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The dual magnetohydrodynamics of dyonic plasma describes the study of electrodynamics equations along with the transport
equations in the presence of electrons andmagnetic monopoles. In this paper, we formulate the quaternionic dual fields equations,
namely, the hydroelectric and hydromagnetic fields equations which are an analogous to the generalized Lamb vector field and
vorticity field equations of dyonic cold plasma fluid. Further, we derive the quaternionic Dirac-Maxwell equations for dual
magnetohydrodynamics of dyonic cold plasma. We also obtain the quaternionic dual continuity equations that describe the
transport of dyonic fluid. Finally, we establish an analogy of Alfven wave equation which may generate from the flow of magnetic
monopoles in the dyonic field of cold plasma.The present quaternionic formulation for dyonic cold plasma is well invariant under
the duality, Lorentz, and CPT transformations.

1. Introduction

In the past few decades, astronomers predicted that the
universewas composed almost entirely of the baryonicmatter
(ordinary matter). According to Bachynski [1], more than
99% of the matter in the universe is in plasma state. This type
of matter may consist of baryonic and nonbaryonic matter.
The first experimental evidence of the existence of plasma
was given by American Physicists [2]. In plasma, consisting
of charged and neutral particles, the interionic force between
particles shows electromagnetic in nature. Therefore, due to
the long range order of Coulomb force charged particles
interact with all other charged particles resulting in a collec-
tive behavior of plasma. In 1942, Alfven [3] gave the theory of
magnetohydrodynamics (MHD) and suggested that electri-
cally conducting fluid can support the propagation of shear
waves called the Alfven waves. Basically, MHD describes the
behavior of electrically conducting fluid in the presence of
magnetic field [4]. It is macroscopic theory that assumes
the electrons, ions, and charged particles move together and
treated themas a single fluid component known as single fluid
theory. The plasma along with MHD is simply described by
a single temperature, velocity, and density. However, when

the MHD wave propagates faster than plasma thermal speed
then the effect of temperature can be neglected [5]. This
is called a cold plasma approximation (i.e., in cold plasma
approximation, temperature does not take into account). In
this approximation, there is no wave related to pressure fluc-
tuation (e.g., sound waves). On the other hand, the hot and
warm plasmas are another sates of plasma where the collision
between electrons and gas molecules are so frequent that
there is a thermal equilibrium between electron and the gas
molecules.

Meyer-Vernet [6] discussed the role of magnetic monop-
ole in conducting fluid (plasma). The magnetic monopole
proposed by Dirac [7], is a hypothetical elementary particle
having only one magnetic pole. Dirac also pointed out
that if there exists any monopole in the universe then all
the electric charge in the universe will be quantized [8].
Schwinger [9, 10], an exception to the argument against the
existence of monopole, formulated relativistically covariant
quantum field theory of magnetic monopoles which main-
tained complete symmetry between electric and magnetic
fields. Therefore, the name of particles carrying simulta-
neously the electric and magnetic charges is dyons. Fur-
ther, the theoretical approach of Schwinger [9, 10] and
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Zwanziger [11] describes the theory of dyonic particles.
Peres [12] pointed out the controversial nature [13] of the
singular lines of magnetic monopoles and established the
charged quantization condition in purely group theoreti-
cal manner without using them. In view of mathematical
physics, the study of four-dimensional particles (dyons) in
distinguish mediums can be explained by division algebras.
There are four types of divisions algebras [14], namely,
the real, complex, quaternion, and octonion algebras. The
complex algebra is an extension of real numbers; the quater-
nion is an extension of complex numbers while the octonion
is an extension of quaternions. Quaternionic algebra [15]
can also express by the four-dimensional Euclidean spaces
[16, 17], and it has vast applications in the multiple branches
of physics.

Further, Rajput [18] pointed out an effective unified
theory for quaternionic generalized electromagnetic and
gravitational fields of dyons by using the quaternion algebra.
The quaternionic form of classical and quantum electrody-
namics has been already discussed [19–22]. Many authors
[23–29] have studied the role of hypercomplex algebras
in various branches of physics. Recently, Chanyal [30, 31]
independently proposed a novel approach on the quater-
nionic covariant theory for relativistic quantum mechanics
and established the quantized Dirac-Maxwell equations for
dyons. Besides, in literature [32–34], the reformulation of
incompressible plasma fluids and MHD equations has been
discussed in terms of hypercomplex numbers. Keeping in
view the importance of quaternionic algebras, we establish
the MHD field equations for dyonic cold plasma. Starting
with the definitions of one-fluid and two-fluid theory of
plasma, we identify the cold plasma approximation where
the thermal effects (or pressure effects) of conducting fluid
will be neglected. Further, we introduce the dual MHD
equations of dyonic plasma consisted with electrons, mag-
netic monopoles, and their counter partners, namely, ions
and magnetoions. In this study, we clarify that the domi-
nating aspect for the dyonic cold plasma approximation is
the dynamics of electrons along with magnetic monopoles.
As we know the generalized Dirac-Maxwell like equations
are primary equations to explain the dynamics of dyonic
cold plasma. Therefore, undertaking the quaternionic dual-
velocity and dual-enthalpy of dyonic cold plasma, we have
made an attempt to formulate the quaternionic hydroelectric
and hydromagnetic fields equations, which are an analogous
to the generalized Lamb vector field and vorticity field of
conducting dyonic fluid. The Lorenz gauge conditions for
dyonic cold plasma fluid are also obtained. Further, we
derive the generalized quaternionic Dirac-Maxwell equa-
tions to the case of dual magnetohydrodynamics of dyonic
cold plasma. We have discussed that these Dirac-Maxwell
equations for dyonic cold plasma are well invariant under
the duality, Lorentz, and CPT transformations. Finally, the
Alfven wave like equation is established whichmay propagate
from the flow of magnetic monopoles in the dyonic cold
plasma.

2. The Quaternions

Through the extension of the set of natural numbers to the
integers, a complex number C is defined by the set of all
real linear combinations of the unit elements (1, 𝑖), such
that

C 󳨃󳨀→ {𝛼 = 𝛼1 + 𝑖𝛼2 | (𝛼1, 𝛼2 ∈ R)} , (1)

where the real number𝛼1 is called the real part and𝛼2 is called
the imaginary part of a complex number 𝛼. If the real part
Re(𝛼) = 0, then we can say that 𝛼 is purely imaginary. As
such, the Euclidean scalar product as C × C 󳨃󳨀→ R is then
defined by ⟨𝛼, 𝛽⟩ = Re (𝛼 ⋅ 𝛽) = 𝛼1𝛽1 + 𝛼2𝛽2, (2)

where𝛼 = 𝛼1+𝑖𝛼2 and𝛽 = 𝛽1+𝑖𝛽2 are two complex numbers.
The modulus of any complex number is also defined by |𝛼| =√𝛼 ⋅ 𝛼 = √𝛼21 + 𝛼22.

However, a complex field C is a finite dimensional real
vector space, so thatwe can easily extend the complex number
into the quaternionic field H by losing the commutativity of
multiplication. Thus, the quaternion represents the natural
extension of complex numbers and forms an algebra under
addition and multiplication. Hamilton [15] described a four-
dimensional quaternionic algebra and applied it tomechanics
in three-dimensional space. A striking feature of quaternions
is that the product of two quaternions is noncommutative,
meaning that the product of two quaternions depends on
which factor is to the left of the multiplication sign and which
factor is to the right.

