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The Schrödinger equation𝜓󸀠󸀠(𝑥)+𝜅2𝜓(𝑥) = 0where 𝜅2 = 𝑘2−𝑉(𝑥) is rewritten as amore popular formof a second order differential
equation by taking a similarity transformation 𝜓(𝑧) = 𝜙(𝑧)𝑢(𝑧) with 𝑧 = 𝑧(𝑥). The Schrödinger invariant 𝐼𝑆(𝑥) can be calculated
directly by the Schwarzian derivative {𝑧, 𝑥} and the invariant 𝐼(𝑧) of the differential equation 𝑢𝑧𝑧 + 𝑓(𝑧)𝑢𝑧 + 𝑔(𝑧)𝑢 = 0. We find
an important relation for a moving particle as ∇2 = −𝐼𝑆(𝑥) and thus explain the reason why the Schrödinger invariant 𝐼𝑆(𝑥) keeps
constant. As an illustration, we take the typical Heun’s differential equation as an object to construct a class of soluble potentials and
generalize the previous results by taking different transformation 𝜌 = 𝑧󸀠(𝑥) as before. We get a more general solution 𝑧(𝑥) through
integrating (𝑧󸀠)2 = 𝛼1𝑧2 +𝛽1𝑧+𝛾1 directly and it includes all possibilities for those parameters. Some particular cases are discussed
in detail. The results are also compared with those obtained by Bose, Lemieux, Batic, Ishkhanyan, and their coworkers. It should
be recognized that a subtle and different choice of the transformation 𝑧(𝑥) also related to 𝜌 will lead to difficult connections to the
results obtained from other different approaches.

1. Introduction

The exact solution of the Schrödinger equation with phys-
ical potentials has played an important role in quantum
mechanics. This is due to the fact that an exact knowledge
of the energy spectrum and the wave functions of the one-
dimensional Schrödinger equation turns out to be very useful
in many applied problems. Generally speaking, for a given
external field, one of our main tasks is to show how to solve
the differential equation through choosing suitable variables
and then find its exact solutions expressed by some special
functions. Here we focus on how to construct a class of
the solvable potentials within the framework of the nonrel-
ativistic Schrödinger equation. Up to now, a lot of similar
works have been carried out with this stimulation [1–9]. For
example, Lemieux and Bose presented an advanced analysis

of the variable transformation and have listed 8 potentials
[3] (written in French). Batic, Williams, and Nowakowski
have discussed the general potential allowing reduction of
the Schrödinger equation to the general Heun’s differential
equation by an energy-independent transformation. In par-
ticular, Theorem 4.1 in [8] gives the most general form of this
potential including 15 parameters instead of 14 parameters,
which contain 10 parameters (𝑔0,1,2,3,4 and 𝑓0,1,2,3,4) and
original parameters 𝛼, 𝛽, 𝛾, 𝛿, 𝜖, 𝑞 involved in the general
Heun equation but with a constraint also named as Fuchsian
relation (11). In that work [8], they find that their results
cover all results obtained by Bose, Lemieux, Natanzon, and
Iwata [1–4, 10]. Iwata studied the soluble potentials in terms
of the hypergeometric functions [10]. It is not surprising to
see this since the special functions considered by them are
only the special cases of the general Heun function. Just
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recently Ishkhanyan and his coauthors worked out a series of
significant works by taking 𝜌 ∝ (𝑧−𝑎1)𝑚1(𝑧−𝑎2)𝑚2(𝑧−𝑎3)𝑚3 ,
where the parameters 𝑎1,2,3 are three singularity points, to
construct the soluble potentials with some constraints on the
parameters −1 ≤ 𝑚1,2,3 ≤ 1 and 1 ≤ 𝑚1 + 𝑚2 + 𝑚3 ≤ 3
[6, 7, 9]. By choosing different values of these parameters
which satisfy these constraints, some interesting results have
been obtained. However, the approaches taken by Natanzon
[4], who constructed a class of the soluble potentials related
to the hypergeometric functions, and by Bose [1], who
discussed the Riemann andWhittaker differential equations,
are different from Ishkhanyan et al. In Bose’s classical works
[1, 3] he only studied a few special cases for the differential
equation (𝑧󸀠)2 = 𝛼1𝑧2 + 𝛽1𝑧 + 𝛾1. Its general solutions
were not presented at that time due to the limit on the
possible computation condition. In this work our aim is to
construct the soluble potentials within the framework of the
Schrödinger invariant 𝐼𝑆(𝑥) through solving the differential
equation of the transformation 𝑧(𝑥) directly and then to
obtain its more general solutions instead of considering
several special cases for the parameters 𝛼1, 𝛽1, and 𝛾1.

The rest of this work is organized as follows. In Section 2
we present the Schwarzian derivative {𝑧, 𝑥} and the invariant𝐼(𝑧) of the differential equation 𝑢𝑧𝑧 + 𝑓(𝑧)𝑢𝑧 + 𝑔(𝑧)𝑢 = 0
through acting the similarity transformation𝜓(𝑧) = 𝜙(𝑧)𝑢(𝑧)
on the Schrödinger equation. In Section 3 as an illustration
we take the Heun’s differential equation as a typical example
but following slight different approaches taken in [6–9]. All
soluble potentials are obtained completely in Section 4. Some
concluding remarks are given in Section 5.

