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We study vortices in generalizedMaxwell-Higgsmodels, with the inclusion of a quadratic kinetic termwith the covariant derivative
of the scalar field in the Lagrangian density. We discuss the stressless condition and show that the presence of analytical solutions
helps us to define the model compatible with the existence of first order equations. A method to decouple the first order equations
and to construct the model is then introduced and, as a bonus, we get the energy depending exclusively on a function of the
fields calculated from the boundary conditions. We investigate some specific possibilities and find, in particular, a compact vortex
configuration in which the energy density is all concentrated in a unit circle.

1. Introduction

Vortices are localized structures that appear in two spatial
dimensions. They are present in many areas of nonlinear
science and were firstly investigated in the context of fluid
mechanics [1, 2]. These objects also appear in type II super-
conductors [3] when one deals with the Ginzburg-Landau
theory of superconductivity [4] and may also be present as
magnetic domains in magnetic materials and in many other
applications in condensed matter [5, 6].

In high energy physics, in particular, vortices firstly
appeared in the Nielsen-Olesen work [7], which is perhaps
the simplest relativistic model that supports these structures.
The model consists of a Maxwell gauge field minimally
coupled to a complex scalar field under the Abelian 𝑈(1)
symmetry in the (2, 1) Minkowski spacetime. An interesting
feature of the Nielsen-Olesen vortices is that they are elec-
trically neutral and engender quantized magnetic flux. Their
equations of motion are of second order and present cou-
plings between the fields. To simplify the problem, first order
equations that solve the equations of motion were found in
[8, 9]. In this case, the first and second order equations are
only compatible if the potential is of the Higgs type, a |𝜑|4
potential that engenders spontaneous symmetry breaking.
It is worth mentioning that, even with the Bogomol’nyi

procedure, the analytical solutions that describe the vortices
remain unknown.

Vortices have also been investigated in generalized mod-
els with distinct motivations in several works; see, e.g., [10–
27]. In particular, k-vortices, which are vortices in models
with generalized kinematics, similar to the models studied
before in [28–31], were investigated in [12, 13], without the
presence of a first order formalism and analytical solutions,
but with the search for new effects. Another motivation relies
on the possibility of specifying the form of potential, imposed
by the first order formalism. For instance, in [23], modifi-
cations in the magnetic permeability allowed to develop a
route to make the vortex compact. Also, in [27], we have
developed a method to obtain vortices and to construct a
class of models that supports analytical solutions. Recently,
in [32], we have found vortices with internal structure, which
arise in generalized models with the magnetic permeability
controlled by the addition of a neutral field, enlarging the𝑈(1) symmetry to become 𝑈(1) × 𝑍2.

Motivated by several works that appeared with general-
ized dynamics, we have developed a first order formalism for
these models in [26].This investigation focused on the search
for the conditions that could lead to first order equations
in a case similar to the one considered before in [12], with
the inclusion of a quadratic kinetic term that involves the
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covariant derivative of the scalar field in the Lagrangian
density. In the current work we further explore the subject,
extending the previous results of [26, 27] to this much harder
class of models. The main results show how the presence
of analytical solutions can be used to construct the model,
if one imposes that its equations of motion are solved by
solutions of first order differential equations compatible with
the stressless condition.

Although we are working in the (2, 1) dimensional space-
time with the Minkowski metric, we think that the results
of the current work are also of interest to General Relativity
(RG), in particular to the case of the so-called Ricci-based
theories of gravity (RBG) formulated within the metric-affine
approach. For instance, in the recent work [33], the authors
unveiled an interesting correspondence between the space of
solutions of RBG and RG, under certain circumstances. The
results show that it is sometimes possible to map complicated
nonlinear models into simpler ones, and we think that the
models to be explored in the current work can provide novel
possibilities of current interest to the scenario explored in
[33, 34].

To study the subject, the work is organized in a way such
that in Section 2 we present the model and the procedure,
showing the requirements to make it work in the presence of
first order equations. In Section 3, we illustrate our findings
with some new models that support analytical solutions.
In particular, we also calculate the magnetic field, energy
density, and total energy of the vortex analytically and
investigate the possibility of building compact solutions.
Finally, in Section 4 we end the work with some conclusions
and an outlook for future investigations.