Thus the allowed four-dimensional Hamilton vector
space is defined by quaternion algebra H over the field of real
numbers R as

H 󳨃󳨀→ {{{𝛼 = 3∑�푗=0𝑒�푗𝛼�푗 = 𝑒0𝛼0 + 𝑒1𝛼1 + 𝑒2𝛼2 + 𝑒3𝛼3 | ∀𝛼�푗
∈ R

}}} ,
(3)

where the Hamilton vector space (H) has the quaternionic
elements (𝑒0, 𝑒1, 𝑒2, and 𝑒3), which are called quaternion basis
elements while 𝛼0, 𝛼1, 𝛼2, and 𝛼3 are the real quarterate of
a quaternion. As such the addition of two quaternions 𝛼 =𝑒0𝛼0 + 𝑒1𝛼1 + 𝑒2𝛼2 + 𝑒3𝛼3 and 𝛽 = 𝑒0𝛽0 + 𝑒1𝛽1 + 𝑒2𝛽2 + 𝑒3𝛽3
is given by𝛼 + 𝛽 = 𝑒0 (𝛼0 + 𝛽0) + 𝑒1 (𝛼1 + 𝛽1) + 𝑒2 (𝛼2 + 𝛽2)+ 𝑒3 (𝛼3 + 𝛽3) , ∀ (𝛼, 𝛽) ∈ H. (4)

Here, the quaternionic addition is clearly associative and
commutative. The additive identity element is defined by the
zero element; i.e., 0 = 𝑒00 + 𝑒10 + 𝑒20 + 𝑒30, (5)
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and the additive inverse of 𝛼 ∈ H is given by−𝛼 = 𝑒0 (−𝛼0) + 𝑒1 (−𝛼1) + 𝑒2 (−𝛼2) + 𝑒3 (−𝛼3) . (6)

Correspondingly, the product of two quaternions, i.e., (𝛼 ∘𝛽) ∈ H, can be expressed by𝛼 ∘ 𝛽 = 𝑒0 (𝛼0𝛽0 − 𝛼1𝛽1 − 𝛼2𝛽2 − 𝛼3𝛽3)+ 𝑒1 (𝛼0𝛽1 + 𝛼1𝛽0 + 𝛼2𝛽3 − 𝛼3𝛽2)+ 𝑒2 (𝛼0𝛽2 − 𝛼1𝛽3 + 𝛼2𝛽0 + 𝛼3𝛽1)+ 𝑒3 (𝛼0𝛽3 + 𝛼1𝛽2 − 𝛼2𝛽1 + 𝛼3𝛽0) .
(7)

We may notice that this quaternionic product is associa-
tive, but not commutative. The quaternionic unit elements(𝑒0, 𝑒1, 𝑒2, 𝑒3) followed the given relations,𝑒20 = 1,𝑒2�퐴 = −1,𝑒0𝑒�퐴 = 𝑒�퐴𝑒0 = 𝑒�퐴,𝑒�퐴𝑒�퐵 = −𝛿�퐴�퐵𝑒0 + 𝑓�퐴�퐵�퐶𝑒�퐶, (∀𝐴, 𝐵, 𝐶 = 1, 2, 3)

(8)

where 𝛿�퐴�퐵 is the delta symbol and 𝑓�퐴�퐵�퐶 is the Levi Civita
three-index symbol having value 𝑓�퐴�퐵�퐶 = +1 for cyclic
permutation, 𝑓�퐴�퐵�퐶 = −1 for anticyclic permutation, and𝑓�퐴�퐵�퐶 = 0 for any two repeated indices. Further, we also may
write the following relations to quaternion basis elements[𝑒�퐴, 𝑒�퐵] = 2𝑓�퐴�퐵�퐶𝑒�퐶,{𝑒�퐴, 𝑒�퐵} = −2𝛿�퐴�퐵𝑒0,𝑒�퐴 (𝑒�퐵𝑒�퐶) = (𝑒�퐴𝑒�퐵) 𝑒�퐶, (9)

where the brackets [ , ] and { , } are used, respectively, for
commutation and the anticommutation relations. Thus the
above multiplication rules governed the ordinary dot and
cross product; i.e.,𝛼 ∘ 𝛽 = (𝛼0𝛽0 − 𝛼 ⋅ 𝛽, 𝛼0𝛽 + 𝛽0𝛼 + (𝛼 × 𝛽)) , (10)

where we take 𝛼 × 𝛽 ̸= 0 for noncommutative product
of quaternion. The quaternionic product with the scalar
quantity 𝜉 is given by𝜉 ∘ 𝛼 = 𝑒0 (𝜉𝛼0) + 𝑒1 (𝜉𝛼1) + 𝑒2 (𝜉𝛼2) + 𝑒3 (𝜉𝛼3) . (11)

As such, the multiplication identity element can expressed by
the unit elements,1 = 𝑒01 + 𝑒10 + 𝑒20 + 𝑒30. (12)

Moreover, a quaternion can also be decomposed in terms of
scalar (𝑆(𝛼)) and vector (V(𝛼)) parts as𝑆 (𝛼) = 12 (𝛼 + 𝛼) , (13)

V (𝛼) = 12 (𝛼 − 𝛼) , (14)

where the quaternionic conjugate 𝛼 is expressed by𝛼 = 𝑒0𝛼0 − (𝑒1𝛼1 + 𝑒2𝛼2 + 𝑒3𝛼3) . (15)

The real and imaginary parts of 𝛼 can be written as

Re (H) = 𝛼0, (16)

Im (H) = {𝑒1𝛼1 + 𝑒2𝛼2 + 𝑒3𝛼3 | ∀𝛼�푗=1,2,3 ∈ R} ⊆ H. (17)

If Re(H) = 0 and 𝛼 ̸= 0, then 𝛼 is said to be purely imaginary
quaternions. Therefore, all quaternions with zero real are
simplified as imaginary space of H, where the imaginary
space Im(H) ∈ R3 is a three-dimensional real vector space,

Im (𝛼) = (𝛼1, 𝛼2, 𝛼3)
Im (𝛼)† = (𝛼1𝛼2𝛼3). (18)

Interestingly, we may write the following form of quaternion
as

𝛼 = Re (𝛼) + 3∑
�푗=1

𝑒�푗Im (𝛼�푗) . (19)

The quaternionic Euclidean scalar product H × H 󳨃󳨀→ R can
also be expressed as⟨𝛼, 𝛽⟩ = Re (𝛼 ∘ 𝛽) = 𝛼0𝛽0 + 𝛼1𝛽1 + 𝛼2𝛽2 + 𝛼3𝛽3. (20)

Like complex numbers, the modulus of quaternion 𝛼 is then
defined as |𝛼| = √𝛼20 + 𝛼21 + 𝛼22 + 𝛼23 . (21)

Since there exists the norm𝑁(𝛼) = 𝛼 ∘ 𝛼 of a quaternion, we
have a division; i.e., every𝛼 has an inverse of a quaternion and
is expressed as 𝛼−1 = 𝛼|𝛼| . (22)

The quaternion conjugation satisfies the following property:𝛼1 ∘ 𝛼2 = 𝛼1 ∘ 𝛼2. (23)

The norm of the quaternion is positive definite and obeys the
composition law𝑁(𝛼1 ∘ 𝛼2) = 𝑁 (𝛼1) ∘ 𝑁 (𝛼2) . (24)

The quaternion elements are non-Abelian in nature and thus
represent a noncommutative division ring. Quaternion is an
important fundamental mathematical tool appropriate for
four-dimensional world.
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3. Magnetohydrodynamics of Cold Plasma

