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We study the modification of thermodynamic properties of Schwarzschild and Reissner-Nordström black hole in the framework
of generalized uncertainty principle with correction terms up to fourth order in momentum uncertainty. The mass-temperature
relation and the heat capacity for these black holes have been investigated.These have been used to obtain the critical and remnant
masses. The entropy expression using this generalized uncertainty principle reveals the area law up to leading order logarithmic
corrections and subleading corrections of the form 1/𝐴𝑛. The mass output and radiation rate using Stefan-Boltzmann law have
been computed which show deviations from the standard case and the case with the simplest form for the generalized uncertainty
principle.

1. Introduction

The consistent unification of quantummechanics (QM) with
general relativity (GR) is one of the major tasks in theoretical
physics. GR deals with the definition of world-lines of
particles, which is in contradiction with QM since it does
not allow the notion of trajectory due to the presence of an
uncertainty in the determination of themomentum and posi-
tion of a quantum particle. It has been the aim to unify these
two theories into one theory known as quantum gravity. It is
quite interesting that all approaches towards quantum gravity
such as black hole physics [1–3], string theory [4, 5], or even
Gedanken experiment [6] predict the existence of a mini-
mum measurable length. The occurrence of such a minimal
length also arises in various theories of quantum gravity phe-
nomenology, namely, the generalized uncertainty principle
(GUP) [5, 7, 8], modified dispersion relation (MDR) [9–
12], and deformed special relativity (DSR) [13], to name a
few. It is now widely accepted that Heisenberg uncertainty
principle would involve corrections from gravity at energies

close to the Planck scale.Thus, emergence of aminimal length
seems to be inevitable when gravitational effects are taken
into account. There has been a lot of work incorporating the
existence of a minimal length scale in condensed matter and
atomic physics experiments such as Lamb Shift, Landau levels
and the scanning Tunneling Microscope [14–19], loop quan-
tum gravity [20–22], noncommutative geometry [23], com-
puting Planck scale corrections to the phenomena of super-
conductivity and quantum Hall effect [24], and understand-
ing its consequences in cosmology [25, 26].

The incorporation of the GUP to study black hole ther-
modynamics has been another interesting area of active re-
search [27–38]. It has been observed that the GUP reveals
a self-complete characteristic of gravity which basically
amounts to hiding any curvature singularity behind an event
horizon as a consequence ofmatter compression at the Planck
scale [39–41]. Further, the effects of the GUP have also been
considered in the tunneling formalism forHawking radiation
to evaluate the quantum-correctedHawking temperature and
entropy of a Schwarzschild black hole [42–46]. In our earlier
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findings [32–36], we have studied the modification of ther-
modynamic properties, namely, the temperature, heat capac-
ity, and entropy of black holes due to the simplest form of
the GUP. Interestingly the correction to the Schwarzschild
black hole temperature due to quadratic and linear-quadratic
GUP has also been compared with the corrections from
the quantum Raychaudhuri equation [47]. Very recently the
Lorentz-invariance-violating class of dispersion relations has
been applied to study the thermodynamics of black holes
[48]. It would therefore be interesting to compare these
results with those coming from the GUP.

The above studies motivate us to investigate the modifi-
cation of thermodynamic properties for Schwarzschild and
Reissner-Nordström (RN) black holes using the form of the
GUP proposed in [30].This GUP involves higher order terms
in the momentum uncertainty. We compute the remnant and
critical masses analytically for these black holes below where
the temperature becomes ill-defined. We then use the Stefan-
Boltzmann law to estimate the mass and the energy output as
a function of time.We finally compute the entropy and obtain
the well-known area theorem containing corrections from
the GUP with higher order terms in momentum uncertainty.

The paper is organized as follows. In Section 2, we study
the thermodynamics of Schwarzschild black hole taking into
account the effect of the GUP, with higher order terms in
momentum uncertainty. In Section 2.1, we also obtain the
mass and radiation rate characteristics for the Schwarzschild
black hole as a function of time by using the Stefan-
Boltzmann law. In Section 3, we study the thermodynamics
of Reissner-Nordström black holes taking into account the
effect of the GUP. Finally, we conclude in Section 4.

2. Thermodynamics of
Schwarzschild Black Hole

In this paper, we work with the following form of the GUP
[49]:

Δ𝑥Δ𝑝 ≥ ℏ2
∞∑
𝑖=0

𝑎𝑖 (𝑙𝑝Δ𝑝ℏ )2𝑖 ;
[𝑎0 = 1; 𝑎𝑖 > 0, 𝑖 = 1, 2, . . .]