2. Similarity Transformations to the
Schrödinger Equation

As we know, the Schrödinger equation has the form

𝑑2𝑑𝑥2𝜓 (𝑥) + [𝑘2 − 𝑉 (𝑥)] 𝜓 (𝑥) = 0. (1)

where we call 𝑘2 an energy term and 𝑉(𝑥) an external
potential.

Through choosing a similarity transformation 𝜓(𝑧) =𝜙(𝑧)𝑢(𝑧) where 𝑧 = 𝑧(𝑥), we are able to obtain the following
differential equation:

𝑢𝑧𝑧 (𝑧) + (𝜌𝑧𝜌 + 2𝜙𝑧𝜙 )𝑢𝑧 (𝑧)
+ [𝜙𝑧𝑧𝜙 + 𝜌𝑧𝜙𝑧𝜌𝜙 + 𝑘2 − 𝑉 (𝑥)𝜌2 ] 𝑢 (𝑧) = 0,

𝜌 (𝑥) = 𝑑𝑧 (𝑥)𝑑𝑥 ,
(2)

which can be rewritten as

𝑢𝑧𝑧 + 𝑓 (𝑧) 𝑢𝑧 + 𝑔 (𝑧) 𝑢 = 0, 𝑢𝑧𝑧 = 𝑑2𝑢𝑑𝑧2 , (3)

which implies that

𝑓 (𝑧) = (𝜌𝑧𝜌 + 2𝜙𝑧𝜙 ) ,
𝑔 (𝑧) = 𝜙𝑧𝑧𝜙 + 𝜌𝑧𝜙𝑧𝜌𝜙 + 𝑘2 − 𝑉 (𝑥)𝜌2 .

(4)

Integrating the first differential equation allows us to obtain

𝜙 (𝑧) = 𝜌−1/2𝑒1/2 ∫𝑓(𝑧)𝑑𝑧. (5)

Substitution of this into the second differential equation of (4)
yields

𝑔 − 12𝑓𝑧 − 14𝑓2 = −12 (𝜌𝑧𝜌 )
𝑧
− 14 (𝜌𝑧𝜌 )2 + (𝑘2 − 𝑉)

𝜌2 , (6)

from which we define the expression [11]

𝐼 (𝑧) = 𝑔 − 𝑓𝑧2 − 𝑓24 (7)

as the invariant of (3) (such a process is known as the normal
form of the equation; equations which have the same normal
form are equivalent). Using Schwarzian derivative,

{𝑧, 𝑥} = 𝑑2 log 𝑧󸀠 (𝑥)𝑑𝑥2 − 12 (𝑑 log 𝑧󸀠 (𝑥)𝑑𝑥 )2

= (𝑧󸀠󸀠 (𝑥)𝑧󸀠 (𝑥) )
󸀠 − 12 [𝑧󸀠󸀠 (𝑥)𝑧󸀠 (𝑥) ]

2

= 𝑧󸀠󸀠󸀠 (𝑥)𝑧󸀠 (𝑥) − 32 [𝑧󸀠󸀠 (𝑥)𝑧󸀠 (𝑥) ]
2 = 𝜌𝜌𝑧𝑧 − 12𝜌2𝑧 ,

(8)

where we have used the relation 𝑧󸀠󸀠(𝑥) = 𝜌(𝑑/𝑑𝑥) = 𝜌𝜌𝑧.
Consider (7); then we can rearrange (6) as

𝜌2𝐼 (𝑧) + 12 {𝑧, 𝑥} = 𝑘2 − 𝑉 (𝑥) ≡ 𝐼𝑆 (𝑥) , (9)

where 𝐼𝑆(𝑥) is defined as the Schrödinger invariant [1, 4].
Thus, the problem of the construction of the soluble poten-
tials for the original Schrödinger equation (1) is solvable on
the basis of the functions corresponding to a given 𝐼(𝑧); (7)
becomes a problem of deciding transformation 𝑧(𝑥) such that
the relation 𝜌2𝐼(𝑧)+(1/2){𝑧, 𝑥} = 𝑧󸀠(𝑥)2𝜌2𝐼(𝑧)+(1/2){𝑧, 𝑥} =𝐼𝑆(𝑥) holds. The Schrödinger invariant 𝐼𝑆(𝑥) is thus charac-
terized by two elements, i.e., the 𝐼(𝑧) and the Schwarzian
derivative {𝑧, 𝑥}, which is directly related to the transforma-
tion function 𝑧(𝑥).Thismeans that the Schrödinger invariant
exists for all nonrelativistic Schrödinger quantum systems.
The possibility that the potentials could be soluble or not
depends on the second order ordinary differential equations
and also on their solutions which can be written out explicitly
by some special functions.
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3. Application to Heun’s Differential Equation

TheHeun’s differential equation is given by [8, 12–18]

𝑢𝑧𝑧 + (𝛾𝑧 + 𝛿𝑧 − 1 + 𝜖𝑧 − 𝑎) 𝑢𝑧 + 𝛼𝛽𝑧 − 𝑞𝑧 (𝑧 − 1) (𝑧 − 𝑎)𝑢
= 0,

(10)

where the parameters satisfy the Fuchsian relation

𝛼 + 𝛽 + 1 = 𝛾 + 𝛿 + 𝜖. (11)

For this equation, the Heun Invariant 𝐼ℎ can be calculated
as

𝐼ℎ (𝑧) = 𝛼𝛽𝑧 − 𝑞𝑧 (𝑧 − 1) (𝑧 − 𝑎) − 14 (𝛾𝑧 + 𝛿𝑧 − 1 + 𝜖𝑧 − 𝑎)2

+ 12 ( 𝛾𝑧2 + 𝛿
(1 − 𝑧)2 +

𝜖
(𝑎 − 𝑧)2)

= 𝐴𝑧4 + 𝐵𝑧3 + 𝐶𝑧2 + 𝐷𝑧 + 𝐹
𝑧2 (𝑧 − 1)2 (𝑧 − 𝑎)2 .