Let us start with the basic parameters of the plasma. As we
know that the plasma exists in many more forms in nature
which has a wide spread use in the science and technology.
The theory of plasma is divided into three categories [35],
namely, the microscopic theory, kinetic theory, and the fluid
theory. In briefly, the microscopic theory is based on the
motion of all the individual particles (e.g., electrons, ions,
atoms, molecules, and radicals). According to Klimontovich
[36], the time evolution of the particle density (𝜌�푠 󳨃󳨀→𝜌�푠(r, k, 𝑡)) is expressed by𝜕𝜌�푠𝜕𝑡 + k ⋅ ∇𝜌�푠 + 𝑞�푠𝑚�푠 (E + k × B) ⋅ ∇𝜌�푠 = 0, (25)

where k is the velocity of particles, (𝑞�푠, 𝑚�푠) are the effective
charge and mass of the 𝑠−species particles, and (E, B) are
the electric and magnetic field produced by the microscopic
particles. Besides, the collisionless kinetic theory of plasma
proposed by Vlasov [37], which has included the Boltzmann
distribution function 𝑓�푠 ≃ ⟨𝜌�푠⟩ as [35], is as follows:𝜕𝑓�푠𝜕𝑡 + k.∇𝑓�푠 + 𝑞�푠𝑚�푠 (E + k × B) .∇𝑓�푠 = 0. (26)

In (25) and (26), we may consider that the two dominating
particles (i.e., electrons and ions both) constitute the dynam-
ics of plasma, called the two-fluid theory of plasma [35–38].
For the two-fluid theory of plasma, at a given position (𝑥), the
mass and charge densities become𝜌�푀 (𝑥) = 𝑚�푒𝑛�푒 (𝑥) + 𝑚�푖𝑛�푖 (𝑥) , (27)𝜌�푐 (𝑥) = 𝑞�푒𝑛�푒 (𝑥) + 𝑞�푖𝑛�푖 (𝑥) , (28)

where 𝑚�푒, 𝑛�푒, and 𝑞�푒 are defined as the mass, total number,
and charge of electrons while 𝑚�푖, 𝑛�푖, and 𝑞�푖 are defined as
the mass, total number, and charge of ions, respectively. The
center of mass fluid velocity can be expressed as

k = 1𝜌�푀 (𝑥) (k�푒𝑚�푒𝑛�푒 (𝑥) + k�푖𝑚�푖𝑛�푖 (𝑥)) , (29)

and the current density becomes

J = 𝑞�푒𝑛�푒k�푒 + 𝑞�푖𝑛�푖k�푖. (30)

The continuity equations can be written as𝜕𝜌�푀𝜕𝑡 + ∇ ⋅ (𝜌�푀k) = 0, (mass conservation law) (31)𝜕𝜌�푐𝜕𝑡 + ∇ ⋅ J = 0, (charge conservation law) (32)

As such, the momentum equation for plasma fluid is
expressed as [35]𝜌�푀( 𝜕𝜕𝑡 + k ⋅ ∇) k = (J × B) + 𝜌�푐E − ∇𝑝, (33)

where ∇𝑝 is the pressure force introduced due to the inho-
mogeneity of the plasma and (J × B) is a Lorentz force per
unit volume element. Now, we introduce an acceleration to
the conducting fluid,𝜕k𝜕𝑡 󳨃󳨀→ ( 𝜕𝜕𝑡 + k ⋅ ∇) k, (34)

where the term (k ⋅∇)k is used for the convective acceleration
of fluid. Furthermore, the generalized Ohm’s law becomes
[35]𝑚�푒𝑚�푖𝜌�푀𝑒2 𝜕J𝜕𝑡 = 𝑚�푖2𝜌�푀𝑒∇𝑝 + E + (k × B) − 𝑚�푖𝜌�푀𝑒 (J × B)

− J𝜎 , (35)

where 𝜎 denotes the conductivity of fluid. One can define
Maxwell’s equations with natural unit (ℏ = 𝑐 = 1) as

∇ ⋅ E = 𝜌�푐, (36)

∇ ⋅ B = 0, (37)

∇ × E = −𝜕B𝜕𝑡 , (38)

∇ × B = 𝜕E𝜕𝑡 + J. (39)

Interestingly, if we combine together the conducting fluidic
field and electromagnetic field then the relevant theory comes
out which is called MHD. The MHD of cold plasma is an
approximation theory of fluid dynamics where we neglect
temperature effect and combine the electron equation with
ionic equation to form a one-fluid model [39]. For the cold
plasma model, many researchers [40, 41] suggested that, at a
given position, all particle-species (mostly ions and electrons)
have comparable temperatures (𝑇), energies (E) (equivalent
to masses), and velocities (k). It follows that the fluid velocity
is identical for particle velocity. Now, we may summarize the
following conditions for the cold plasma approximation, i.e.,𝑇�푒 ∼ 𝑇�푖 (neglected)

E�푒 ∼ E�푖

k�푒 ∼ k�푖𝜌�푒 ∼ 𝜌�푖
∇𝑝 ∼ 0.

(40)

We consider that the effected behavior of electrons are com-
parable to the ions, while their temperatures and pressure-
gradients are taken negligible in case of homogeneous cold
plasmas. Thus, using approximation (40), the average mass
and charge densities to cold plasma are expressed as󰜚 󳨃󳨀→ 𝜌�푀 (𝑥) ≃ 𝑚�푒𝑛�푒 (𝑥) ≡ 𝑚�푖𝑛�푖 (𝑥) , (41)𝜌 󳨃󳨀→ 𝜌�푐 (𝑥) ≃ 𝑞�푒𝑛�푒 (𝑥) ≡ 𝑞�푖𝑛�푖 (𝑥) . (42)
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As such, the Navier-Stokes and Ohm’s equations become󰜚 ( 𝜕𝜕𝑡 + k ⋅ ∇) k = 𝜌E, (43)

J = 𝜎 (E + k × B) , (44)

where (J×B) ∼ 0 to the case if the current is small compared
to (k × B). The ideal MHD equations (𝜌 ∼ 0) for cold plasma
may then be expressed as𝜕󰜚𝜕𝑡 + ∇ ⋅ (󰜚k) = 0, (45)

󰜚 ( 𝜕𝜕𝑡 + k ⋅ ∇) k = 0, (46)

∇ × (k × B) = 𝜕B𝜕𝑡 , (47)

∇ × B = 𝜕E𝜕𝑡 + J. (48)

To consider wave behavior of cold particles, the cold plasma
wave has temperature independent dispersion relation. If k�퐴
is Alfven velocity, then the dispersion relation for cold plasma
waves become [35] 𝜔2 = 𝜅2k2�퐴/(1 + k2�퐴). Interestingly, the
cold plasma waves propagate like as Alfven waves which are
independent of temperature.

4. Dual MHD Equations for Dyonic
Cold Plasma

The dual MHD field not only consists of electrons and ions
but also has the magnetic monopole and their ionic partners
magnetoions [42]. Generally, the composition of an electron
and a magnetic monopole referred a dyon [25]. In this study,
we may neglect the magnetoionic contribution like ions to
continue the dyonic cold plasma approximations. Dirac [8]
proposed the symmetrized field equations by postulating the
existence of magnetic monopoles; i.e.,

∇ ⋅ E = 𝜌�푒, (49)

∇ ⋅ B = 𝜌m, (50)

∇ × E = −𝜕B𝜕𝑡 − Jm, (51)

∇ × B = 𝜕E𝜕𝑡 + J�푒. (52)

In the above generalized Dirac-Maxwell’s equations, 𝜌�푒 and𝜌m are the electric and magnetic charge densities while J�푒
and Jm are the corresponding current densities. To study the
dyonic cold plasma field, there are a couple of masses and
charges species in presence of dyons. Thus, the generalized
dual densities (mass and charge densities) may be expressed
for one-fluid theory of dyonic cold plasma as󰜚�퐷 (󰜚�푒, 󰜚m) 󳨃󳨀→ (𝑚�푒𝑛�푒 + 𝑚m𝑛m) , (53)𝜌�퐷 (𝜌�푒, 𝜌m) 󳨃󳨀→ (𝑞�푒𝑛�푒 + 𝑞m𝑛m) , (54)

where𝑚m, 𝑛m, and 𝑞m are defined as the mass, total number,
and charge of magnetic monopoles, respectively. As such, we
can express the center of mass velocity of dyonic fluid in cold
plasma as

k�퐷 ≃ 1󰜚�퐷 (k�푒𝑚�푒𝑛�푒 (𝑥) + km𝑚m𝑛m (𝑥)) , (55)

whereupon the dual-current densities (electric andmagnetic)
are defined by

J�푒 = 𝑞�푒𝑛�푒k�푒,
and Jm = 𝑞m𝑛mkm. (56)