(1)

where 𝑙𝑝 is the Planck length (∼ 10−35𝑚). Keeping terms up
to fourth order in momentum uncertainty, we have

Δ𝑥Δ𝑝 ≥ ℏ2 {𝑎0 + 𝑎1 (𝑙𝑝Δ𝑝ℏ )2 + 𝑎2 (𝑙𝑝Δ𝑝ℏ )4} . (2)

We now consider a Schwarzschild black hole of mass𝑀. In
the vicinity of the event horizon of the black hole, let a pair
(particle-antiparticle) production occurs. For simplicity we
consider the particle to bemassless.Theparticle with negative
energy falls inside the horizon and that with positive energy
escapes outside the horizon and gets observed by some
observer at infinity. The momentum of the emitted particle

(p), which also characterizes the temperature (T), is of the
order of its uncertainty in momentum Δ𝑝. Consequently

𝑇 = (Δ𝑝) 𝑐𝑘𝐵 (3)

where 𝑐 is the speed of light and 𝑘𝐵 is the Boltzmann constant.
The Hawking temperature of the black hole will be equal

to the temperature of the particle when thermodynamic equi-
librium is reached. The uncertainty in the position of a par-
ticle near the event horizon of the Schwarzschild black hole
will be of the order of the Schwarzschild radius of the black
hole

Δ𝑥 = 𝜖𝑟𝑠; 𝑟𝑠 = 2𝐺𝑀𝑐2 (4)

where 𝜖 is a calibration factor, 𝑟𝑠 is the Schwarzschild radius,
and 𝐺 is Newton’s universal gravitational constant.

To relate the Hawking temperature of the black hole with
the mass of the black hole, we consider the saturated form of
the GUP (2)

Δ𝑥Δ𝑝 = ℏ2 {𝑎0 + 𝑎1 (𝑙𝑝Δ𝑝ℏ )2 + 𝑎2 (𝑙𝑝Δ𝑝ℏ )4} . (5)

Substituting (3) and (4) in (5) gives

𝑀 = 𝑀𝑝2𝑐24𝜖𝑘𝐵𝑇 {1 + 𝑎1 𝑘
2
𝐵𝑇2𝑀2𝑝𝑐4 + 𝑎2

𝑘4𝐵𝑇4𝑀4𝑝𝑐8} (6)

where the relations 𝑐ℏ/𝑙𝑝 = 𝑀𝑝𝑐2 and 𝑀𝑝 = 𝑐2𝑙𝑝/𝐺 (𝑀𝑝
being the Planck mass) have been used. In the absence of
corrections due to GUP, (6) reduces to

𝑀 = 𝑀2𝑝𝑐24𝜖𝑘𝐵𝑇. (7)

The value of 𝜖 now gets fixed to 2𝜋 by comparing this
expression with the semiclassical Hawking temperature 𝑇 =𝑀2𝑝𝑐2/8𝜋𝑀𝑘𝐵 [50, 51]. The mass-temperature relation (6)
finally takes the form

𝑀 = 𝑀𝑝2𝑐28𝜋 { 1𝑘𝐵𝑇 + 𝑎1 𝑘𝐵𝑇𝑀2𝑝𝑐4 + 𝑎2
𝑘3𝐵𝑇3𝑀4𝑝𝑐8} . (8)

The heat capacity of the black hole therefore reads

𝐶 = 𝑐2 𝑑𝑀𝑑𝑇 (9)

= 𝑀𝑝2𝑐48𝜋 {− 1𝑘𝐵𝑇2 + 𝑎1 𝑘𝐵𝑀2𝑝𝑐4 + 3𝑎2
𝑘3𝐵𝑇2𝑀4𝑝𝑐8}

= 𝑘𝐵8𝜋 {{{−(
𝑀𝑝𝑐2𝑘𝐵𝑇 )

2 + 𝑎1 + 3𝑎2 ( 𝑘𝐵𝑇𝑀𝑝𝑐2)
2}}} .

(10)

The above expression takes the form

𝐶 = 𝑘𝐵8𝜋 {− 1𝑇2 + 𝑎1 + 3𝑎2𝑇2} (11)

after the following notations are introduced
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𝑀 = 8𝜋𝑀𝑀𝑝 ;
𝑇 = 𝑘𝐵𝑇𝑀𝑝𝑐2 .