2. Model and Procedure

Weconsider the generalized action 𝑆 = ∫ 𝑑3𝑥L for a complex
scalar field 𝜑 coupled to a gauge field𝐴𝜇 under the local𝑈(1)
symmetry in a three-dimensional Minkowski spacetime with
metric tensor 𝜂𝜇] = diag(+, −, −). The Lagrangian density to
be investigated has the form

L = 𝐾 (󵄨󵄨󵄨󵄨𝜑󵄨󵄨󵄨󵄨)𝑋 − 𝑄 (󵄨󵄨󵄨󵄨𝜑󵄨󵄨󵄨󵄨) 𝑋2 + 𝑃 (󵄨󵄨󵄨󵄨𝜑󵄨󵄨󵄨󵄨) 𝑌 − 𝑉 (󵄨󵄨󵄨󵄨𝜑󵄨󵄨󵄨󵄨) . (1)

In the above expression, 𝐾(|𝜑|), 𝑄(|𝜑|), and 𝑃(|𝜑|) are
nonnegative functions thatmodify the dynamics of themodel
and 𝑉(|𝜑|) is the potential. The minus sign in the 𝑋2 term is
to keep the vortex energy nonnegative. Also, 𝑋 and 𝑌 define
the kinetic terms of the scalar and gauge fields, respectively,
as

𝑋 = 𝐷𝜇𝜑𝐷𝜇𝜑,
𝑌 = −14𝐹𝜇]𝐹𝜇],

(2)

where 𝐷𝜇 = 𝜕𝜇 + 𝑖𝑒𝐴𝜇, 𝐹𝜇] = 𝜕𝜇𝐴] − 𝜕]𝐴𝜇, and the overline
stands for the complex conjugation. The equations of motion
for this model are

𝐷𝜇 (𝐾𝐷𝜇𝜑) − 2𝐷𝜇 (𝑄𝑋𝐷𝜇𝜑)
+ + 𝜑2 󵄨󵄨󵄨󵄨𝜑󵄨󵄨󵄨󵄨 (−𝐾|𝜑|𝑋 + 𝑄|𝜑|𝑋2 − 𝑃|𝜑|𝑌 + 𝑉|𝜑|) = 0, (3a)

𝜕𝜇 (𝑃𝐹𝜇]) = 𝐽], (3b)

where 𝐽𝜇 is the conserved current, given by the expression
𝐽𝜇 = 𝑖𝑒(𝐾 − 2𝑄𝑋)(𝜑𝐷𝜇𝜑 − 𝜑𝐷𝜇𝜑). Also, we are using the
notation 𝑉|𝜑| = 𝜕𝑉/𝜕|𝜑|, etc.

The energy-momentum tensor 𝑇𝜇] for the generalized
model (1) is

𝑇𝜇] = 𝑃𝐹𝜇𝜆𝐹𝜆] + (𝐾 − 2𝑄𝑋) (𝐷𝜇𝜑𝐷]𝜑 + 𝐷]𝜑𝐷𝜇𝜑)
− 𝜂𝜇]L. (4)

We then consider static configurations; take 𝐴0 = 0 and work
with the usual ansatz for vortices

𝜑 (𝑟, 𝜃) = 𝑔 (𝑟) 𝑒𝑖𝑛𝜃, (5a)

𝐴 𝑖 = 𝜖𝑖𝑗 𝑥𝑗𝑒𝑟2 (𝑛 − 𝑎 (𝑟)) , (5b)

in which 𝑟 and 𝜃 are the polar coordinates and 𝑛 = ±1, ±2, . . .
is the vorticity. The boundary conditions for 𝑔(𝑟) and 𝑎(𝑟) are

𝑔 (0) = 0,
𝑎 (0) = 𝑛, (6)

lim
𝑟󳨀→∞

𝑔 (𝑟) = V,
lim
𝑟󳨀→∞

𝑎 (𝑟) = 0, (7)

where V is the symmetry breaking parameter which is
supposed to be present in the model under investigation. The
ansatz (5a) and (5b) makes 𝑋 and 𝑌 be written as