The conservation laws for the dynamics of dyonic cold plasma
can be written as𝜕󰜚�퐷𝜕𝑡 + ∇ ⋅ (󰜚�퐷k�퐷) = 0,(dyons mass conservation law) (57)

𝜕𝜌�푒𝜕𝑡 + ∇ ⋅ J�푒 = 0,(electric charge conservation law) (58)

𝜕𝜌m𝜕𝑡 + ∇ ⋅ Jm = 0,(magnetic charge conservation law) . (59)

The generalized Navier-Stokes force equation can also be
exhibited in presence of magnetic monopole; i.e.,󰜚�퐷( 𝜕𝜕𝑡 + k�퐷 ⋅ ∇) k�퐷 = (J�푒 × B) − (Jm × E) + 𝜌�푒E+ 𝜌mB − (∇𝑝)�퐷 , (60)

where the duality invariant Lorentz force equation for dyons
is

F�퐷 = 𝜌�푒E + (J�푒 × B) + 𝜌mB − (Jm × E) (61)

and the dyonic pressure gradient term (∇𝑝)�퐷 is negligible to
the case of cold plasma approximation. Conditionally, if the
influence of dyonic current is small then the force equation
can be written as󰜚�퐷 ( 𝜕𝜕𝑡 + k�퐷 ⋅ ∇) k�퐷 = 𝜌�푒E + 𝜌mB. (62)

In the same way, Ohm’s law for the dyonic cold plasma is
expressed as

J�푒 = 𝜎�푒 (E + k × B) , (63)

Jm = 𝜎m (B − k × E) . (64)

where 𝜎m is the magnetic conductivity. Therefore, from (63)
to (64), we can conclude that for infinite conductivity of
dyons (𝜎�푒,m 󳨀→ ∞) the electric and magnetic field vectors
constitute from the rotation of each other, i.e., E = −(k × B),
and B = (k × E). The above classical field equations given by
(49) to (64) of dyons are referred to dualMHDfield equations
of dyonic cold plasma.
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Table 1: Analogies between electrodynamics and hydrodynamics in
presence of dyons.

Electrodynamics
case Hydrodynamics case

A (electric vector
potential) 󳨃󳨀→ u (electric velocity of the

fluid)
B (magnetic vector
potential) 󳨃󳨀→ 𝜐 (magnetic velocity of the

fluid)𝜙�푒 (electric scalar
potential) 󳨃󳨀→ ℎ (electric enthalpy of the

fluid)𝜙m (magnetic scalar
potential) 󳨃󳨀→ 𝑘 (magnetic enthalpy of the

fluid)

5. Quaternionic Formulation to Dual Fields of
Dyonic Cold Plasma

In order to write the dual MHD field equations for dyonic
cold plasma, we may start with quaternionic two-velocity
(u, 𝜐) and two-enthalpy (ℎ, 𝑘) of dyons for plasma fluid
dynamics as

U (𝑒1, 𝑒2, 𝑒3, 𝑒0) = {𝑢�푥, 𝑢�푦, 𝑢�푧, − 𝑖𝑎0 ℎ} , (65)

V (𝑒1, 𝑒2, 𝑒3, 𝑒0) = {𝜐�푥, 𝜐�푦, 𝜐�푧, −𝑖𝑎0𝑘} , (66)

where (U,V) are quaternionic variables associated with two
four-velocities of electrons andmagnetic monopoles of dyons
and 𝑎0 denoted the speed of particles (dyons) moving in con-
ducting cold plasma. Here, we have taken the two-enthalpy
of dyons, i.e., the internal energy of dyons associated with
electrons and magnetic monopoles. Like many physicists [32,
43, 44], there is an analogy between the electromagnetic and
hydrodynamic. Thus, we may write the analogy of two four-
potentials (A,B) of dyons as

A(A, − 𝑖𝑐𝜙�푒) 󳨃󳨀→ U(u, − 𝑖𝑎0 ℎ) , (67)

B (B, −𝑖𝑐𝜙m) 󳨃󳨀→ V (𝜐, −𝑖𝑎0𝑘) , (68)

where the vector components u 󳨀→ (𝑢�푥, 𝑢�푦, 𝑢�푧), 𝜐 󳨀→(𝜐�푥, 𝜐�푦, 𝜐�푧) are analogous to electric and magnetic vector
potentials of dyons while the scalar components (ℎ, 𝑘) are
analogous to their scalar potentials. It should be notice
that the role of quaternionic two four-velocities of dyonic
fluid in generalized hydrodynamics of cold plasma is the
same as the quaternionic two four-potentials of dyons in
generalized electrodynamics. Now, we may summarize the
dyonic potentials corresponding to its fluid behavior in
Table 1.

The unified structure of quaternionic two four-velocities
(W ∈ H) for the generalized fields of dyonic cold plasma can
be written as

W = (U − 𝑖𝑎0 V)= 𝑒1 (𝑢�푥 − 𝑖𝑎0 𝜐�푥) + 𝑒2 (𝑢�푦 − 𝑖𝑎0 𝜐�푦)+ 𝑒3 (𝑢�푧 − 𝑖𝑎0 𝜐�푧) − 𝑖𝑎0 𝑒0 (ℎ − 𝑖𝑎0𝑘) ,
(69)

and it reduces to

W = 3∑
�푗=1

𝑒�푗𝑤�푗 − 𝑖𝑎0 𝑒0Ω0
= 3∑
�푗=1

𝑒�푗 (𝑢�푗 − 𝑖𝑎0 𝜐�푗) − 𝑖𝑎0 𝑒0 (ℎ − 𝑖𝑎0𝑘) , (70)

where w 󳨀→ (u − (𝑖/𝑎0)𝜐) and Ω0 󳨀→ (ℎ − 𝑖𝑎0𝑘) are
dyonic fluid-velocity and dyonic enthalpy in cold plasma,
respectively. Here, the scalar component (Ω0) represents
the amount of dyonic internal energy required to move
one kilogram of the fluid element. Now, to formulate the
quaternionic dual MHD field equations for dyonic cold
plasma, it is necessary to define quaternionic space-time
differential operator as

D = (∇, − 𝑖𝑎0 𝜕𝜕𝑡) ≃ 𝑒1 𝜕𝜕𝑥 + 𝑒2 𝜕𝜕𝑦 + 𝑒3 𝜕𝜕𝑧 − 𝑖𝑎𝑒0 𝜕𝜕𝑡 , (71)

and its quaternionic conjugate is

D = (−∇, − 𝑖𝑎0 𝜕𝜕𝑡)≃ −𝑒1 𝜕𝜕𝑥 − 𝑒2 𝜕𝜕𝑦 − 𝑒3 𝜕𝜕𝑧 − 𝑖𝑎𝑒0 𝜕𝜕𝑡 . (72)

The quaternionic product of D ∘ D will be

D ∘ D = 𝜕2𝜕𝑥2 + 𝜕2𝜕𝑦2 + 𝜕2𝜕𝑧2 − 1𝑎20 𝜕2𝜕𝑡2 = ∇2 − 1𝑎20 𝜕2𝜕𝑡2= D ∘ D, (73)

where D ∘ D or D ∘ D is defined by the D’ Alembert operator◻. In order to emphasize the variation of quaternionic
space-time to two four-velocities of dyonic fluid plasma, we
may operate the quaternionic differential operator (D) on
generalized two four-velocities (W) as