(12)

The parameters𝐴, 𝐵, 𝐶,𝐷, 𝐹 depend on the singularity 𝑎 and
the parameters 𝛼, 𝛽, 𝛾, 𝛿, 𝜖, 𝑞; i.e.,

𝐴 = 14 [4𝛼𝛽 − (𝛾 + 𝛿 + 𝜖 − 2) (𝛾 + 𝛿 + 𝜖)] ,
𝐵 = 12 {−2 (𝑎 + 1) 𝛼𝛽

+ (𝛾 + 𝛿 + 𝜖 − 2) (𝑎𝛾 + 𝑎𝛿 + 𝛾 + 𝜖) − 2𝑞}
𝐶 = 14 {𝑎2 [− (𝛾 + 𝛿 − 2)] (𝛾 + 𝛿)

+ 𝑎 [4𝛼𝛽 − 2𝜖 (2𝛾 + 𝛿) − 4𝛾 (𝛾 + 𝛿 − 2)]
+ 4 (𝑎 + 1) 𝑞 − (𝛾 + 𝜖 − 2) (𝛾 + 𝜖)} ,

𝐷 = 12𝑎 [𝛾 (𝑎 (𝛾 + 𝛿 − 2) + 𝛾 + 𝜖 − 2) − 2𝑞] ,
𝐹 = −14𝑎2𝛾 (𝛾 − 2) .

(13)

Before ending this part, we give a useful remark about the
Heun invariant 𝐼ℎ (also named as Bose invariant) as studied
by Batic and his coworkers Williams and Nowakowski [8].
They expressed it in another way:

𝐼 (𝑦) = 𝜆0 (𝑦 − 1)2 (𝑦 − 𝑎)2 + 𝜆1𝑦2 (𝑦 − 𝑎)2 + 𝜆2𝑦2 (𝑦 − 1)2 + 𝜆3𝑦2 (𝑦 − 1) (𝑦 − 𝑎) + 𝜆4𝑦 (𝑦 − 1) (𝑦 − 𝑎)
4𝑦2 (𝑦 − 1)2 (𝑦 − 𝑎)2 , (14)

where the parameters 𝜆0,1,2,3,4 are related to the parameters𝛼, 𝛽, 𝛾, 𝛿, 𝑞 of the Heun’s differential equations.This invariant
can also be written as 𝐼(𝑦) = 𝑃(𝑦)/𝑄(𝑦) [8]. Comparing this
with ours, it is not difficult to find that 𝑐0 = 4𝐴, 𝑐1 = 4𝐵, 𝑐2 =4𝐶, 𝑐3 = 4𝐷, 𝑐4 = 4𝐹, where the coefficients𝐴, 𝐵, 𝐶,𝐷, 𝐹 are
given above. It is worth emphasizing that they decomposed
Bose invariant 𝐼(𝑦) into two parts, i.e., 𝐼(𝑦) = 𝐼1(𝑦)𝑘2 + 𝐼0(𝑦)
if and only if 𝑃(𝑦) = 𝑅(𝑦)𝑘2 + 𝑆(𝑦) where

𝑅 (𝑦) = 4∑
𝑖=0

𝑎𝑖𝑦𝑖,

𝑆 (𝑦) = 4∑
𝑗=0

𝑏𝑗𝑦𝑗.
(15)

Thus, the coefficients 𝑐0,1,2,3,4 might connect the coefficients𝑎0,1,2,3,4 and 𝑏0,1,2,3,4, further directly related to the parameters𝜆0,1,2,3,4 involved in (14) [8]. We refer the reader to this work
for more information.

4. Soluble Potentials Constructed
by Heun Invariant Transferred to
Schrödinger Invariant

Now, let us determine functions 𝜌 = 𝑧󸀠(𝑥) that can be used
to transform 𝐼ℎ to 𝐼𝑆 in order to calculate the Schwarzian

derivative {𝑧, 𝑥}.The form of the present invariant 𝐼ℎ(𝑧) given
in (12) suggests taking the class of functions defined by (it
should be pointed out that present choice is different from
previous one [7, 9], in which the 𝜌 ∝ (𝑧−𝑎1)𝑚1(𝑧−𝑎2)𝑚2(𝑧−𝑎3)𝑚3 is chosen in order to adapt the mathematical character
of the Heun invariant (12))

𝜌2 = 𝑧󸀠 (𝑥)2 = 𝛼1𝑧 (𝑥)2 + 𝛽1𝑧 (𝑥) + 𝛾1, (16)

where 𝛼1, 𝛽1, 𝛾1 are three arbitrary constants. Such a choice
is to make the 𝜌2𝐼ℎ(𝑧) (9) generate a constant to cancel the
energy level term 𝑘2. Otherwise, the expansion terms for𝜌2𝐼ℎ(𝑧) without including a constant will make the energy
level term 𝑘2 = 0. This means that the particle moves in a
free field. In terms of (16), one has