(12)

The mass of the black hole decreases due to radiation from
the black hole.This leads to an increase in the temperature of
the black hole. It can be observed from (7) and (10) that there
exists a finite temperature at which the heat capacity vanishes.
To find out this temperature, we set C = 0. This gives

3𝑎2𝑇4 + 𝑎1𝑇2 − 1 = 0. (13)

Solving this, we get

𝑇2 = 16𝑎2 {−𝑎1 + √𝑎12 + 12𝑎2} (14)

where the positive sign before the square root has been taken
so that the above result reduces to corresponding result when𝑎2 = 0 [33].

Finally we get the expression for 𝑇 to be
𝑇 = 1√6𝑎2 {−𝑎1 + √𝑎12 + 12𝑎2}

1/2 . (15)

Now in terms of𝑇,𝑀 themass-temperature relation (8) can
be represented as

𝑎2𝑇4 + 𝑎1𝑇2 −𝑀𝑇 + 1 = 0. (16)

The remnant mass can now be obtained by substituting (15)
in (16). This yields

𝑀𝑟𝑒𝑚 = 1𝑇 {𝑎2𝑇4 + 𝑎1𝑇2 + 1} ⇒
𝑀𝑟𝑒𝑚 = 𝑀𝑝8𝜋 √6𝑎2

9𝑎2 {−𝑎1 + √𝑎12 + 12𝑎2}1/2 [−𝑎1
2

+ 𝑎1√𝑎12 + 12𝑎2 + 12𝑎2] .
(17)

Reassuringly the above result reduces to the result in 𝑎2 → 0
limit [33]

𝑀𝑟𝑒𝑚 = 𝑀𝑝√𝑎14𝜋 . (18)

Now for 𝑎1 → 0, 𝑎2 ̸= 0, the remnant mass is given by

𝑀𝑟𝑒𝑚 = 𝑀𝑝6𝜋 (3𝑎2)1/4 . (19)

Also for 𝑎1 → 0, the mass-temperature relation (16) reads

𝑇4 − 𝑀𝑎2 𝑇 + 1𝑎2 = 0. (20)

The solution of this biquadratic equation in 𝑇 yields
𝑇 = [[[

𝑀216𝑎22 + √ 𝑀4256𝑎24 − 127𝑎23]]]
1/3

+ [[[
𝑀216𝑎22 − √ 𝑀4256𝑎24 − 127𝑎23]]]

1/3

.
(21)

The above relation readily implies the existence of a critical
mass belowwhich the temperature will be a complex quantity

𝑀𝑐𝑟 = 𝑀𝑝6𝜋 (3𝑎2)1/4 . (22)

This demonstrates that the remnant and critical masses are
equal.

At this point, we would like to make a comment. It can be
observed from the above analysis that analytical expressions
for the remnant and critical masses can be obtained even
if one retains terms of order of (Δ𝑝)8 in the momentum
uncertainty. This is because it leads to an equation of the
form 𝑎𝑇8 + 𝑏𝑇6 + 𝑐𝑇4 + 𝑑𝑇2 + 𝑒 = 0 when the condition𝐶 = 0 is imposed. This equation can be solved analytically
to obtain the remnant mass. If we keep terms beyond this
order in momentum uncertainty, analytical expressions for
the remnant and critical masses can not be obtained.

The black hole entropy from the first law of black hole
thermodynamics is given by

𝑆 = ∫ 𝑐2 𝑑𝑀𝑇 = ∫𝐶𝑑𝑇𝑇 = ∫ 𝑘𝐵8𝜋 [[−(
𝑀𝑝𝑐2𝑘𝐵𝑇 )

2 + 𝑎1
+ 3𝑎2 ( 𝑘𝐵𝑇𝑀𝑝𝑐2)

2]]
𝑑𝑇𝑇

= 𝑘𝐵8𝜋 [[
12 (𝑀𝑝𝑐

2

𝑘𝐵𝑇 )
2 + 𝑎1 ln( 𝑘𝐵𝑇𝑀𝑝𝑐2)

+ 3𝑎22 (𝑀𝑝𝑐
2

𝑘𝐵𝑇 )]] =
𝑘𝐵8𝜋 [ 12𝑇2 + 𝑎1 log𝑇 + 32

⋅ 𝑎2𝑇2] .

(23)

To obtain the entropy S in terms of the mass M of the black
hole, we need to consider (16) to obtain an expression for the
temperature T in terms of mass M.