D ∘W = 𝑒1 {(𝜕𝑢�푧𝜕𝑦 − 𝜕𝑢�푦𝜕𝑧 − 1𝑎20 𝜕𝜐�푥𝜕𝑡 − 𝜕𝑘𝜕𝑥)+ 𝑖𝑎0 (−𝜕𝜐�푧𝜕𝑦 + 𝜕𝜐�푦𝜕𝑧 − 𝜕𝑢�푥𝜕𝑡 − 𝜕ℎ𝜕𝑥)}
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+ 𝑒2 {(𝜕𝑢�푥𝜕𝑧 − 𝜕𝑢�푧𝜕𝑥 − 1𝑎20 𝜕𝜐�푦𝜕𝑡 − 𝜕𝑘𝜕𝑦)+ 𝑖𝑎0 (−𝜕𝜐�푥𝜕𝑧 + 𝜕𝜐�푧𝜕𝑥 − 𝜕𝑢�푦𝜕𝑡 − 𝜕ℎ𝜕𝑦)}+ 𝑒3 {(𝜕𝑢�푦𝜕𝑥 − 𝜕𝑢�푥𝜕𝑦 − 1𝑎20 𝜕𝜐�푧𝜕𝑡 − 𝜕𝑘𝜕𝑧)+ 𝑖𝑎0 (−𝜕𝜐�푦𝜕𝑥 + 𝜕𝜐�푥𝜕𝑦 − 𝜕𝑢�푧𝜕𝑡 − 𝜕ℎ𝜕z)}− 𝑒0 {(𝜕𝑢�푥𝜕𝑥 + 𝜕𝑢�푦𝜕𝑦 + 𝜕𝑢�푧𝜕𝑧 + 1𝑎20 𝜕ℎ𝜕𝑡 )− 𝑖𝑎0 (𝜕𝜐�푥𝜕𝑥 + 𝜕𝜐�푦𝜕𝑦 + 𝜕𝜐�푧𝜕𝑧 + 𝜕𝑘𝜕𝑡 )} .
(74)

Equation (74) governed the following quaternionic hydrody-
namics field equation for dyonic cold plasma, i.e.,

D ∘W = Ψ ≃ 𝑒1𝜓1 + 𝑒2𝜓2 + 𝑒3𝜓3 + 𝑒0𝜒, (75)

where 𝜓 󳨀→ (𝜓1, 𝜓2, 𝜓3) and 𝜒 are the vector and scalar
fields connected to the hydrodynamics of dyonic cold plasma,
respectively. Further, the unified structure of quaternionic
hydrodynamics field components can be expressed as

𝜓1 = {(∇ × u)�푥 − 1𝑎20 𝜕𝜐�푥𝜕𝑡 − 𝜕𝑘𝜕𝑥}+ 𝑖𝑎0 {− (∇ × 𝜐)�푥 − 𝜕𝑢�푥𝜕𝑡 − 𝜕ℎ𝜕𝑥} , (76)

𝜓2 = {(∇ × u)�푦 − 1𝑎20 𝜕𝜐�푦𝜕𝑡 − 𝜕𝑘𝜕𝑦}+ 𝑖𝑎0 {− (∇ × 𝜐)�푦 − 𝜕𝑢�푦𝜕𝑡 − 𝜕ℎ𝜕𝑦} , (77)

𝜓3 = {(∇ × u)�푧 − 1𝑎20 𝜕𝜐�푧𝜕𝑡 − 𝜕𝑘𝜕𝑧}+ 𝑖𝑎0 {− (∇ × 𝜐)�푧 − 𝜕𝑢�푧𝜕𝑡 − 𝜕ℎ𝜕𝑧} , (78)

𝜒 = −{(∇ ⋅ u + 1𝑎20 𝜕ℎ𝜕𝑡 ) − 𝑖𝑎0 (∇ ⋅ 𝜐 + 𝜕𝑘𝜕𝑡 )} . (79)

We may consider the generalized dual hydrodynamics fields,
namely, the hydroelectric and hydromagnetic fields of dyonic
fluid associated with the dynamics of electrons and magnetic

monopoles in dyonic cold plasma.Thus, the unified fields can
be rewrite as 𝜓1 ←→ (𝐵�푥 + 𝑖𝑎0𝐸�푥) , (80)

𝜓2 ←→ (𝐵�푦 + 𝑖𝑎0𝐸�푦) , (81)

𝜓2 ←→ (𝐵�푦 + 𝑖𝑎0𝐸�푦) , (82)

𝜒 ←→ −(L − 𝑖𝑎0 L̃) . (83)

The hydroelectric field vector (E) plays as the generalized
Lamb vector field and the hydromagnetic field vector (B)
plays as the generalized vorticity field [45–47] to the case of
dual MHD. The generalized Lamb vector field may be used
to accelerate the dyonic fluid flow while the vorticity field is
its counterpart. Thus, the generalized dual fields (E,B) for
dyonic fluid become

E = −∇ × 𝜐 − 𝜕u𝜕𝑡 − ∇ℎ, (84)

B = ∇ × u − 1𝑎20 𝜕𝜐𝜕𝑡 − ∇𝑘, (85)

and the dual Lorenz gauge conditions (L, L̃) for the contin-
uous flow of incompressible dyonic fluid plasma are

L :󳨃󳨀→ ∇ ⋅ u + 1𝑎20 𝜕ℎ𝜕𝑡 = 0, (86)

L̃ :󳨃󳨀→ ∇ ⋅ 𝜐 + 𝜕𝑘𝜕𝑡 = 0. (87)

The unified quaternionic Lamb-vorticity field vector Ψ (or
generalized hydroelectromagnetic field vector) for dyons can
be expressed as

Ψ = 𝑒1 (𝐵�푥 + 𝑖𝑎0𝐸�푥) + 𝑒2 (𝐵�푦 + 𝑖𝑎0𝐸�푦)+ 𝑒3 (𝐵�푧 + 𝑖𝑎0𝐸�푧) . (88)

Now, applying the quaternionic conjugate of differential
operator D to (88), we obtain

D ∘Ψ = −𝑒1 [{(∇ × B)�푥 − 1𝑎20 𝜕𝐸�푥𝜕𝑡 }+ 𝑖𝑎0 {(∇ × E)�푥 + 𝜕𝐵�푥𝜕𝑡 }]− 𝑒2 [{(∇ × B)�푦 − 1𝑎20 𝜕𝐸�푦𝜕𝑡 }+ 𝑖𝑎0 {(∇ × E)�푦 + 𝜕𝐵�푦𝜕𝑡 }]
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− 𝑒3 [{(∇ × B)�푧 − 1𝑎20 𝜕𝐸�푧𝜕𝑡 }+ 𝑖𝑎0 {(∇ × E)�푧 + 𝜕𝐵�푧𝜕𝑡 }] + 𝑒0 [∇ ⋅ B + 𝑖𝑎0∇ ⋅ E] .
(89)

Equation (89) shows the quaternionic space-time evaluation
of generalized Lamb-vorticity fields in the incompressible
fluid of dyonic cold plasma. The dynamics of dyonic cold
plasma fluid can be expressed by following equation:

D ∘Ψ = −S (S, ℘) ≃ − (𝑒1𝑆1 + 𝑒2𝑆2 + 𝑒3𝑆3 + 𝑒0℘) , (90)

whereS is the quaternionic source for the dyonic cold plasma.
Moreover, the quaternionic vector and scalar components of
dyonic sources, i.e., (S, ℘), can be written as

𝑆1 ←→ (𝜇𝐽�푒�푥 − 𝑖𝑎0 𝐽m�푥𝜖 ) , (91)