{𝑧, 𝑥} = −𝛼12 − 38
𝛽21 − 4𝛼1𝛾1(𝛼1𝑧2 + 𝛽1𝑧 + 𝛾1) , (17)

where we have used the relation {𝑧, 𝑥} = 𝜌𝜌𝑧𝑧 − (1/2)𝜌2𝑧 and𝜌 = 𝑧󸀠(𝑥).
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To solve (16), we attempt to obtain its general solutions
with all arbitrary parameters. In this case, one has

𝑧 (𝑥)±
= 𝑒√𝛼1[−(𝑐1±𝑥)] [𝛽21 − 4𝛼1𝛾1 − 2𝛽1𝑒√𝛼1(𝑐1±𝑥) + 𝑒2√𝛼1(𝑐1±𝑥)]

4𝛼1
= − 𝛽12𝛼1 +

𝑒∓√𝛼1𝑥 (𝛽21 − 4𝛼1𝛾1) + 𝑒±√𝛼1𝑥
4𝛼1 ,

(18)

where 𝑐1 is an integral constant and we take 𝑐1 = 0 for
simplicity.

Let us study this solution in various options for those
parameters. If choosing the constants 𝛼1, 𝛽1, 𝛾1 and the
constants of integration suitably, in terms of above results (18)
we can obtain their solutions but ignore unimportant integral
constants as follows:(1)When 𝛽1 = 𝛾1 = 0, 𝛼1 = 4𝑎2, we have

𝑧±1 (𝑥) = 𝑔 exp (±2𝑎𝑥) , 𝑔 ∈ constant. (19)

(2)When 𝛼1 = −𝛽1, 𝛾1 = 0, 𝛼1 = 4𝑎2, we have
𝑧𝑎2 = cosh2 (𝑎𝑥) ,
𝑧𝑏2 = −sinh2 (𝑎𝑥) . (20)

(3)When 𝛼1 = −𝛽1, 𝛾1 = 0, 𝛼1 = −4𝑏2, we have
𝑧𝑎3 = cos2 (𝑏𝑥) ,
𝑧𝑏3 = sin2 (𝑏𝑥) . (21)

(4)When 𝛼1 = 𝛾1 = 0, 𝛽1 = 4𝑐, we have
𝑧4 = 𝑐𝑥2, 𝑐 ∈ constant. (22)

(5)When 𝛼1 = 𝛽1 = 0, 𝛾1 = 𝜎2, we have
𝑧±5 = ±𝜎𝑥. (23)

It is not difficult to find that cases (2) and (3) can be
obtained by considering the relations sin(𝑖 𝑥) = 𝑖 sinh(𝑥) and
cos(𝑖 𝑥) = cosh(𝑥) when 2𝑎 is replaced by 2𝑖𝑏.

On the other hand, it was recalled that [1, 5]

{𝑧𝑡, 𝑥} = {𝑧, 𝑥} , 𝑧𝑡 ≡ 𝐴1𝑧 + 𝐵1𝐶1𝑧 + 𝐷1 , (24)

where 𝐴1, 𝐵1, 𝐶1, 𝐷1 are constants but 𝐴1𝐷1 − 𝐵1𝐶1 ̸= 0.
From (24), we have

𝑧 = 𝐷1𝑧𝑡 − 𝐵1𝐴1 − 𝐶1𝑧𝑡 . (25)

Differentiating 𝑧𝑡 given in (24) with respect to 𝑥 and
eliminating the variable 𝑧, one has

𝑧󸀠𝑡 (𝑥) = 𝑑𝑧𝑡𝑑𝑥 = − (𝐶1𝑧𝑡 − 𝐴1)2𝐵1𝐶1 − 𝐴1𝐷1 𝑧
󸀠 (𝑥) ,

(𝑑𝑧𝑡𝑑𝑥 )2 = (𝐶1𝑧𝑡 − 𝐴1)2
(𝐵1𝐶1 − 𝐴1𝐷1)2 [𝛼1 (𝐵1 − 𝐷1𝑧𝑡)2 + 𝛽1 (𝐵1 − 𝐷1𝑧𝑡) (𝐶1𝑧𝑡 − 𝐴1) + 𝛾1 (𝐶1𝑧𝑡 − 𝐴1)2]

= (𝐴1 − 𝐶1𝑧𝑡)2 (𝐷1𝑧𝑡 − 𝐵) [𝛽1 (𝐴1 − 𝐶1𝑧𝑡) − 𝛼1𝐵1 + 𝛼1𝐷1𝑧𝑡] + 𝛾1 (𝐴1 − 𝐶1𝑧𝑡)4
(𝐵1𝐶1 − 𝐴1𝐷1)2 ,

(26)

where 𝑧󸀠(𝑥) is given by (16). It is not difficult to see that the
solutions of (26) are also possible transformations since it is a
generalization of (16). Up to now, we have found a class of
functions for transforming 𝐼ℎ to 𝐼𝑆. It is worth noting that
this class of functions can be characterized differently. We are
going to give a useful remark on the 𝑧󸀠𝑡(𝑥) given in (26). If we
use this to calculate the Schrödinger invariant 𝐼𝑆(𝑥) (9), then
we will find that the soluble potentials would become rather
complicated.Therefore, we do not consider this for simplicity,
but it should be recognized that the variable 𝑧𝑡 is just 𝑧(𝑥) as
given in (16).