Equation (16) yields up to O(𝑎12, 𝑎22, 𝑎1𝑎2)
𝑇 = 1𝑀 + 𝑎1𝑀3 + 𝑎2𝑀5 + 2𝑎1

2

𝑀5 + 6𝑎1𝑎2𝑀7 + 4𝑎2
2

𝑀9 . (24)
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Now the entropy expression in terms of the mass can be
written as

𝑆𝑘𝐵 = 18𝜋 [12𝑀2 − 𝑎1 − 𝑎1 log𝑀 + 𝑎122𝑀2 + 𝑎22𝑀2
+ 𝑎1𝑎2𝑀4 + 𝑎222𝑀6] + O (𝑎12𝑎2, 𝑎1𝑎22, 𝑎13, 𝑎23)
= 𝑆𝐵𝐻𝑘𝐵 − 𝑎116𝜋 log(𝑆𝐵𝐻𝑘𝐵 ) − 𝑎116𝜋 log (16𝜋) − 𝑎18𝜋
+ 𝑎12 + 𝑎2(16𝜋)2 (𝑆𝐵𝐻𝑘𝐵 )

−1 + 2𝑎1𝑎2(16𝜋)3 (𝑆𝐵𝐻𝑘𝐵 )
−2

+ 𝑎22(16𝜋)4 (𝑆𝐵𝐻𝑘𝐵 )
−3 + O (𝑎12𝑎2, 𝑎1𝑎22, 𝑎13, 𝑎23)

(25)

where 𝑆𝐵𝐻/𝑘𝐵 = 4𝜋𝑀2/𝑀2𝑝 is the semiclassical Bekenstein-
Hawking entropy for the Schwarzschild black hole. In terms
of the black hole horizon area 𝐴 = 4𝜋𝑟2𝑠 = 16𝜋(𝐺2𝑀2/𝑐4) =4𝑙2𝑝(𝑆𝐵𝐻/𝑘𝐵), the above entropy expression can be written as

𝑆𝑘𝐵 = 𝐴4𝑙2𝑝 − 𝑎116𝜋 log( 𝐴4𝑙2𝑝) − 𝑎116𝜋 log (16𝜋) − 𝑎18𝜋
+ 𝑎12 + 𝑎2(16𝜋)2 ( 𝐴4𝑙2𝑝)

−1 + 2𝑎1𝑎2(16𝜋)3 ( 𝐴4𝑙2𝑝)
−2

+ 𝑎22(16𝜋)4 ( 𝐴4𝑙2𝑝)
−3

+ O (𝑎12𝑎2, 𝑎1𝑎22, 𝑎13, 𝑎23) .

(26)

This completes our discussion of the effect of the GUP on the
thermodynamic properties of the Schwarzschild black hole.
In Figure 1, we present the plot of the entropy of the black
hole versus the horizon area for the GUP case and compare it
with the standard case.

2.1. Energy Output as a Function of Time. Due to radiation
of the black hole, the mass of the black hole reduces, while
its temperature keeps on increasing. If one assumes that the
energy loss is dominated by photons, then one can apply the
Stefan-Boltzmann law to estimate the energy radiated as a
function of time 𝑑𝑀𝑑𝑡 = −𝜎𝐴𝑇𝐻4 (27)

where 𝜎 is the Stefan-Boltzmann constant. In terms of
Schwarzschild black hole mass M with the horizon area 𝐴 =4𝜋𝑟2𝑠 = 16𝜋𝐺2𝑀2/𝑐4, the above equation implies

𝑑𝑑𝑡 (8𝜋𝑀𝑀𝑝 ) = −𝜎
2𝐺2𝑐4𝑀𝑝5𝑘𝐵4 (8𝜋𝑀𝑀𝑝 )

2 𝑇4 (28)

where we have used 𝑇 = 𝑘𝐵𝑇𝐻/𝑀𝑝𝑐2.
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Figure 1: The entropy versus area plot. Here the solid line (lower
curve) represents the GUP case (considering only the first two terms
in the right hand side of (26)), and the dashed line (upper curve)
represents the standard case.

