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In this work, we study the quantum system with the symmetric Razavy potential and show how to find its exact solutions. We find
that the solutions are given by the confluent Heun functions. The eigenvalues have to be calculated numerically. The properties of
the wave functions depending on 𝑚 are illustrated graphically for a given potential parameter 𝜉. We find that the even and odd
wave functions with definite parity are changed to odd and even wave functions when the potential parameter 𝑚 increases. This
arises from the fact that the parity, which is a defined symmetry for very small𝑚, is completely violated for large𝑚. We also notice
that the energy levels 𝜖𝑖 decrease with the increasing potential parameter𝑚.

1. Introduction

It is well-known that the exact solutions of quantum systems
play an important role since the early foundation of the quan-
tummechanics. Generally speaking, two typical examples are
studied for the hydrogen atom and harmonic oscillator in
classical quantum mechanics textbooks [1, 2]. Up till now,
there are a few main methods to solve the quantum soluble
systems. The first is called the functional analysis method.
That is to say, one solves the second-order differential equa-
tion and obtains their solutions [3], which are expressed by
some well-known special functions. The second is called the
algebraic method, which is realized by studying the Hamil-
tonian of quantum system. This method is also related to
supersymmetric quantum mechanics (SUSYQM) [4], further
closely with the factorization method [5]. The third is called
the exact quantization rule method [6], from which we pro-
posed proper quantization rule [7], which showsmore beauty
and symmetry than exact quantization rule. It should be
recognized that almost all soluble potentialsmentioned above
belong to single well potentials. The double-well potentials
have not been studied well due to their complications [8–17],

in which many authors have been searching the solutions of
the double-well potentials for a long history. This is because
the double-well potentials could be used in the quantum
theory of molecules to describe the motion of the particle
in the presence of two centers of force, the heterostructures,
Bose-Einstein condensates, superconducting circuits, etc.

Almost forty years ago, Razavy proposed a bistable
potential [18]:

𝑉 (𝑥) = ℏ2𝛽2
2𝜇 [18𝜉

2 cosh (4𝛽𝑥) − (𝑚 + 1) 𝜉 cosh (2𝛽𝑥)

− 1
8𝜉
2] ,

(1)

which depends on three potential parameters 𝛽, 𝜉, and a
positive integer𝑚. In Figure 1 we plot it as the function of the
variables 𝑥with various𝑚, in which we take 𝛽 = 1 and 𝜉 = 3.
Choose atomic units ℏ = 𝜇 = 1 and also take V(𝑥) = 2𝑉(𝑥).
Using series expansion around the origin, we have

V (𝑥) = (−𝑚𝜉 − 𝜉) + 𝑥2 (−2𝑚𝜉 + 𝜉2 − 2𝜉)
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Figure 1: (Color online) A plot of potential as function of the
variables 𝑥 and𝑚.

+ 2
3𝑥
4 (−𝑚𝜉 + 2𝜉2 − 𝜉)

+ 4
45𝑥
6 (−𝑚𝜉 + 8𝜉2 − 𝜉) + 𝑂 (𝑥7) ,

(2)

which shows that V(𝑥) is symmetric to variable 𝑥. We find
that the minimum value of the potential Vmin(𝑥) = −(𝑚 +
1)2 − 𝜉2/4 at two minimum values 𝑥 = ±(1/2)cosh−1[2(𝑚 +
1)/𝜉]. For a given value 𝜉 = 3, we find that the potential has
a flat bottom for 𝑛 = 0, but for 𝑛 > 1 it takes the form of a
double-well. Razavy presented the so-called exact solutions
by using the “polynomial method” [18]. After studying it
carefully, we find that the solutions cannot be given exactly
due to the complicated three-term recurrence relation. The
method presented there [18] is more like the Bethe Ansatz
method as summarized in our recent book [19]. That is, the
solutions cannot be expressed as one of special functions
because of three-term recurrence relations. In order to obtain
some so-called exact solutions, the author has to take some
constraints on the coefficients in the recurrence relations as
shown in [18]. Inspired by recent study of the hyperbolic
type potential well [20–28], in which we have found that
their solutions can be exactly expressed by the confluent
Heun functions [23], in this work we attempt to study the
solutions of the Razavy potential. We shall find that the
solutions can be written as the confluent Heun functions but
their energy levels have to be calculated numerically since
the energy term is involved within the parameter 𝜂 of the
confluent Heun functions𝐻𝑐(𝛼, 𝛽, 𝛾, 𝛿, 𝜂, 𝑧). This constraints
us to use the traditional Bethe Ansatz method to get the
energy levels. Even though the Heun functions have been
studied well, its main topics are focused in the mathematical
area. Only recent connections with the physical problems
have been discovered; in particular the quantum systems for
those hyperbolic type potential have been studied [20–28].
The terminology “semiexact” solutions used in [21] arise from

the fact that the wave functions can be obtained analytically,
but the eigenvalues cannot be written out explicitly.