𝑋 = −𝑔󸀠2 − 𝑎2𝑔2𝑟2 ,
𝑌 = − 𝑎󸀠22𝑒2𝑟2 ,

(8)

where the prime denotes the derivative with respect to 𝑟. The
magnetic field is given by 𝐵 = −𝐹12 = −𝑎󸀠/(𝑒𝑟). This can be
used to show that the magnetic flux Φ = 2𝜋∫∞

0
𝑟𝑑𝑟𝐵(𝑟) is

quantized; that is,

Φ = 2𝜋𝑛𝑒 . (9)

The ansatz (5a) and (5b) can be plugged in the equations of
motion (3a) and (3b), which take the form

1𝑟 (𝑟 (𝐾 − 2𝑄𝑋)𝑔󸀠)󸀠 − (𝐾 − 2𝑄𝑋) 𝑎2𝑔𝑟2
− 12 (−𝐾𝑔𝑋 + 𝑄𝑔𝑋2 − 𝑃𝑔𝑌 + 𝑉𝑔) = 0,

(10a)

𝑟 (𝑃𝑎󸀠𝑒𝑟)
󸀠 − 2𝑒 (𝐾 − 2𝑄𝑋) 𝑎𝑔2 = 0, (10b)
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where 𝐾𝑔 = 𝜕𝐾/𝜕𝑔, etc. The components of the energy-
momentum tensor are

𝑇00 = −𝐾𝑋 + 𝑄𝑋2 − 𝑃Y + 𝑉, (11a)

𝑇12 = (𝐾 − 2𝑄𝑋)(𝑔󸀠2 − 𝑎2𝑔2𝑟2 ) sin (2𝜃) , (11b)

𝑇11 = 𝑃 𝑎󸀠2𝑒2𝑟2
+ 2 (𝐾 − 2𝑄𝑋)(𝑔󸀠2cos2 𝜃 + 𝑎2𝑔2𝑟2 sin2 𝜃)
+L,

(11c)

𝑇22 = 𝑃 𝑎󸀠2𝑒2𝑟2
+ 2 (𝐾 − 2𝑄𝑋)(𝑔󸀠2sin2 𝜃 + 𝑎2𝑔2𝑟2 cos2 𝜃)
+L.

(11d)

Up to this point, the scenario is quite similar to the one
investigated before in [12]. Here, however, we want to go
further and search for a first order framework that helps us
to find analytical solutions. We then follow [26] and take the
stressless conditions, 𝑇𝑖𝑗 = 0, which ensure stability of the
solution under radial rescaling. This requires the solutions to
obey the following first order equations

𝑔󸀠 = ±𝑎𝑔𝑟 , (12a)

−𝑎󸀠𝑒𝑟 = ±√2 (𝑉 − 𝑄𝑋2)
𝑃 . (12b)

They allow us to write 𝑋 = −2𝑔󸀠2 = −2𝑎2𝑔2/𝑟2. The above
equations, however, must be compatible with the equations of
motion (10a) and (10b). Similarly to the case that was shown
in [26], for 𝐾(|𝜑|) = 0 and 𝑄(|𝜑|) constant, this requirement
leads to a constraint that depends on 𝑎, 𝑔, and 𝑟. Therefore, it
is hard to obtain a constraint in terms of 𝑔 and reconstruct the
model by finding the explicit form of the potential in terms of𝐾(|𝜑|), 𝑄(|𝜑|), and 𝑃(|𝜑|), as in the case 𝑄(|𝜑|) = 0 that was
carefully investigated in [27].Themain issue appears because𝑋 does not depend exclusively on 𝑔, but also on 𝑎 and 𝑟; see
(8). Nevertheless, if the analytical solutions, as well as their
inverses, are known, we may write 𝑋 exclusively in terms of𝑔, which we call 𝑋(𝑔). By substituting (12a) and (12b) into
(10b), the following constraint arises