We are now in the position to construct the simple
Schrödinger invariant corresponding to the invariant of the
general Heun’s differential equation with the aid of the
Schwarzian derivative (17) we obtained above. First, let us
consider the simpler transform (16). Substituting (12) and (17)
into (9) allows us to obtain the following useful Schrödinger
invariant:

𝐼𝑆 = 𝜌2𝐼ℎ + 12 {𝑧, 𝑥} = (𝛼1𝑧2 + 𝛽1𝑧 + 𝛾1)
⋅ { 𝛼𝛽𝑧 − 𝑞𝑧 (𝑧 − 1) (𝑧 − 𝑎) − 14 (𝛾𝑧 + 𝛿𝑧 − 1 + 𝜖𝑧 − 𝑎)2

+ 12 [ 𝛾𝑧2 + 𝛿
(𝑧 − 1)2 +

𝜖
(𝑧 − 𝑎)2 ]} − (𝛼14

+ 316
𝛽21 − 4𝛼1𝛾1𝛼1𝑧2 + 𝛽1𝑧 + 𝛾1) = (𝛼1𝑧2 + 𝛽1𝑧 + 𝛾1)

⋅ [𝐴𝑧4 + 𝐵𝑧3 + 𝐶𝑧2 + 𝐷𝑧 + 𝐹
𝑧2 (𝑧 − 1)2 (𝑧 − 𝑎)2 ] − (𝛼14

+ 316
𝛽21 − 4𝛼1𝛾1𝛼1𝑧2 + 𝛽1𝑧 + 𝛾1) ,

(27)

where we have used relation (12).
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Let us write down the Schrödinger invariants (essentially
related to potentials) based on (19), (20), (21), (22), and (23).

(i)
𝐼𝑆 (𝐻1+)

= 𝑎2 {4 [𝑔𝑒2𝑎𝑥 (𝑔𝑒2𝑎𝑥 (𝑔𝑒2𝑎𝑥 (𝐴𝑔𝑒2𝑎𝑥 + 𝐵) + C) + 𝐷) + 𝐹]
(𝑎 − 𝑔𝑒2𝑎𝑥)2 (𝑔𝑒2𝑎𝑥 − 1)2

− 1} ,
𝐼𝑆 (𝐻1−)

= 𝑎2 {4 [𝐵𝑔3𝑒2𝑎𝑥 + 𝐶𝑔2𝑒4𝑎𝑥 + 𝐷𝑔𝑒6𝑎𝑥 + 𝐹𝑒8𝑎𝑥 + 𝐴𝑔4]
(𝑒2𝑎𝑥 − 𝑔)2 (𝑔 − 𝑎𝑒2𝑎𝑥)2

− 1} .

(28)

(ii)

𝐼𝑆 (𝐻2𝑎) = − 𝑎2csch2 (2𝑎𝑥)
[cosh2 (𝑎𝑥) − 𝑎]2 {3𝑎

2 + (4 − 16𝐴)
⋅ cosh8 (𝑎𝑥) − 4 (2𝑎 + 4𝐵 + 1) cosh6 (𝑎𝑥)
+ [4𝑎 (𝑎 + 2) − 16𝐶 + 3] cosh4 (𝑎𝑥)
− 2 [𝑎 (2𝑎 + 3) + 8𝐷] cosh2 (𝑎𝑥) − 16𝐹} ,

𝐼𝑆 (𝐻2𝑏) = −𝑎2sinh4 (𝑎𝑥) tanh2 (𝑎𝑥)
4 [sinh2 (𝑎𝑥) + 𝑎]2 {(3𝑎2 − 16𝐹)

⋅ csch8 (𝑎𝑥) + 4 (2𝑎 + 4𝐵 + 1) csch2 (𝑎𝑥)
+ [4𝑎 (𝑎 + 2) − 16𝐶 + 3] csch4 (𝑎𝑥)
+ 2 [𝑎 (2𝑎 + 3) + 8𝐷] csch6 (𝑎𝑥) − 16𝐴 + 4} .

(29)

(iii)

𝐼𝑆 (𝐻3𝑎 {3𝑏}) = − 𝑏2csc2 (2𝑏𝑥)
[cos2 (𝑏𝑥) {sin2 (𝑏𝑥)} − 𝑎]2 {3𝑎

2

+ (4 − 16𝐴) cos8 (𝑏𝑥) {sin8 (𝑏𝑥)}
− 4 (2𝑎 + 4𝐵 + 1) cos6 (𝑏𝑥) {sin6 (𝑏𝑥)}
+ [4𝑎 (𝑎 + 2) − 16𝐶 + 3] cos4 (𝑏𝑥) {sin4 (𝑏𝑥)}
− 2 [𝑎 (2𝑎 + 3) + 8𝐷] cos2 (𝑏𝑥) {sin2 (𝑏𝑥)} − 16𝐹} .