We now write the above equation taking into account the
effect of the GUP. Thus, considering the mass-temperature
relation (24), the radiation rate takes the following form:

𝑑𝑥𝑑𝑡
= − 1𝑡𝑐ℎ𝑥2 [ 1𝑥 + 𝑎1𝑥3 + 𝑎2𝑥5 + 2𝑎1

2

𝑥5 + 6𝑎1𝑎2𝑥7 + 4𝑎22𝑥9 ]
4 (29)

where we have set 𝑥 = 8𝜋𝑀/𝑀𝑝 and the characteristic time𝑡𝑐ℎ is being defined as 𝑡𝑐ℎ = 𝑘𝐵4/2𝜎𝑀𝑝5𝑐4𝐺2. If 𝑥𝑖 refers to the
initial mass at time 𝑡 = 0, the solution of the above equation
yields the mass-time relation. Up to O(𝑎1, 𝑎2), we have
𝑥 = [− 3𝑡𝑡𝑐ℎ + 𝑥3𝑖 − 12𝑎1𝑥𝑖 + 12𝑎2𝑥𝑖
+ 12𝑎1 (𝑥𝑖3 − 3𝑡𝑡𝑐ℎ)

1/3 − 12𝑎2 (𝑥3𝑖 − 3𝑡𝑡𝑐ℎ)
−1/3]1/3

(30)

where

𝑡𝑡𝑐ℎ = 𝑥𝑖
3

3 − 4𝑎1𝑥𝑖 + 4𝑎2𝑥𝑖 . (31)

In Figures 2 and 3, we have plotted the mass of the black hole
as a function of time and the radiation rate as a function of
time.

3. Thermodynamics of Reissner-Nordström
Black Hole

In this section, we consider the Reissner-Nordström (RN)
black hole of mass 𝑀 and charge 𝑄. In this case, near
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Figure 2: The mass of the black hole versus time. The mass is in
units of Planck mass and the time is in units of characteristic time.
Here thin line (lower curve) represents GUP case (considering both𝑎2 and 𝑎1), the dashed line (middle curve) represents GUP case
(considering only 𝑎1), and thick line (upper curve) represents the
standard case.
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Figure 3: The radiation rate of the black hole versus time. The rate
is in units of Planck mass per characteristic time and the time is in
units of characteristic time. Here thin line (upper curve) represents
GUP case (considering both 𝑎2 and 𝑎1), the dashed line (middle
curve) represents GUP case (considering only 𝑎1), and thick line
(lower curve) represents the standard case.

the horizon of the black hole, the position uncertainty of a
particle will be of the order of the RN radius of the black hole

Δ𝑥 = 𝜖𝑟ℎ
𝑟ℎ = 𝐺𝑟0𝑐2
𝑟0 = 𝑀 + √𝑀2 − 𝑄2

(32)

where 𝑟ℎ is the radius of the horizon of the RN black hole.
Substituting the value of Δ𝑝 and Δ𝑥 from (3) and (32), the
GUP (5) can be rewritten as

𝑟0 = ℏ𝑐32𝜖𝐺𝑘𝐵𝑇 [1 + 𝑎1 (
𝑙𝑝Δ𝑝ℏ )2 + 𝑎2 (𝑙𝑝Δ𝑝ℏ )4] . (33)

Once again, in the absence of correction due to GUP, (33)
reduces to

𝑟0 = 𝑀2𝑝𝑐22𝜖𝑘𝐵𝑇. (34)

Comparing the above relation with the semiclassical Hawk-
ing temperature𝑇 = 𝑀2𝑝𝑐2(𝑀𝑟0−𝑄2)/2𝜋𝑘𝐵𝑟30 yields the value
of 𝜖 to be

𝜖 = 𝜋𝑟20(𝑀𝑟0 − 𝑄2) . (35)

This finally fixes the form of the mass-charge-temperature
relation (33) to be

𝑟20(𝑟0 −𝑀)
= 𝑀𝑝2𝜋 [𝑀𝑝𝑐

2

𝑘𝐵𝑇 + 𝑎1 𝑘𝐵𝑇𝑀𝑝𝑐2 + 𝑎2 ( 𝑘𝐵𝑇𝑀𝑝𝑐2)
3]

(36)

where the identity

𝑟0(𝑀𝑟0 − 𝑄2) = 1(𝑟0 −𝑀) (37)

has been used.
The heat capacity of the black hole can now be calculated

using relation (9) and equation (36):

𝐶 = 𝑘𝐵 (𝑟0 −𝑀)32𝜋𝑟02 (2𝑟0 − 3𝑀) [[−(
𝑀𝑝𝑐2𝑘𝐵𝑇 )