𝑑𝑑𝑔√2𝑃 (𝑉 − 𝑄𝑋2 (𝑔)) = −2𝑒𝑔 (𝐾 − 2𝑄𝑋 (𝑔)) . (13)

One may wonder if the compatibility of (12a) and (12b)
with (10a) does not imply another constraint. Nonetheless,
as it was demonstrated in [26], once the above constraint is
satisfied and the solutions solve (12a), (12b), (10a) becomes an

identity. In our model, the choice of the functions 𝑃(𝑔),𝑄(𝑔),
and 𝐾(𝑔) must be done in a way that allows the symmetry
breaking of the potential 𝑉(𝑔) to match with the boundary
conditions in (6).

The energy density 𝜌 = 𝑇00 is given by (11a). By using the
first order equations (12a) and (12b), it can be written as

𝜌 = 𝑃 (𝑔) 𝑎󸀠2𝑒2𝑟2 + 2𝐾 (𝑔) 𝑔󸀠2 + 8𝑄 (𝑔) 𝑔󸀠4
= 2𝑉 (𝑔) − 𝐾 (𝑔)𝑋 (𝑔) .

(14)

Here, we follow the procedure developed in [26] and intro-
duce an additional function 𝑊(𝑎, 𝑔), defined by

𝑊𝑎 = 𝑃 𝑎󸀠𝑒2𝑟 , (15)

𝑊𝑔 = 2 (𝐾 − 2𝑄𝑋(𝑔)) 𝑟𝑔󸀠, (16)

where 𝑊𝑔 = 𝜕𝑊/𝜕𝑔 and 𝑊𝑎 = 𝜕𝑊/𝜕𝑎. By combining the
first order equations (12a) and (12b) and the constraint (13),
one can show that

𝑊(𝑎, 𝑔) = −𝑎𝑒√2𝑃 (𝑉 − 𝑄𝑋2 (𝑔)). (17)

In this case, we can write the energy density as

𝜌 = 1𝑟 𝑑𝑊𝑑𝑟 , (18)

which can be integrated all over the plane to provide the
energy

𝐸 = 2𝜋 󵄨󵄨󵄨󵄨𝑊 (𝑎 (∞) , 𝑔 (∞)) − 𝑊 (𝑎 (0) , 𝑔 (0))󵄨󵄨󵄨󵄨 ,
= 2𝜋 |𝑊 (𝑛, 0)| . (19)

Now, we follow the route suggested in [27] and develop a
procedure to build analytical solutions. This can be achieved
by decoupling the first order equations (12a) and (12b), as
we describe below. For simplicity, we consider dimensionless
fields and take 𝑒, V = 1; also, we work with unity vorticity,
setting 𝑛 = 1, which means to consider only the upper signs
in (12a) and (12b).

In order to decouple the first order equations, we intro-
duce the generating function 𝑅(𝑔) such that

𝑟𝑑𝑔𝑑𝑟 = 𝑅 (𝑔) . (20)

Therefore, for a given 𝑅(𝑔), we can solve the above equation
and obtain 𝑔(𝑟) obeying the boundary conditions (6). By
using this into (12a) and (12b) we obtain

𝑎 (𝑟) = 𝑅 (𝑔 (𝑟))𝑔 (𝑟) . (21)

We also introduce another function, 𝑀(𝑔), which is
defined by 𝑀(𝑔) = −√2(𝑉(𝑔) − 𝑄(𝑔)𝑋2(𝑔))/𝑃(𝑔). By using
this and the constraint in (13), we get

𝑉 (𝑔) = 12𝑃 (𝑔)𝑀2 (𝑔) + 𝑄 (𝑔)𝑋2 (𝑔) , (22a)

𝐾 (𝑔) = 12𝑔 𝑑𝑑𝑔 (𝑃 (𝑔)𝑀 (𝑔)) + 2𝑄 (𝑔)𝑋 (𝑔) . (22b)
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One can show that 𝑀(𝑔) is obtained in terms of the given
function 𝑅(𝑔) from (12b):