(30)

(iv)
𝐼𝑆 (𝐻4)

= 16 {𝑐𝑥2 [𝑐𝑥2 (𝑐𝑥2 (𝐴𝑐𝑥2 + 𝐵) + 𝐶) + 𝐷] + 𝐹}
4𝑥2 (𝑐𝑥2 − 1)2 (𝑎 − 𝑐𝑥2)2

− 34𝑥2 .
(31)

(v)

𝐼𝑆 (𝐻5±) = 𝜎𝑥 [𝜎𝑥 (𝜎𝑥 (𝐴𝜎𝑥 ± 𝐵) + 𝐶) ± 𝐷] + 𝐹
𝑥2 (𝜎𝑥 ∓ 1)2 (𝑎 ∓ 𝜎𝑥)2 . (32)

Here, we have used the symbol (𝐻𝑛(±,𝑎,𝑏)) to denote the above
invariants, 𝐻 referring to 𝐼ℎ, and 𝑛(±,𝑎,𝑏) to 𝑧(±,𝑎,𝑏)𝑛 and {, }
referring to results for {3𝑏}. Let us analyze these potentials
through expanding them as follows.

For the (i) case, we have

𝑉𝐼𝑆 (𝐻1+) = 𝑎2 (4𝐴 − 1) + 𝐴+1(𝑔𝑒2𝑎𝑥 − 1)2
+ 𝐵+1(𝑔𝑒2𝑎𝑥 − 1) + 𝐶+1(𝑔𝑒2𝑎𝑥 − 𝑎)
+ 𝐷+1(𝑔𝑒2𝑎𝑥 − 𝑎)2

(33)

where

𝐴+1 = 4 (𝑎2𝐴 + 𝑎2𝐵 + 𝑎2𝐶 + 𝑎2𝐷 + 𝑎2𝐹)
(𝑎 − 1)2 ,

𝐵+1
= 4 (4𝑎3𝐴 + 3𝑎3𝐵 + 2𝑎3𝐶 + 𝑎3𝐷 − 2𝑎2𝐴 − 𝑎2𝐵 + 𝑎2𝐷 + 2𝑎2𝐹)

(𝑎 − 1)3 ,
𝐶+1
= 4 (2𝑎6𝐴 − 4𝑎5𝐴 + 𝑎5𝐵 − 3𝑎4𝐵 − 2𝑎3𝐶 − 𝑎3𝐷 − 𝑎2𝐷 − 2𝑎2𝐹)

(𝑎 − 1)3 ,

𝐷+1 = 4 (𝑎6𝐴 + 𝑎5𝐵 + 𝑎4𝐶 + 𝑎3𝐷 + 𝑎2𝐹)
(𝑎 − 1)2 .

(34)

For case (ii), we have

𝑉𝐼𝑆 (𝐻2𝑎) = 𝐴𝑎2csch2 (2𝑎𝑥)
[cosh2 (𝑎𝑥) − 𝑎]2 +

𝐵𝑎2csch2 (𝑎𝑥)
[cosh2 (𝑎𝑥) − 𝑎]2

− 𝐶𝑎2coth2 (𝑎𝑥)
[cosh2 (𝑎𝑥) − 𝑎]2

+ 𝐷𝑎2cosh2 (𝑎𝑥) coth2 (𝑎𝑥)
[cosh2 (𝑎𝑥) − 𝑎]2

+ 𝐸𝑎2cosh4 (𝑎𝑥) coth2 (𝑎𝑥)
[cosh2 (𝑎𝑥) − 𝑎]2

(35)
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where

𝐴𝑎2 = 𝑎2 (16𝐹 − 3𝑎2) ,
𝐵𝑎2 = 𝑎2 [𝑎 (2𝑎 + 3) + 8𝐷]2 ,
𝐶𝑎2 = 𝑎2 [4𝑎 (𝑎 + 2) − 16𝐶 + 3]4 ,
𝐷𝑎2 = 𝑎2 (2𝑎 + 4𝐵 + 1) ,
𝐸𝑎2 = 𝑎2 (4𝐴 − 1) .

(36)

For case (iii), one has

𝑉𝐼𝑆 (𝐻3𝑎) = 𝐴𝑎3csc2 (2𝑏𝑥)
[cos (𝑏𝑥)2 − 𝑎]2 +

𝐵𝑎3csc2 (𝑏𝑥)
[cos (𝑏𝑥)2 − 𝑎]2

− 𝐶𝑎3cot2 (𝑏𝑥)
[cos (𝑏𝑥)2 − 𝑎]2

+ 𝐷𝑎3cos2 (𝑏𝑥) cot2 (𝑏𝑥)
[cos (𝑏𝑥)2 − 𝑎]2

+ 𝐸𝑎3cos4 (𝑏𝑥) cot2 (𝑏𝑥)
[cos (𝑏𝑥)2 − 𝑎]2

(37)

where

𝐴𝑎3 = 𝑏2 (16𝐹 − 3𝑎2) ,
𝐵𝑎3 = 𝑏2 [𝑎 (2𝑎 + 3) + 8𝐷]2 ,
𝐶𝑎3 = 𝑏2 [4𝑎 (2 + 𝑎) − 16𝐶 + 3]4 ,
𝐷𝑎3 = 𝑏2 (2𝑎 + 4𝐵 + 1) ,
𝐸𝑎3 = 𝑏2 (4𝐴 − 1) .