2 + 𝑎1
+ 3𝑎2 ( 𝑘𝐵𝑇𝑀𝑝𝑐2)

2]] .
(38)

To express the heat capacity in terms of the mass, once again
we make use of relation (12) to recast (36) in the form

𝑎2𝑇4 + 𝑎1𝑇2 − 𝑔 (𝑟0)𝑀𝑝 𝑇 + 1 = 0 (39)

where

𝑔 (𝑟0) = 2𝜋𝑟20(𝑟0 −𝑀). (40)

Now to find out the temperature where the radiation process
stops, we set C = 0. Equation (38) therefore yields

3𝑎2𝑇4 + 𝑎1𝑇2 − 1 = 0 (41)

from which solution of 𝑇 reads
𝑇 = 1√6𝑎2 {−𝑎1 + √𝑎12 + 12𝑎2}

1/2

(42)
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where the positive sign before the square root has been taken
to reproduce the result corresponding to the limit 𝑎2 → 0
[33].

The remnant mass can now be computed by substituting
(42) in (39). This would then give

𝑔 (𝑟0)𝑀𝑝 = √6𝑎2
9𝑎2 {−𝑎1 + √𝑎12 + 12𝑎2}1/2 [−𝑎1

2

+ 𝑎1√𝑎12 + 12𝑎2 + 12𝑎2] .
(43)

Thus, we finally obtain the following cubic equation for the
remnant mass:

(2𝑀𝑝𝑍𝜋 )𝑀3𝑟𝑒𝑚 − (𝑀𝑝𝑍2𝜋 )
2𝑀2𝑟𝑒𝑚

− (2𝑀𝑝𝑍𝜋 )𝑄2𝑀𝑟𝑒𝑚 + 𝑄4 + (𝑀𝑝𝑍2𝜋 )
2 𝑄2 = 0

(44)

where

𝑍 = √6𝑎2
9𝑎2 {−𝑎1 + √𝑎12 + 12𝑎2}1/2 [−𝑎1

2

+ 𝑎1√𝑎12 + 12𝑎2 + 12𝑎2] .
(45)

Solution of (44) gives us the exact expression of remnantmass
for the RN black hole. This yields

𝑀𝑟𝑒𝑚 = 𝑀𝑝𝑍24𝜋 [[1 +
(𝑀2𝑝𝑍2/4𝜋2 + 48𝑄2)(𝐵/2)1/3

+ 4𝜋2𝑀2𝑝𝑍2 (𝐵2 )
1/3]]

(46)

where

𝐵 = 𝑀6𝑝𝑍632𝜋6 − 18𝑀
4
𝑝𝑍4𝜋4 𝑄2 − 108𝑀

2
𝑝𝑍2𝜋2 𝑄4 + √−2716 𝑀

10
𝑝 𝑍10𝜋10 𝑄2 − 35027 𝑀

8
𝑝𝑍8𝜋8 𝑄4 − 4968𝑀

6
𝑝𝑍6𝜋6 𝑄6 + 11664𝑀

4
𝑝𝑍4𝜋4 𝑄8. (47)

The above expression for the remnant mass reduces to the
remnant mass for the Schwarzschild black hole (17) in the𝑄 → 0 limit.

Finally, we proceed to compute the entropy of the RN
black hole. To do that, we first obtain an expression of 𝑇(𝑇)
from (39) in terms of themass and the charge of the RN black
hole. This gives up to O(𝑎12, 𝑎1𝑎2, 𝑎22)

𝑇 = 𝑀𝑝𝑔 (𝑟0) [1 + 𝑎1 (
𝑀𝑝𝑔 (𝑟0))

2 + 𝑎2 ( 𝑀𝑝𝑔 (𝑟0))
4

+ 2𝑎12 ( 𝑀𝑝𝑔 (𝑟0))
4 + 6𝑎1𝑎2 ( 𝑀𝑝𝑔 (𝑟0))

6

+ 4𝑎22 ( 𝑀𝑝𝑔 (𝑟0))
8] .

