Ida and K. I. Nakao, “Isoperimetric inequality for higher-
dimensional black holes,” Physical Review D: Particles, Fields,
Gravitation and Cosmology, vol. 66, 2002.

[73] S. Jhingan and S. G. Ghosh, “Inhomogeneous dust collapse in
5D Einstein-Gauss-Bonnet gravity,” Physical Review D: Parti-
cles, Fields, Gravitation and Cosmology, vol. 81, 2010.

[74] S. D. Maharaj, B. Chilambwe, and S. Hansraj, “Exact barotropic
distributions in Einstein-Gauss-Bonnet gravity,” Physical
Review D: Particles, Fields, Gravitation and Cosmology, vol. 91,
no. 8, 2015.

[75] G. Abbas and M. Tahir, “Gravitational perfect fluid collapse in
Gauss–Bonnet gravity,” The European Physical Journal C, vol.
537, p. 77, 2017.



12 Advances in High Energy Physics

[76] A. Banerjee, A. Sil, and S. Chatterjee, “Gravitational collapse of
an inhomogeneous dust sphere in higher dimensional space-
time,” Astrophysical Journal, vol. 422, pp. 681–687, 1994.

[77] S. G. Ghosh and A. Banerjee, “Non-marginally bound inho-
mogeneous dust collapse in higher dimensional space–time,”
International Journal of Modern Physics D, vol. 12, p. 639, 2003.

[78] S. G. Ghosh, D.W. Deshkar, and N. N. Saste, “Five-dimensional
dust collapse with cosmological constant,” International Journal
of Modern Physics D, vol. 16, p. 1531, 2007.

[79] E. N. Glass, “Generating anisotropic collapse and expansion
solutions of Einstein’s equations,” General Relativity and Gravi-
tation, vol. 45, no. 12, pp. 2661–2670, 2013.

[80] J. D. Barrow and R. Maartens, “Anisotropic stresses in inho-
mogeneous universes,” Physical Review D: Particles, Fields,
Gravitation and Cosmology, vol. 59, Article ID 023002, 1998.

[81] T. Mahmood, S. M. Shah, and G. Abbas, “Gravitational collapse
and expansion of charged anisotropic cylindrical source,”Astro-
physics and Space Science, vol. 6, p. 2234, 2015.

[82] J. J. Schwarz, “Covariant field equations of chiral N = 2 D = 10
supergravity,” Nuclear Physics B, vol. 226, p. 269, 1983.

[83] C. B. Collins, “Global structure of the “Kantowski–Sachs”
cosmological models,” Journal of Mathematical Physics, vol. 18,
no. 8, p. 2216, 1977.



Hindawi
www.hindawi.com Volume 2018

 Active and Passive  
Electronic Components

Hindawi
www.hindawi.com Volume 2018

Shock and Vibration

Hindawi
www.hindawi.com Volume 2018

High Energy Physics
Advances in

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2013
Hindawi
www.hindawi.com

The Scientific 
World Journal

Volume 2018

Acoustics and Vibration
Advances in

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Advances in  
Condensed Matter Physics

Optics
International Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Astronomy
Advances in

 Antennas and
Propagation

International Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

 International Journal of

Geophysics

Advances in
Optical
Technologies

Hindawi
www.hindawi.com

Volume 2018

Applied Bionics  
and Biomechanics
Hindawi
www.hindawi.com Volume 2018

Advances in
OptoElectronics

Hindawi
www.hindawi.com

Volume 2018

Hindawi
www.hindawi.com Volume 2018

Mathematical Physics
Advances in

Hindawi
www.hindawi.com Volume 2018

Chemistry
Advances in

Hindawi
www.hindawi.com Volume 2018

Journal of

Chemistry

Hindawi
www.hindawi.com Volume 2018

Advances in
Physical Chemistry

International Journal of

Rotating
Machinery

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com

 Journal ofEngineering
Volume 2018

Submit your manuscripts at
www.hindawi.com

https://www.hindawi.com/journals/apec/
https://www.hindawi.com/journals/sv/
https://www.hindawi.com/journals/ahep/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/aav/
https://www.hindawi.com/journals/acmp/
https://www.hindawi.com/journals/ijo/
https://www.hindawi.com/journals/aa/
https://www.hindawi.com/journals/ijap/
https://www.hindawi.com/journals/ijge/
https://www.hindawi.com/journals/aot/
https://www.hindawi.com/journals/abb/
https://www.hindawi.com/journals/aoe/
https://www.hindawi.com/journals/amp/
https://www.hindawi.com/journals/ac/
https://www.hindawi.com/journals/jchem/
https://www.hindawi.com/journals/apc/
https://www.hindawi.com/journals/ijrm/
https://www.hindawi.com/journals/je/
https://www.hindawi.com/
https://www.hindawi.com/