𝑆2 ←→ (𝜇𝐽�푒�푦 − 𝑖𝑎0 𝐽m�푦𝜖 ) , (92)

𝑆3 ←→ (𝜇𝐽�푒�푧 − 𝑖𝑎0 𝐽m�푧𝜖 ) , (93)

℘ ←→ (𝜇𝜌m − 𝑖𝑎0 𝜌�푒𝜖 ) , (94)

where (J�푒, 𝜌�푒) are the quaternionic electric source current and
source density associated with the dynamics of hydroelectric
field while (Jm, 𝜌m) are corresponding magnetic sources
associated with the dynamics of hydromagnetic field of
dyonic fluid. Therefore, the quaternionic unified hydroelec-
tromagnetic source for dyonic cold plasma can be expressed
by

S = 𝜇 (𝑒1𝐽�푒�푥 + 𝑒2𝐽�푒�푦 + 𝑒3𝐽�푒�푧 − 𝑒0𝜌m)− 𝑖𝑎0 (𝑒1 𝐽m�푥𝜖 + 𝑒2 𝐽m�푦𝜖 + 𝑒3 𝐽m�푧𝜖 + 𝑒0 𝜌�푒𝜖 )= (𝜇𝑒�푗J�푒 − 𝑖𝑒0𝑎0 𝜌�푒𝜖 ) − 𝑖𝑎0 (𝑒�푗 Jm𝜖 − 𝑖𝑒0𝑎0𝜇𝜌m)
= (J − 𝑖𝑎0K) .

(95)

Here, J(𝑒�푗, 𝑒0) 󳨀→ (𝜇J�푒 − (𝑖/𝑎0)(𝜌�푒/𝜖)),K(𝑒�푗, 𝑒0) 󳨀→((1/𝜖)Jm−𝑖𝑎0𝜇𝜌m) are quaternionic two four-fluid sources of
dyons and (𝜖, 𝜇) considering the permittivity and permeabil-
ity satisfy 𝑎0 = 1/√𝜇𝜖. Now, equate quaternionic imaginary
and real coefficients in (90) and obtain

∇ ⋅ E = 𝜌�푒𝜖 , (Imaginary part of 𝑒0) (96)

∇ ⋅ B = 𝜇𝜌m, (Real part of 𝑒0) (97)

(∇ × E)�푥 = −𝜕𝐵�푥𝜕𝑡 − 𝐽m�푥𝜖 , (Imaginary part of 𝑒1) (98)

(∇ × E)�푦 = −𝜕𝐵�푦𝜕𝑡 − 𝐽m�푦𝜖 , (Imaginary part of 𝑒2) (99)

(∇ × E)�푧 = −𝜕𝐵�푧𝜕𝑡 − 𝐽m�푧𝜖 , (Imaginary part of 𝑒3) (100)

(∇ × B)�푥 = 1𝑎20 𝜕𝐸�푥𝜕𝑡 + 𝜇𝐽�푒�푥, (Real part of 𝑒1) (101)

(∇ × B)�푦 = 1𝑎20 𝜕𝐸�푦𝜕𝑡 + 𝜇𝐽�푒�푦, (Real part of 𝑒2) (102)

(∇ × B)�푧 = 1𝑎20 𝜕𝐸�푧𝜕𝑡 + 𝜇𝐽�푒�푧, (Real part of 𝑒3) . (103)

The above eight equations represent the quaternionic field
equations for hydrodynamics of dyonic cold plasma. These
obtained equations are primary equations for dual MHD
of dyonic cold plasma, which are exactly the same as the
generalized Dirac-Maxwell equations given by (49)-(52). As
such, we also may write the unified dual MHDfield equations
for dyonic cold plasma as

∇ ⋅Ψ = 𝑖℘, (104)

∇ ×Ψ = − 𝑖𝑎0 𝜕Ψ𝜕𝑡 + S. (105)

The present quaternionic formulation describes the macro-
scopic cold plasmabehavior.The solution of differential equa-
tions (104)-(105) provides the evolution of generalized lamb
vector field and generalized vorticity field to the presence
of dyonic cold plasma. Now, we may check the validity of
dual MHD field equations for dyonic cold plasma in given
subsections.

5.1. Duality Invariant. Let us check the duality invariant
symmetry for generalized hydroelectric and hydromagnetic
fields of dyonic cold plasma. The duality transformation
defines the rotation of hydroelectric and hydromagnetic
field components in the quaternionic space such that the
physics behind the quantity remains the same after the
transformation is performed. Suppose, 𝐹�훼�훽 and F�훼�훽 are the
field and dual field tensor, then the duality transformation
becomes [48]𝐹�耠�훼�훽 :󳨃󳨀→ 𝐹�훼�훽 cos 𝜃 +F

�훼�훽 sin 𝜃,
F
�耠�훼�훽 :󳨃󳨀→ −F

�훼�훽 sin 𝜃 + 𝐹�훼�훽 cos 𝜃,(0 ≤ 𝜃 ≤ 𝜋2 ) .
(106)

Correspondingly, the quaternionic hydroelectric and hydro-
magnetic fields can also be transformed as(E

B
) 󳨃󳨀→ D2×2 (EB) , (107)
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whereD2×2 = ( cos �휃 �푎0 sin �휃
−(1/�푎0) sin �휃 cos �휃 ) is an unitary matrix called

the duality transformation matrix (or simply D-matrix). For
general case 𝜃 = 𝜋/2, the generalized dual fields will be
transformed as

(E
B
) = ( 0 𝑎0− 1𝑎0 0)(E

B
) :󳨐⇒ {{{{{

E 󳨃󳨀→ 𝑎0B,
B 󳨃󳨀→ − 1𝑎0 E. (108)

Here, the D-matrix D2×2 = ( 0 �푎0−1/�푎0 0
). For quaternionic

dual-velocity and dual-enthalpy of dyons fluid, the following
duality transformation relations governed the streamline
flow, i.e.,

(u
𝜐
) = ( 0 𝑎0− 1𝑎0 0)(u

𝜐
) :󳨐⇒ {{{{{

u 󳨃󳨀→ 𝑎0𝜐,
𝜐 󳨃󳨀→ − 1𝑎0u, (109)

( ℎ𝑘 ) = ( 0 𝑎0− 1𝑎0 0)( ℎ𝑘 ) :󳨐⇒ {{{{{
ℎ 󳨃󳨀→ 𝑎0𝑘,𝑘 󳨃󳨀→ − 1𝑎0 ℎ. (110)

Accordingly, the dual-current and dual-density of dyonic
plasma will be transformed as

( J�푒

Jm
) = ( 0 𝑎0− 1𝑎0 0)( J�푒

Jm
) :

󳨐⇒ {{{{{
J�푒 󳨃󳨀→ 𝑎0Jm,
Jm 󳨃󳨀→ − 1𝑎0 J�푒,

(111)

(𝜌�푒𝜌m) = ( 0 𝑎0− 1𝑎0 0 )(𝜌�푒𝜌m) :
󳨐⇒ {{{{{

𝜌�푒 󳨃󳨀→ 𝑎0𝜌m,𝜌m 󳨃󳨀→ − 1𝑎0 𝜌�푒.
(112)

Interestingly, from relations (108) to (112), we can conclude
that the generalizedDirac-Maxwell equations for dyonic fluid
of cold plasma are invariant under the duality transforma-
tions and showing the highly symmetric nature in presence
of dyonic fluid.