𝑀(𝑔) = 𝑅 (𝑔)
𝑞2 (𝑔) 𝑑𝑑𝑔 (𝑅 (𝑔)

𝑔 ) , (23)

where 𝑞(𝑔) is the inverse of 𝑔(𝑟). This procedure is valid if 𝑋
is written only as a function of 𝑔. Using the definition in (20),
we find

𝑋(𝑔) = −2𝑅 (𝑔)2
𝑞2 (𝑔) . (24)

We can also take advantage of the function𝑀(𝑔) to write the
magnetic field as

𝐵 (𝑟) = −𝑀(𝑔 (𝑟)) , (25)

and (17) as 𝑊(𝑎, 𝑔) = 𝑎𝑃(𝑔)𝑀(𝑔), which leads to the total
energy

𝐸 = −2𝜋𝑃 (0)𝑀 (0) . (26)

This procedure decouples the first order equations in a
manner that the solutions depend only on the generating
function 𝑅(𝑔). As 𝑀(𝑔) depends only on 𝑅(𝑔) and 𝑞(𝑔), we
see from (22a) and (22b) that we have two equations that
constrain the functions 𝑉(|𝜑|), 𝑃(|𝜑|), 𝐾(|𝜑|), and 𝑄(|𝜑|).
This means that there are several models that support the
same analytical solutions defined by (20). Therefore, to find
the explicit form of the models, we need to suggest two of
the aforementioned functions. Even though these functions
lead to the same solutions and magnetic field, they modify
the energy density in (14). Thus, one must choose functions
that lead to a well defined energy.

We also highlight here that the above procedure to
construct the model, described by (22a), (22b), (23), and (24),
is only valid in the interval |𝜑| ∈ [0, 1], which is the one where
the solution exists, according to the boundary conditions (6).
Nonetheless, it is important to suggest nonnegative functions
and a potential that supports a minimum at |𝜑| = 1, in
order to include spontaneous symmetry breaking and avoid
instabilities and negative energies.

3. Specific Examples

Let us now illustrate our procedure with some examples.
We firstly suggest an 𝑅(𝑔) that leads to analytical solutions
and then apply the method in (22a), (22b), (23), and (24) to
construct the model.

3.1. First Example. The first example arises from the generat-
ing function

𝑅 (𝑔) = 𝑔 (1 − 𝑔2) . (27)

This function was previously considered in [27], but with a
model in which 𝑄(|𝜑|) = 0, which kills the 𝑋2 term in the

Lagrangian density. By substituting the above expression in
(20) and (21) we get the solutions

𝑔 (𝑟) = 𝑟√1 + 𝑟2 ,
𝑎 (𝑟) = 11 + 𝑟2 ,

(28)

which satisfy the boundary conditions (6). The inverse
function of the solution 𝑔(𝑟) in (28), combined with (23) and
(24), allows us to write

𝑞 (𝑔) = 𝑔
√1 − 𝑔2 (29a)

𝑀(𝑔) = −2 (1 − 𝑔2)2 , (29b)

𝑋 (𝑔) = −2 (1 − 𝑔2)3 . (29c)

Notice that these equations and the solutions in (28) are
exclusively determined by the function 𝑅(𝑔) given in (27).
This also occurs with the magnetic field, given by (25), which
leads to

𝐵 (𝑟) = 2
(1 + 𝑟2)2 . (30)

In Figure 1, we display the solutions (28) and the magnetic
field given above. Notice that their behavior is similar to the
one for the Nielsen-Olesen case [7, 9].