(38)

For the special case (iv), we have

𝑉𝐼𝑆 (𝐻4) = 𝐴4𝑥2 + 𝐵4(𝑐𝑥2 − 𝑎)2 +
𝐶4(𝑐𝑥2 − 𝑎)

+ 𝐷4(𝑐𝑥2 − 1)2 +
𝐸4(𝑐𝑥2 − 1)

(39)

where

𝐴4 = 16𝐹 − 3𝑎24𝑎2 ,
𝐵4 = 4𝑐 (𝑎4𝐴 + 𝑎3𝐵 + 𝑎2𝐶 + 𝑎𝐷 + 𝐹)

(𝑎 − 1)2 𝑎 ,
𝐶4
= 4𝑐 (𝑎5𝐴 − 3𝑎4𝐴 − 2𝑎3𝐵 − 𝑎3𝐶 − 𝑎2𝐶 − 2𝑎2𝐷 − 3𝑎𝐹 + 𝐹)

(𝑎 − 1)3 𝑎2 ,
𝐷4 = 4𝑐 (𝐴 + 𝐵 + 𝐶 + 𝐷 + 𝐹)

(𝑎 − 1)2 ,
𝐸4 = 4𝑐 (3𝑎𝐴 + 2𝑎𝐵 + 𝑎𝐶 − 𝑎𝐹 − 𝐴 + 𝐶 + 2𝐷 + 3𝐹)

(𝑎 − 1)3 .

(40)

For case (v), one has

𝑉𝐼𝑆 (𝐻5−) = 𝐴−3𝑥 + 𝐵−3𝑥2 + 𝐶−3(𝑎 + 𝜎𝑥)2 +
𝐷−3(𝑎 + 𝜎𝑥)

+ 𝐸−3(𝜎𝑥 + 1)2 +
𝐹−3(𝜎𝑥 + 1)

(41)

where

𝐴−5 = −𝜎 (𝑎𝐷 + 2𝑎𝐹 + 2𝐹)𝑎3 ,
𝐵−3 = 𝐹𝑎2 ,
𝐶−5 = 𝜎2 (𝑎4𝐴 + 𝑎3𝐵 + 𝑎2𝐶 + 𝑎𝐷 + 𝐹)

(𝑎 − 1)2 𝑎2 ,
𝐷−5
= 𝜎2 (2𝑎4𝐴 + 𝑎4𝐵 + 𝑎3𝐵 + 2𝑎3𝐶 + 3𝑎2𝐷 − 𝑎𝐷 + 4𝑎𝐹 − 2𝐹)

(𝑎 − 1)3 𝑎3 ,
𝐸−5 = 𝜎2 (𝐴 + 𝐵 + 𝐶 + 𝐷 + 𝐹)

(𝑎 − 1)2 ,
𝐹−5 = 𝜎2 (−2𝑎𝐴 − 𝑎𝐵 + 𝑎𝐷 + 2𝑎𝐹 − 𝐵 − 2𝐶 − 3𝐷 − 4𝐹)

(𝑎 − 1)3 .

(42)

Obviously, the potential given in case (i) is more com-
plicated than the usual Eckart potential. The potentials
discussed in cases (ii) and (iii) are more complicated than the
first and second type Pöschl-Teller potentials. The potential
studied in case (iv) is more like the 𝑥−2 + 𝑥−4 while
the potential given in case (v) essentially is the sum of
the Coulomb potential plus a centrifugal term. The other
cases such as 𝑉𝐼𝑆(𝐻1−), 𝑉𝐼𝑆(𝐻2𝑏), 𝑉𝐼𝑆(𝐻3𝑏), 𝑉𝐼𝑆(𝐻5+) have
similar properties to their parters. Now, we give a useful
remark on connections between present results and previous
ones obtained. Even though Lemieux and Bose have also
studied the cosh2(𝑎𝑥) transformation, the soluble potential
constructed by them is different from the present expression
(35) [see Table 1 from Lemieux et al. (1969)]. The parameters
involved in (35) such as 𝐴𝑎2, 𝐵𝑎2 , 𝐶𝑎2 , 𝐷𝑎2 , and 𝐸𝑎2 connect
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directly with those parameters 𝐴, 𝐵, 𝐶,𝐷, and 𝐹 as given
in (13), which are further related to the parameters of the
Heun’s differential equation (10). The connection between
(35) and the potential through taking the transformation𝑧 = cosh2(𝛼𝑥) studied by Lemieux and Bose [3] in Table 1
cannot be found easily and directly even though we consider
the relation cosh2(𝑥) − sinh2(𝑥) = 1. This is because the
parameter 𝑎 taken here is a singular point as shown in
(10). The similar case is also for (19) and (33), in which the
parameters 𝐴,𝐴+1, 𝐵+1 , 𝐶+1 , 𝐷+1 also depend on the parameters𝐴, 𝐵, 𝐶,𝐷, 𝐹. Likewise, we cannot find direct connections
between (33) and that given in [3], in which 𝑧 = (𝑑+𝑔 𝑒𝛼𝑥) is
taken. On the other hand, it is seen that the Heun differential
equation in present study is special case of the general Heun
equation [9], in which we take 𝑎1 = 0, 𝑎2 = 1, and 𝑎3 = 𝑎.
The transformation 𝑧±1 = 𝑔 exp(±2𝑎 𝑥) given in (19) and the
potential invariant (33) are similar to those given in the 9th
line of Table 1 in [9] [see Table 1 from Ishkhanyan (2018)].
The transformations (20) and (21) as well as the potentials
(35) and (37) derived from them are similar to the 11th case of
Table 3 [see Table 3 from Ishkhanyan (2018)], but the direct
connections between them are also very difficult.