This paper is organized as follows. In Section 2, we present
the solutions of the Schrödinger equation with the Razavy
potential. It should be recognized that the Razavy potential
is single or double-well depends on the potential parameter
𝑚. In Section 3 some fundamental properties of the solutions
are studied. The energy levels for different 𝑚 are calculated
numerically. Some concluding remarks are given in Section 4.

2. Semiexact Solutions

Let us consider the one-dimensional Schrödinger equation:

− ℏ22𝜇
𝑑2
𝑑𝑥2𝜓 (𝑥) + 𝑉 (𝑥) 𝜓 (𝑥) = 𝐸𝜓 (𝑥) . (3)

Substituting potential (1) into (3), we have

𝑑2
𝑑𝑥2𝜓 (𝑥) + {𝜀

− [18𝜉
2 cosh (4𝑥) − (𝑚 + 1) 𝜉 cosh (2𝑥) − 1

8𝜉
2]}

⋅ 𝜓 (𝑥) = 0,
𝜖 = 2𝐸.

(4)

Take the wave functions of the form

𝜓 (𝑥) = 𝑒𝜉cosh2(𝑥)/2𝑦 (𝑥) . (5)

Substituting this into (4) allows us to obtain

𝑦󸀠󸀠 (𝑥) + 𝜉 sinh (2𝑥) 𝑦󸀠 (𝑥)
+ [(𝑚 + 2) 𝜉 cosh (2𝑥) + 𝜖] 𝑦 (𝑥) = 0. (6)

Take a new variable 𝑧 = cosh2(𝑥). The above equation
becomes

4 (𝑧 − 1) 𝑧𝑦󸀠󸀠 (𝑧) + [4𝑧 (𝜉 (𝑧 − 1) + 1) − 2] 𝑦󸀠 (𝑧)
+ ((𝑚 + 2) 𝜉 (2𝑧 − 1) + 𝜖) 𝑦 (𝑧) = 0 (7)

which can be rearranged as

𝑦󸀠󸀠 (𝑧) + [𝜉 + 1
2 (

1
𝑧 +

1
𝑧 − 1)]𝑦

󸀠 (𝑧)

+ (𝑚 + 2) 𝜉 (2𝑧 − 1) + 𝜖
4 (𝑧 − 1) 𝑧 𝑦 (𝑧) = 0.

(8)

When comparing this with the confluent Heun differential
equation in the simplest uniform form [13]

𝑑2𝐻(𝑧)
𝑑𝑧2 + (𝛼 + 1 + 𝛽

𝑧 + 1 + 𝛾
𝑧 − 1)

𝑑𝐻 (𝑧)
𝑑𝑧

+ (𝜇𝑧 + ]
𝑧 − 1)𝐻 (𝑧) = 0,

(9)
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we find the solution to (8) is given by the acceptable confluent
Heun function𝐻𝑐(𝛼, 𝛽, 𝛾, 𝛿, 𝜂; 𝑧) with

𝛼 = 𝜉,
𝛽 = −12 ,

𝛾 = −12 ,

𝜇 = 𝜉 (𝑚 + 2) − 𝜀
4 ,

] = 𝜉 (𝑚 + 2) + 𝜀
4 ,

(10)

from which we are able to calculate the parameters 𝛿 and 𝜂
involved in𝐻𝑐(𝛼, 𝛽, 𝛾, 𝛿, 𝜂; 𝑧) as

𝛿 = 𝜇 + ] − 1
2𝛼 (𝛽 + 𝛾 + 2) =

1
2 (𝑚 + 1) 𝜉,

𝜂 = 1
2𝛼 (𝛽 + 1) − 𝜇 −

1
2 (𝛽 + 𝛾 + 𝛽𝛾)

= 1
8 [−2 (𝑚 + 1) 𝜉 + 2𝜖 + 3] .