(48)

From this one now can calculate the entropy for the RN black
hole using (38) and (48):

𝑆𝑘𝐵 = 𝜋𝑟
2
ℎ𝑙2𝑝 − 𝑎116𝜋 ln(𝜋𝑟2ℎ𝑙2𝑝 )

− ( 𝑎1𝑄223𝑀2𝑝 − 𝑎228𝜋2)(𝜋𝑟
2
ℎ𝑙2𝑝 )
−1

− ( 𝑎227𝜋𝑀2𝑝 − 𝑎1𝜋𝑄
4

25𝑀5𝑝 )(
𝜋𝑟2ℎ𝑙2𝑝 )

−2

− ( 𝑎2𝑄427𝑀4𝑝)(
𝜋𝑟2ℎ𝑙2𝑝 )

−3 − (𝑎2𝜋𝑄628𝑀6𝑝 )(
𝜋𝑟2ℎ𝑙2𝑝 )

−4

− 15 (𝑎2𝜋
2𝑄828𝑀8𝑝 )(

𝜋𝑟2ℎ𝑙2𝑝 )
−5 + O (𝑎12, 𝑎1𝑎2, 𝑎22)

= 𝑆𝐵𝐻𝑘𝐵 − 𝑎116𝜋 ln(𝑆𝐵𝐻𝑘𝐵 )
− ( 𝑎1𝑄223𝑀2𝑝 − 𝑎228𝜋2)(𝑆𝐵𝐻𝑘𝐵 )

−1

− ( 𝑎227𝜋𝑀2𝑝 − 𝑎1𝜋𝑄
4

25𝑀5𝑝 )(𝑆𝐵𝐻𝑘𝐵 )
−2

− ( 𝑎2𝑄427𝑀4𝑝)(𝑆𝐵𝐻𝑘𝐵 )
−3 − (𝑎2𝜋𝑄628𝑀6𝑝 )(𝑆𝐵𝐻𝑘𝐵 )

−4

− 15 (𝑎2𝜋
2𝑄828𝑀8𝑝 )(𝑆𝐵𝐻𝑘𝐵 )

−5 + O (𝑎12, 𝑎1𝑎2, 𝑎22)
(49)

where 𝑆𝐵𝐻/𝑘𝐵 = 𝜋𝑟2ℎ/𝑙2𝑝 is the semiclassical Bekenstein-
Hawking entropy for the RN black hole. In terms of the area
of the horizon 𝐴 = 4𝜋𝑟2ℎ = 4𝑙2𝑝(𝑆𝐵𝐻/𝑘𝐵), the above equation
can be written as
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𝑆𝑘𝐵 = 𝐴4𝑙2𝑝 − 𝑎116𝜋 ln( 𝐴4𝑙2𝑝)
− ( 𝑎1𝑄223𝑀2𝑝 − 𝑎228𝜋2)( 𝐴4𝑙2𝑝)

−1

− ( 𝑎227𝜋𝑀2𝑝 − 𝑎1𝜋𝑄
4

25𝑀5𝑝 )( 𝐴4𝑙2𝑝)
−2

− ( 𝑎2𝑄427𝑀4𝑝)( 𝐴4𝑙2𝑝)
−3 − (𝑎2𝜋𝑄628𝑀6𝑝 )( 𝐴4𝑙2𝑝)

−4

− 15 (𝑎2𝜋
2𝑄828𝑀8𝑝 )( 𝐴4𝑙2𝑝)

−5 + O (𝑎12, 𝑎1𝑎2, 𝑎22)

(50)

which is the area theorem for the RN black hole with cor-
rections from the GUP containing higher order terms in the
momentum uncertainty.

We would like to conclude this section by mentioning
that, in [52], it has been pointed out that there is a part of the
information (leaking out of the black hole due to Hawking
radiation) related to nonthermal GUP correlations. This
insight may be important to provide a solution for the well-
known information loss paradox and is worth investigating
in future.

4. Conclusions

In this paper, we have investigated the modifications of the
various thermodynamic properties of Schwarzschild and
Reissner-Nordström black holes using higher order momen-
tum uncertainty terms in the GUP. We obtain the GUP
modified mass-temperature relation. This then leads to the
existence of a remnant mass thereby preventing the complete
evaporation of the black hole.The expression for the remnant
and critical masses have been obtained analytically. In this
regard, we observe that analytical expressions for these
masses can be obtained even if we keep terms of the order
of (Δ𝑝)8 in the momentum uncertainty. Beyond this, it is no
longer possible to obtain analytical expression for the critical
and remnant masses. We also compute the mass and energy
outputs as functions of time using the Stefan-Boltzman law.
We observe that these expressions get modified from the
standard case as well as the case where the simplest form of
the GUP is used. The expression for the entropy exhibits the
well-known area theorem in terms of the horizon area in both
cases up to leading order corrections from the GUP.
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