In order to construct a model that supports the solutions
in (28), we use (22a) and (22b). Firstly, though, we need
to suggest an explicit form for two of the functions among𝐾(|𝜑|), 𝑄(|𝜑|), 𝑃(|𝜑|), and 𝑉(|𝜑|). We consider the potential

𝑉 (󵄨󵄨󵄨󵄨𝜑󵄨󵄨󵄨󵄨) = 12 󵄨󵄨󵄨󵄨󵄨1 − 󵄨󵄨󵄨󵄨𝜑󵄨󵄨󵄨󵄨2󵄨󵄨󵄨󵄨󵄨𝑠 , (31)

where 𝑠 > 2 is a real number. It presents a set of minima
at |𝜑| = 1 and a local maximum at |𝜑| = 0 as illustrated in
Figure 2. The other function that we suggest is

𝑄 (󵄨󵄨󵄨󵄨𝜑󵄨󵄨󵄨󵄨) = 𝛼2 󵄨󵄨󵄨󵄨󵄨1 − 󵄨󵄨󵄨󵄨𝜑󵄨󵄨󵄨󵄨2󵄨󵄨󵄨󵄨󵄨𝑠−6 , (32)

where 𝛼 is a real, nonnegative parameter. The case investi-
gated in [27] is obtained for 𝛼 = 0. By substituting the above𝑄(|𝜑|) and the potential (31) in (22a) and (22b), we obtain

𝑃 (󵄨󵄨󵄨󵄨𝜑󵄨󵄨󵄨󵄨) = 14 (1 − 4𝛼) 󵄨󵄨󵄨󵄨󵄨1 − 󵄨󵄨󵄨󵄨𝜑󵄨󵄨󵄨󵄨2󵄨󵄨󵄨󵄨󵄨𝑠−4 , (33a)

𝐾 (󵄨󵄨󵄨󵄨𝜑󵄨󵄨󵄨󵄨) = 12 (𝑠 − 2 − 4𝛼 (𝑠 − 1)) 󵄨󵄨󵄨󵄨󵄨1 − 󵄨󵄨󵄨󵄨𝜑󵄨󵄨󵄨󵄨2󵄨󵄨󵄨󵄨󵄨𝑠−3 . (33b)

In order to avoid negative coefficients in the above functions,
we impose the condition 𝛼 < (𝑠 − 2)/4(𝑠 − 1). The functions
in (31), (32), (33a), and (33b) determine model (1). We want
to emphasize here that this model can only be obtained
explicitly because we know the analytical solutions before its
construction.
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Figure 1: In the left panel, we display the solutions 𝑎(𝑟) (descending line) and 𝑔(𝑟) (ascending line) in (28). In the right panel, we show the
magnetic field in (30).
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Figure 3: The profile of the energy density in (34) for 𝑠 = 8 and𝛼 = 0.1, 0.15, and 0.2. The thickness of the lines increases with 𝛼.

The energy density can be calculated from (14), which
leads us to

𝜌 (𝑟) = (1 − 4𝛼) (𝑠 − 1)
(1 + 𝑟2)𝑠 . (34)

By a direct integration, one can show that the energy is 𝐸 =(1 − 4𝛼)𝜋, which matches with the result obtained by (26).
Notice that only the parameter 𝛼 modifies the energy. The
above energy density can be seen in Figure 3.

Another model can be generated straightforwardly from
the same choice of 𝑅(𝑔) in (27), which presents well defined
V(|𝜑|), 𝑃(|𝜑|), 𝑄(|𝜑|), and 𝐾(|𝜑|) for all 𝜑.
3.2. Second Example. Here, we consider a generalization of
the previous example by considering the generating function
to be

𝑅 (𝑔) = 𝑔 (1 − 𝑔2𝑙) , (35)

where 𝑙 is a nonnegative real parameter. This function was
also investigated in [27], but with 𝑄(|𝜑|) = 0. From (20) and
(21), we get the analytical solutions

𝑔 (𝑟) = 𝑟
(1 + 𝑟2𝑙)1/2𝑙 ,

𝑎 (𝑟) = 11 + 𝑟2𝑙 ,
(36)

which satisfy the boundary conditions (6). From the inverse
of the solution 𝑔(𝑟), combined with (23) and (24), we obtain

𝑞 (𝑔) = 𝑔
(1 − 𝑔2𝑙)1/2𝑙 (37a)

𝑀(𝑔) = −2𝑔2𝑙−2 (1 − 𝑔2𝑙)1+1/𝑙 , (37b)

𝑋(𝑔) = −2 (1 − 𝑔2𝑙)2+1/𝑙 . (37c)
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Figure 4: In the left panel, we display the solutions 𝑎(𝑟) (descending lines) and 𝑔(𝑟) (ascending lines) in (36). In the right panel, we show the
magnetic field in (38). The dotted lines represent the case 𝑙 = 1 and the dashed ones stand for the compact limit in (39a), (39b), and (40).