(11)

It is found that the parameter 𝜂 related to energy levels is
involved in the confluent Heun function. The wave function
given by this function seems to be analytical, but the key issue
is how to first get the energy levels. Otherwise, the solution
becomes unsolvable. Generally, the confluent Heun function
can be expressed as a series of expansions:

𝐻𝐶 (𝛼, 𝛽, 𝛾, 𝛿, 𝜂, 𝑧) =
∞

∑
𝑛=0

V𝑛 (𝛼, 𝛽, 𝛾, 𝛿, 𝜂, 𝜉) 𝑧𝑛,

|𝑧| < 1.
(12)

The coefficients V𝑛 are given by a three-term recurrence
relation:

𝐴𝑛V𝑛 − 𝐵𝑛V𝑛−1 − 𝐶𝑛V𝑛−2 = 0,
V−1 = 0,
V0 = 1,

(13)

with

𝐴𝑛 = 1 + 𝛽
𝑛 ,

𝐵𝑛 = 1 + 1
𝑛 (𝛽 + 𝛾 − 𝛼 − 1)

+ 1
𝑛2 {𝜂 −

1
2 (𝛽 + 𝛾 − 𝛼) −

𝛼𝛽
2 + 𝛽𝛾

2 } ,

𝐶𝑛 = 𝛼
𝑛2 (

𝛿
𝛼 + 𝛽 + 𝛾

2 + 𝑛 − 1) .

(14)

To make the confluent Heun functions reduce to polyno-
mials, two termination conditions have to be satisfied [13, 14]:

𝜇 + ] + 𝑁𝛼 = 0,
Δ𝑁+1 (𝜇) = 0,

(15)

where

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜇 − 𝑝1 (1 + 𝛽) 0 . . . 0 0 0
𝑁𝛼 𝜇 − 𝑝2 + 𝛼 2 (2 + 𝛽) . . . 0 0 0
0 (𝑁 − 1) 𝛼 𝜇 − 𝑝3 + 2𝛼 . . . 0 0 0
... ... ... d

... ... ...
0 0 0 . . . 𝜇 − 𝑝𝑁−1 + (𝑁 − 2) 𝛼 (𝑁 − 1) (𝑁 − 1 + 𝛽) 0
0 0 0 . . . 2𝛼 𝜇 − 𝑝𝑁 + (𝑁 − 1) 𝛼 𝑁 (𝑁 + 𝛽)
0 0 0 . . . 0 𝛼 𝜇 − 𝑝𝑁+1 + 𝑁𝛼

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= 0 (16)

with

𝑝𝑁 = (𝑁 − 1) (𝑁 + 𝛽 + 𝛾) . (17)

For present problem, it is not difficult to see that the first
condition is violated. That is, 𝜇 + ] + 𝛼 = 0 when 𝑁 = 1.
From this we have 𝑚 = −4. This is contrary to the fact that
𝑚 is a positive integer. Therefore, we cannot use this method
to obtain the eigenvalues. On the other hand, we know that
𝑧 ∈ [1,∞).Thus, the series expansion method is invalid.This
is unlike previous study [22, 24], inwhich the quasiexact wave

functions and eigenvalues can be obtained by studying those
two constraints. The present case is similar to our previous
study [20, 21], in which some constraint is violated. We have
to choose other approach to study the eigenvalues as used in
[20, 21].

3. Fundamental Properties

In this section we are going to study some basic properties
of the wave functions as shown in Figures 2–4. We first
consider the positive integer 𝑚. Since the energy spectrum
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Figure 2: (Color online)The characteristics of the potential 𝑉(𝑧) as a function of the position 𝑧. We take 𝑚 = 0, 1 and 𝜉 = 3.
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Figure 3: (Color online) The characteristics of the potential 𝑉(𝑧) as a function of the position 𝑧. We take𝑚 = 6, 8 and 𝜉 = 3.
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Figure 4: (Color online) The same as the above case but𝑚 = 10, 12.
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Figure 5: (Color online) The characteristics of the potential 𝑉(𝑧) as a function of the position 𝑧. We take𝑚 = −1, −6 and 𝜉 = 3.
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Figure 6: (Color online) The same as the above case but𝑚 = −10, −90.