5.2. Lorentz Invariant. Let us start with the most usual trans-
formation [49, 50] that preserves the quaternionic intervals𝑑𝑠2 = 𝑑𝑥2 + 𝑑𝑦2 + 𝑑𝑧2 − 𝑎20𝑑𝑡2; i.e.,𝑋�耠�휉 = Λ�휉�휂𝑋�휂, (113)

where 𝑋 is any four-vector and the Lorentz transformation
matrix element Λ�휉�휂 is

Λ�휉�휂 󳨃󳨀→( cosh𝜙 0 0 −𝑖 sinh 𝜙0 1 0 00 0 1 0𝑖 sinh 𝜙 0 0 cosh 𝜙 ). (114)

Here 𝜙 is the boost parameter. Using the above Lorentz
transformation matrix, we may obtain the following trans-
formation equations for quaternionic four-velocity (W) of
dyonic cold plasma which are an analogous to quaternionic
potentials of dyons; i.e.,𝑤�耠�푥 = 𝛾 (𝑤�푥 − 𝑎0Ω0) ,𝑤�耠�푦 = 𝑤�푦,𝑤�耠�푧 = 𝑤�푧,Ω�耠0 = 𝛾 (Ω0 − 𝑎0𝑤�푥) ,

(115)

where

cosh 𝜙 = 1√1 − tanh2𝜙 = 1√1 − 𝑎20 = 𝛾,
sinh 𝜙 = 𝑎0𝛾. (116)

If we consider the massive dyonic particles [51], then the
transformation relations (115) lead to the energy-momentum
transformations for dyonic cold plasma,

P
�耠
�푥 = 𝛾 (P�푥 − 𝑎0E) ,

P
�耠
�푦 = P�푦,

P
�耠
�푧 = P�푧,

E
�耠 = 𝛾 (E − 𝑎0P�푥) ,

(117)

where the quaternionic four-momentum is defined by
P(𝑒1, 𝑒2, 𝑒3, 𝑒0) = (P�푥,P�푦,P�푧,E). It should be notice that
the obtained relations (117) are similar to the usual rela-
tivistic Lorentz energy-momentum transformation relations
[49, 50], where we assume that the speed of dyons (𝑎0) is
comparable to the speed of light (𝑐 ∼ 1). As such, we
also may establish the following transformation relations for
quaternionic source current and source density, i.e.,𝑆�耠�푥 = 𝛾 (𝑆�푥 − 𝑎0℘) ,𝑆�耠�푦 = 𝑆�푦,𝑆�耠�푧 = 𝑆�푧,℘�耠 = 𝛾 (℘ − 𝑎0𝑆�푥) .

(118)
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Correspondingly, we obtain the Lorentz transformation rela-
tions for unified hydroelectromagnetic field of dyonic cold
plasma, so that 𝜓�耠�푥 = 𝜓�푥,𝜓�耠�푦 = 𝛾 (𝜓�푦 − 𝑖𝑎0𝜓�푧) ,𝜓�耠�푧 = 𝛾 (𝜓�푧 + 𝑖𝑎0𝜓�푦) , (119)

along with 𝜕𝜕𝑥�耠 = 𝛾( 𝜕𝜕𝑥 + 𝜕𝜕𝑡) ,𝜕𝜕𝑡�耠 = 𝛾( 𝜕𝜕𝑡 + 𝑎20 𝜕𝜕𝑥) . (120)

The beauty of the transformation relations (118)-(120) is
that the generalized Dirac-Maxwell equations for dyonic
fluid of cold plasma are well invariant under these Lorentz
transformation.

5.3. CPT Invariant. In order to check the CPT invariance [52]
for the dual MHD field equations of dyonic cold plasma, we
may write the charge conjugation matrix (C) to the case of
quaternionic dual-current sources and hydroelectromagnetic
fields of dyonic fluid as C 󳨀→ ( −1 00 −1 ), where the charge
conjugation transformation plays as

C : ( J�耠�푒

J�耠m
) 󳨃󳨀→ (−1 00 −1)( J�푒

Jm
) , (121)

C : (E�耠
B�耠
) 󳨃󳨀→ (−1 00 −1)(EB) . (122)

Correspondingly, the parity matrix 𝑃 󳨀→ ( −1 00 1 ) can govern
the following transformations for the dyonic fluid:𝑃 : ( J�耠�푒

J�耠m
) 󳨃󳨀→ (−1 00 1)( J�푒

Jm
) , (123)

𝑃 : (E�耠
B�耠
) 󳨃󳨀→ (−1 00 1)(EB) . (124)

As such, we can write the time reversal matrix, i.e., 𝑇 󳨀→( 1 00 −1 ), and the transformation performs as𝑇 : (J�耠m
J�耠�푒
) 󳨃󳨀→ (1 00 −1)(JmJ�푒 ) , (125)

𝑇 : (E�耠
B�耠
) 󳨃󳨀→ (1 00 −1)(EB) . (126)

The forth component of quaternionic sources can also be
transformed for charge conjugation, parity, and time reversal
as the following ways:

C : ( 𝜌�耠�푒𝜌�耠m) 󳨃󳨀→ (−1 00 1)(𝜌�푒𝜌m) , (127)

𝑃 : ( 𝜌�耠�푒𝜌�耠m) 󳨃󳨀→ (1 00 −1)(𝜌�푒𝜌m) , (128)

𝑇 : ( 𝜌�耠�푒𝜌�耠m) 󳨃󳨀→ (1 00 1)( 𝜌�푒𝜌m) . (129)

We can summarize the quaternionic physical quantities of
dualMHDfields and their changes under charge conjugation,
parity inversion, and time reversal given by Table 2 [53, 54].

Now, we may apply the CPT transformation relations on
generalized Dirac-Maxwell equations for dyonic fluid of cold
plasma as [54]

C𝑃𝑇 (∇ ⋅ E) 𝑇−1𝑃−1C−1 = C𝑃𝑇(𝜌�푒𝜖 ) 𝑇−1𝑃−1C−1,
C𝑃𝑇 (∇ ⋅ B) 𝑇−1𝑃−1C−1 = C𝑃𝑇 (𝜇𝜌m) 𝑇−1𝑃−1C−1,
C𝑃𝑇 (∇ × B) 𝑇−1𝑃−1C−1= C𝑃𝑇( 1𝑎20 𝜕E𝜕𝑡 + 𝜇J�푒)𝑇−1𝑃−1C−1+C𝑃𝑇 (𝜇J�푒) 𝑇−1𝑃−1C−1,
C𝑃𝑇 (∇ × E) 𝑇−1𝑃−1C−1= C𝑃𝑇(−𝜕B𝜕𝑡 )𝑇−1𝑃−1C−1+C𝑃𝑇(−1𝜖 Jm)𝑇−1𝑃−1C−1.

(130)

Therefore, it may conclude that the generalized Dirac-
Maxwell equations for dyonic cold plasma are invariant under
CPT transformations.

6. Quaternionic Hydroelectromagnetic
Wave Propagation

To establish the dual hydrodynamics wave equations for
dyonic cold plasma, we can start with the following quater-
nionic relation:

D ∘ (D ∘Ψ) = −D ∘ S, (131)

where the left hand part of (131) can be written as

D ∘ (D ∘Ψ) = 𝑒1 {(𝜕2𝐵�푥𝜕𝑥2 − 1𝑎20 𝜕2𝐵�푥𝜕𝑡2 )+ 𝑖𝑎0 (𝜕2𝐸�푥𝜕𝑥2 − 1𝑎20 𝜕2𝐸�푥𝜕𝑡2 )}+ 𝑒2 {(𝜕2𝐵�푦𝜕𝑦2 − 1𝑎20 𝜕2𝐵�푦𝜕𝑡2 )+ 𝑖𝑎0 (𝜕2𝐸�푦𝜕𝑦2 − 1𝑎20 𝜕2𝐸�푦𝜕𝑡2 )}
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Table 2: Quaternionic physical quantities and their CPT transformations.