As in the previous model, these equations and the solutions
in (36) are solely determined by the 𝑅(𝑔) in (27). The same is
valid for the magnetic field in (25), which leads to

𝐵 (𝑟) = 2𝑙𝑟2𝑙−2
(1 + 𝑟2𝑙)2 . (38)

One can show that, as 𝑙 increases, the solutions in (36) tend
to compactify

𝑎𝑐 (𝑟) = {{{
1, 𝑟 ≤ 1
0, 𝑟 > 1, (39a)

𝑔𝑐 (𝑟) = {{{
𝑟, 𝑟 ≤ 1
1, 𝑟 > 1, (39b)

and the same happens for the magnetic field in (38), which
for very large 𝑙 tends to

𝐵𝑐 (𝑟) = 𝛿 (𝑟 − 1)𝑟 , (40)

where 𝛿(𝑧) is the Dirac delta function. In Figure 4, we depict
the solutions (36) and the magnetic field given above for
several values of 𝑙, including the compact limit in (39a) and
(39b).

Again, to find the functions 𝐾(|𝜑|), 𝑄(|𝜑|), 𝑃(|𝜑|), and𝑉(|𝜑|) we must suggest two of them and use (22a) and (22b).
We take the potential in the form

𝑉 (󵄨󵄨󵄨󵄨𝜑󵄨󵄨󵄨󵄨) = 12𝑙 󵄨󵄨󵄨󵄨𝜑󵄨󵄨󵄨󵄨2𝑙−2
󵄨󵄨󵄨󵄨󵄨󵄨1 − 󵄨󵄨󵄨󵄨𝜑󵄨󵄨󵄨󵄨2𝑙󵄨󵄨󵄨󵄨󵄨󵄨𝛽𝑙 , (41)

where 𝛽 > 2 is a real number. This potential presents minima
at |𝜑| = 1 for any 𝑙. The point |𝜑| = 0 is a maximum for𝑙 = 1 and a minimum for 𝑙 > 1. This behavior is shown in
Figure 5. Together with the potential in (41), we keep the same
lines of the previous example and suggest the 𝑋2 term in the
Lagrangian density to be modified by

𝑄 (󵄨󵄨󵄨󵄨𝜑󵄨󵄨󵄨󵄨) = 12𝛼𝑙 󵄨󵄨󵄨󵄨𝜑󵄨󵄨󵄨󵄨2𝑙−2
󵄨󵄨󵄨󵄨󵄨󵄨1 − 󵄨󵄨󵄨󵄨𝜑󵄨󵄨󵄨󵄨2𝑙󵄨󵄨󵄨󵄨󵄨󵄨𝛽𝑙−4−2/𝑙 , (42)
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Figure 5: The potential in (41) for 𝛽 = 8 and several values of 𝑙. The
dotted line stands for the case 𝑙 = 1.
where 𝛼 > 0 is a real parameter. Substituting 𝑉(|𝜑|) and𝑄(|𝜑|) in (22a) and (22b), we obtain

𝑃 (󵄨󵄨󵄨󵄨𝜑󵄨󵄨󵄨󵄨) = 14𝑙 (1 − 4𝛼) 󵄨󵄨󵄨󵄨𝜑󵄨󵄨󵄨󵄨2−2𝑙 󵄨󵄨󵄨󵄨󵄨󵄨1 − 󵄨󵄨󵄨󵄨𝜑󵄨󵄨󵄨󵄨2𝑙󵄨󵄨󵄨󵄨󵄨󵄨𝛽𝑙−2−2/𝑙 , (43)