cannot be given explicitly we have to solve the second-
order differential equation (4) numerically. We denote the
energy levels as 𝜖𝑖 (𝑖 ∈ [1, 6]) in Table 1. We find that the
energy levels 𝜖𝑖 decrease with the increasing 𝑚. Originally,
we wanted to calculate the energy levels numerically by using
powerful MAPLE, which includes some special functions
such as the confluent Heun function that cannot be found in
MATHEMATICA. As we know, the wave function is given
by 𝜓(𝑧) = exp(𝑧𝜉/2)𝐻𝑐(𝛼, 𝛽, 𝛾, 𝛿, 𝜂, 𝑧). Generally speaking,
the wave function requires 𝜓(𝑧) 󳨀→ 0 when 𝑧 󳨀→ ∞;
i.e., 𝑥 󳨀→ ∞. Unfortunately, the present study is unlike
our previous study [20, 21], in which 𝑧 󳨀→ 1 when 𝑥 goes
to infinity. The energy spectra can be calculated by series
expansions through taking 𝑧 󳨀→ 1. On the other hand, the
wave functions have a definite parity; e.g., for 𝑚 = 0 some
wave functions are symmetric. It is found that such properties
are violated when the potential parameter 𝑚 becomes larger
as shown in Figure 4. That is, the wave functions for 𝑚 = 12
are nonsymmetric. In addition, on the contrary to the case
discussed by Razavy [18], inwhich he supposed the𝑚 is taken

as positive integers, we are going to showwhat happens to the
negative𝑚 case.We display the graphics in Figures 5 and 6 for
this case. We find that the wave functions are shrunk towards
the origin. This makes the amplitude of the wave function
increase.

4. Conclusions

In this work we have studied the quantum system with the
Razavy potential, which is symmetric with respect to the
variable 𝑥 and showed how its exact solutions are found
by transforming the original differential equation into a
confluent type Heun differential equation. It is found that the
solutions can be expressed by the confluent Heun functions
𝐻𝑐(𝛼, 𝛽, 𝛾, 𝛿, 𝜂), inwhich the energy levels are involved inside
the parameter 𝜂. This makes us calculate the eigenvalues
numerically. The properties of the wave functions depend-
ing on 𝑚 are illustrated graphically for a given potential
parameter 𝜉. We have found that the even and odd wave
functions with definite parity are changed to odd and even
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Table 1: Energy levels of the Schrödinger equation with potential (1).

] 𝜖1 𝜖2 𝜖3 𝜖4 𝜖5 𝜖6
𝑚 = −6 21.6608 35.7557 51.3448 68.3341 86.6500 106.233
𝑚 = −5 18.1891 31.3844 46.1503 62.3746 79.9715 98.8740
𝑚 = −4 14.6806 26.9167 40.8214 56.2549 73.1150 91.3249
𝑚 = −3 11.1259 22.3314 35.3346 49.9525 66.0599 83.5680
𝑚 = −2 7.51110 17.5996 29.6610 43.4412 58.7838 75.5860
𝑚 = −1 3.81463 12.6800 23.7644 36.6914 51.2639 67.3635
𝑚 = 0 0.00007 7.51170 17.6027 29.6729 43.4799 58.8919
𝑚 = 1 -3.99968 2.00200 11.1343 22.3606 35.4208 50.1750
𝑚 = 2 -8.32288 -3.99300 4.34771 14.7494 27.0959 41.2385
𝑚 = 3 -13.2815 -10.6927 -2.64788 6.87526 18.5501 32.1389
𝑚 = 4 -19.5196 -9.46859 -1.17161 9.87916 22.9677 38.0537
𝑚 = 5 -27.7547 -15.7094 -9.29612 1.24110 13.8439 28.5940
𝑚 = 6 -38.0314 -21.6913 -17.5131 -7.12621 4.89289 19.3065
𝑚 = 7 -49.9928 -28.2027 -25.9897 -14.8827 -3.78434 10.2625
𝑚 = 8 -63.3335 -35.8866 -21.7455 -12.1464 1.51447 17.5661
𝑚 = 9 -77.8339 -44.5255 -27.8571 -20.2355 -6.89162 8.76577
𝑚 = 10 -93.3024 -54.9017 -33.6970 -28.1690 -14.8944 0.229704
𝑚 = 11 -109.592 -65.743 -39.7373 -36.1005 -22.4007 -8.04337
𝑚 = 12 -126.580 -77.2416 -46.3335 -29.3139 -16.0647 1.06475

wave functions when the potential parameter 𝑚 increases.
This arises from the fact that the parity, which is a defined
symmetry for very small𝑚, is completely violated for large𝑚.
We have also noticed that the energy levels 𝜖𝑖 decrease with
the increasing potential parameter 𝑚.
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