Physical quantities Charge conjugation (C) Parity inversion (𝑃) Time reversal (𝑇)𝜕�푡 𝜕�푡 𝜕�푡 −𝜕�푡
∇ ∇ −∇ ∇𝑎0 𝑎0 −𝑎0 −𝑎0
J�푒 −J�푒 −J�푒 −J�푒
Jm −Jm Jm Jm

E −E −E E
B −B B −B𝜌�푒 −𝜌�푒 𝜌�푒 𝜌�푒𝜌m 𝜌m −𝜌m 𝜌m

+ 𝑒3 {(𝜕2𝐵�푧𝜕𝑧2 − 1𝑎20 𝜕2𝐵�푧𝜕𝑡2 )+ 𝑖𝑎0 (𝜕2𝐸�푧𝜕𝑧2 − 1𝑎20 𝜕2𝐸�푧𝜕𝑡2 )} .
(132)

Accordingly, the right hand part of (131) can be expressed as

D ∘ S = 𝑒1 {𝜇(𝜕𝐽�푒�푧𝜕𝑦 − 𝜕𝐽�푒�푦𝜕𝑧 − 1𝑎20𝜇𝜖 𝜕𝐽m�푥𝜕𝑡 − 𝜕𝜌m𝜕𝑥 )− 𝑖𝑎0𝜖 (𝜕𝐽m�푧𝜕𝑦 − 𝜕𝐽m�푦𝜕𝑧 + 𝜇𝜖𝜕𝐽�푒�푥𝜕𝑡 + 𝜕𝜌�푒𝜕𝑥 )}
+ 𝑒2 {𝜇(𝜕𝐽�푒�푥𝜕𝑧 − 𝜕𝐽�푒�푧𝜕𝑥 − 1𝑎20𝜇𝜖 𝜕𝐽m�푦𝜕𝑡 − 𝜕𝜌m𝜕𝑦 )
− 𝑖𝑎0𝜖 (𝜕𝐽m�푥𝜕𝑧 − 𝜕𝐽m�푧𝜕𝑥 + 𝜇𝜖𝜕𝐽�푒�푦𝜕𝑡 + 𝜕𝜌�푒𝜕𝑦 )}
+ 𝑒3 {𝜇(𝜕𝐽�푒�푦𝜕𝑥 − 𝜕𝐽�푒�푥𝜕𝑦 − 1𝑎20𝜇𝜖 𝜕𝐽m�푧𝜕𝑡 − 𝜕𝜌m𝜕𝑧 )
− 𝑖𝑎0𝜖 (𝜕𝐽m�푦𝜕𝑥 − 𝜕𝐽m�푥𝜕𝑦 + 𝜇𝜖𝜕𝐽�푒�푧𝜕𝑡 + 𝜕𝜌�푒𝜕𝑧 )}
− 𝑒0 {𝜇(𝜕𝐽�푒�푥𝜕𝑥 + 𝜕𝐽�푒�푦𝜕𝑦 + 𝜕𝐽�푒�푧𝜕𝑧 + 1𝑎20𝜇𝜖 𝜕𝜌�푒𝜕𝑡 )− 𝑖𝑎0𝜖 (𝜕𝐽m�푥𝜕𝑥 + 𝜕𝐽m�푦𝜕𝑦 + 𝜕𝐽m�푧𝜕𝑧 + 𝜇𝜖𝜕𝜌m𝜕𝑡 )} .

(133)

Now, equate the real and imaginary parts of quaternionic
basis vectors in (131) and obtain the following relations:

∇ ⋅ J�푒 + 𝜕𝜌�푒𝜕𝑡 = 0, (134)

∇ ⋅ Jm + 1𝑎20 𝜕𝜌m𝜕𝑡 = 0, (135)

∇
2B − 1𝑎20 𝜕2B𝜕𝑡2 − 𝜇 (∇𝜌m) − 1𝑎20𝜖 𝜕Jm𝜕𝑡 + 𝜇 (∇ × J�푒)= 0, (136)

∇2E − 1𝑎20 𝜕2E𝜕𝑡2 − 1𝜖 (∇𝜌�푒) − 𝜇𝜕J�푒𝜕𝑡 − 1𝜖 (∇ × Jm) = 0. (137)

Equations (134) and (135) defined the well-known dual
continuity equations while (136) and (137) represented the
generalized hydromagnetic and hydroelectric wave equations
for dyonic cold plasma in presence of electrons and magnetic
monopoles. The beauty of (136) is that it is an analogous to
Alfven wave propagation [55, 56] associated with magnetic
monopoles, and the same way (137) describes the counterpart
of Alfven wave propagation associated with the electrons.
Thus, the unified hydroelectromagnetic wave equations for
dyonic fluid of cold plasma can also be expressed as

∇2Ψ − 1𝑎20 𝜕2Ψ𝜕𝑡2 − 𝑖 (∇℘) − 𝑖𝑎0 𝜕S𝜕𝑡 + (∇ × S) = 0. (138)

Interestingly, the generalized wave equation (138) is invariant
under the duality, Lorentz, and CPT transformations.

7. Conclusion

The dyons are high energetic soliton particles existing in
the cold plasma. The cold plasma model is the simplest
model where we assume negligible plasma temperature, and
the corresponding distribution function shows the Dirac
delta function centered at the macroscopic flow of linearised
velocity. Dyonic cold plasma model can be used in the study
of small amplitude electromagnetic waves propagating in
the conducting plasma. In this study, we have applied the
four-dimensional space-time algebra (quaternionic algebra)
to elaborate the dynamics of dyonic fluid in cold plasma
field. In Section 2, we have explained in detail the prop-
erties of quaternionic algebra. However, the quaternion is
an important and appropriate fundamental mathematical
tool to understand the four-dimension space-time world.
In Sections 3 and 4, the fundamental equations for MHD
field and their cold plasma approximation have been defined.
The interesting part we have mentioned here that the dual
MHD equations for massive dyons consisted of electrons and
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magnetic monopoles. The generalized equations involving
the mass and charge densities are expressed in terms of one-
fluid theory of dyonic cold plasma. Accordingly, we have
discussed the dual-current densities given by (56). The mass
conservation law, dual-charge conservation law, Lorentz force
equation, and Ohm’s law for dyonic cold plasma have been
defined. In Section 5, we have described the quaternionic for-
mulation for moving massive dyonic fluid of incompressible
cold plasma. The advantage of the quaternionic formulation
is that, it is better to explain two four-velocities, hydroelectric
(Lamb vector), and hydromagnetic (vorticity) fields and the
dual Lorenz gauge conditions for dyonic cold plasma. It
has been emphasized that the dual hydrodynamics field of
dyons (i.e., hydroelectric and hydromagnetic fields) deal with
both electrohydrodynamic and magnetic-hydrodynamics. In
present study, the existence of magnetic monopoles has been
visualized to MHD field. It has been shown that the two
current sources are also associated with the quaternionic
hydroelectric and hydromagnetic fields of dyonic plasma
fluid. We have established the eight primary equations of
dual MHD field in presence of dyonic fluid. Interestingly,
the unified macroscopic Dirac-Maxwell equations (104) and
(105) have been obtained in the case of dyonic dual MHD.
It has been noticed that like electrodynamics, the Dirac-
Maxwell fluid equations are mandatory to describe the
dynamics of MHD plasma. The beauty of cold plasma field
equations is that these equations are well invariant under the
duality, Lorentz, and CPT transformations. In Section 6, we
have obtained the quaternionic dual continuity equations for
incompressible dyonic fluid. The generalized hydroelectric
and hydromagnetic wave equations have been established for
dyonic cold plasma in presence of electrons and magnetic
monopoles. It has been emphasized that the obtained Alfven
wave like equation is associated with magnetic monopoles,
while the counterpart of Alfven wave equation plays as
electric-plasma waves in presence of electrons.
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