𝐾(󵄨󵄨󵄨󵄨𝜑󵄨󵄨󵄨󵄨) = 12 ((1 − 4𝛼) (𝛽𝑙2 − 1) − 𝑙)
× 󵄨󵄨󵄨󵄨𝜑󵄨󵄨󵄨󵄨2𝑙−2 󵄨󵄨󵄨󵄨󵄨󵄨1 − 󵄨󵄨󵄨󵄨𝜑󵄨󵄨󵄨󵄨2𝑙󵄨󵄨󵄨󵄨󵄨󵄨

𝛽l−2−1/𝑙 .
(44)

To avoid the presence of negative coefficients in the above
expressions, we impose that 𝛼 < (𝛽𝑙2 − 𝑙 − 1)/4(𝛽𝑙2 − 1).

The energy density is calculated from (14), which leads to

𝜌 (𝑟) = (1 − 4𝛼) (𝛽𝑙2 − 1) 𝑟2𝑙−2
(1 + 𝑟2𝑙)𝛽𝑙+1−1/𝑙 . (45)

One may integrate it to get the total energy 𝐸 = (1 −4𝛼)𝜋, which matches with the value obtained by (26). Again,
only the parameter 𝛼 modifies the energy of the vortices,
meaning that the𝑋2 term in the Lagrangian density (1) plays
a significant role in the model. Following a similar procedure
that was done in [27], one can show that the energy density
tends to compactify into a ringlike region of unit radius in the
plane, described by

𝜌 (𝑟) = 12 (1 − 4𝛼) 𝛿 (𝑟 − 1) . (46)
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Figure 6: The energy density of (45) for 𝛽 = 8, 𝛼 = 0.2 and several values of 𝑙 (left) and its compact limit, 𝑙 󳨀→ ∞, in the plane (right). The
dotted line represents the case 𝑙 = 1 and the dashed ones stand for the compact limit in (46).

In Figure 6, we display the energy density for several values of𝛼, including the compact limit given above. Its behavior, even
with the presence of the parameter 𝛼, is qualitatively similar
to the one found in [35] for the compactification of vortices
in a generalized Chern-Simons-Higgs model.

4. Comments and Conclusions

In this work, we have developed a procedure that allows
us to construct k-vortex models that support a first order
framework. As we discussed above, the method is important
because the constraint that dictates the form of the potential
cannot be solved in general in the presence of the squared
kinetic term of the scalar field,𝑋2, in the Lagrangian density.
Thus, it seems to be very hard to start from a model with
this term and find the potential that leads to the first order
equations compatiblewith the stressless condition, vital to the
stability of the system.

Nevertheless, we got inspiration from the recent works
[26, 27] and noticed that, if an analytical solution is known,
we can construct amodel that satisfies the stressless condition
and find the energy depending exclusively on a function of
the fields calculated from the boundary conditions. In order
to achieve this, we have introduced the generating function𝑅(𝑔) that decouples the first order equations. It is interesting
feature of this procedure that it shows there is a class of
models that leads to the same analytical, stressless solutions
and their respective magnetic fields, which only depend on
the generating function. However, the energy density as well
as the total energy depends on the model to be chosen, so
we have to properly define the model, to make it behave
adequately.

It is worth commenting that a similar method can be
developed for the more general Lagrangian density L =𝑓(𝑋, |𝜑|) + 𝑃(|𝜑|)𝑌 − 𝑉(|𝜑|). Thus, among the myriad of
possibilities, one may develop a construction method for the
kinetic term of the scalar field being of the Born-Infeld type,
for instance.Other perspectives should include the possibility
of considering the case in which the dynamics of the gauge
field is driven by the Chern-Simons term, which cannot be
multiplied by 𝑃(|𝜑|) if one wants to keep gauge invariance.
Since the magnetic permeability of the model is generalized,
one may also investigate the presence of vortices in metama-
terials; see, e.g., [36–38]. Furthermore, as the model supports

the 𝑊 in (17), one may seek for supersymmetric extensions,
to investigate how the supersymmetry works in this scenario
to lead us with first order differential equations. One may
also try to extend these results to other topological structures,
such as monopoles and skyrmions. We hope to report on
some of the above issues in the near future.
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