Now, let us study the wave function. In terms of (5) and
the function

𝑓 (𝑧) = (𝛾𝑧 + 𝛿𝑧 − 1 + 𝜖𝑧 − 𝑎) (43)

given in (10), one has the following form:

𝜙 (𝑧) = 1
√𝜌𝑧𝛾/2 (𝑧 − 1)𝛿/2 (𝑧 − 𝑎)𝜖/2 , (44)

where 𝜌 given in (16) depends on the solutions (18), while
those particular cases are given in (19) to (23). The par-
tial wave function 𝑢(𝑥) involved in the whole wave func-
tion 𝜓(𝑧) = 𝜙(𝑧)𝑢(𝑧) is given by the Heun functions𝐻𝑙(𝑎, 𝑞, 𝛼, 𝛽, 𝛾, 𝛿, 𝜖; 𝑧). Thus, the wave function is given by

𝜓 (𝑧) = 𝜙 (𝑧) 𝑢 (𝑧) = 1
√𝜌𝑧𝛾/2 (𝑧 − 1)𝛿/2 (𝑧 − 𝑎)𝜖/2

⋅ 𝐻𝑙 (𝑎, 𝑞, 𝛼, 𝛽, 𝛾, 𝛿, 𝜖; 𝑧) .
(45)

5. Conclusion

The Schrödinger equation is rewritten as a more popular
form of a second order differential equation through taking
a similarity transformation. We find that this classical equa-
tion is closely related to the Schwarzian derivative and the
invariant identity of the differential equation 𝑢𝑧𝑧 + 𝑓(𝑧)𝑢𝑧 +𝑔(𝑧)𝑢 = 0. As a typical differential equation, the corre-
sponding mathematical properties of the Heun’s differential
equation are studied. Before ending this work, we give a
few useful remarks. First, let us consider the Schrödinger
equation (1) and (9). We find that the Schrödinger equation
can also be rewritten as ∇2𝜓(𝑥) = −𝐼𝑆(𝑥)𝜓(𝑥). Since ∇2
represents the kinetic term𝑇 of themoving particle, it should
keep invariant for the same particle. This is also reflection of
the conservation of energy 𝑇 + 𝑉 = 𝐸. Second, it should

be pointed out that Batic et al. also presented the most
general potential 𝑉𝐻(𝑥) in their significant work [8] with the
following form:

𝑉𝐻 (𝑥) = 𝑦2 (𝑦 − 1)2 (𝑦 − 𝑎)2
𝑅2 (𝑦) [𝑑2𝑅 (𝑦)

𝑑𝑦2
+ 𝐺 (𝑦) 𝑑𝑅 (𝑦) /𝑑𝑦 − 2𝑅 (𝑦) 𝑑𝐺 (𝑦) /𝑑𝑦

𝑦 (𝑦 − 1) (𝑦 − 𝑎)
+ 𝑅 (𝑦)𝐺2 (𝑦)

𝑦2 (𝑦 − 1)2 (𝑦 − 𝑎)2 −
5 (𝑑𝑅 (𝑦) /𝑑𝑦)2

4𝑅 (𝑦) ]

− 𝑆 (𝑦)
𝑅 (𝑦)

(46)

where

𝐺 (𝑦) = 3𝑦2 − 2 (𝑎 + 1) 𝑦 + 𝑎,
𝑅 (𝑦) = 𝑔0 (𝑦 − 1)2 (𝑦 − 𝑎)2 + 𝑔1𝑦2 (𝑦 − 𝑎)2

+ 𝑔2𝑦2 (𝑦 − 1)2 + 𝑔3𝑦2 (𝑦 − 1) (𝑦 − 𝑎)
+ 𝑔4𝑦 (𝑦 − 1) (𝑦 − 1) ,

𝑆 (𝑦) = 𝑓0 (𝑦 − 1)2 (𝑦 − 𝑎)2 + 𝑓1𝑦2 (𝑦 − 𝑎)2
+ 𝑓2𝑦2 (𝑦 − 1)2 + 𝑓3𝑦2 (𝑦 − 1) (𝑦 − 𝑎)
+ 𝑓4𝑦 (𝑦 − 1) (𝑦 − 1) .

(47)

The coordinate transformation 𝑦 = 𝑦(𝑥) satisfies the
differential equation

𝑅 (𝑦) (𝑦󸀠)2 = 4𝑦2 (𝑦 − 1)2 (𝑦 − 𝑎)2 , (48)

from which we find that (𝑦󸀠)2 ∝ 𝑧󸀠(𝑥)2 as given in (16).
The unique differential equation (16) will make us obtain the
exact solution of 𝑧(𝑥) as shown in (18), from which we have
all possible solutions through choosing the different values
of those parameters 𝛼1, 𝛽1, and 𝛾1. The expressions for these
parameters were not given explicitly in [8]. Third, the results
obtained from slightly different calculation process would
be very difficult to be connected to each other. The main
difference is from the choice of the transformation function𝑧(𝑥), i.e., the 𝑧󸀠(𝑥) taken in [9] (see equations (11) and (13)
of [9]) is different from that of present work (16). Fourth, the
present study cannot be copied to the Klein-Gordon equation
case since the latter case is given by (−∇2 + 𝑀2)𝜓(𝑥) =(𝐸 − 𝑉(𝑥))2𝜓(𝑥). The complications are from the terms2𝐸𝑉(𝑥), 𝐸2, and 𝑉(𝑥)2 when it is expanded, in particular the
mixture term 2𝐸𝑉(𝑥). This is absolutely different from the
Schrödinger equation case. Fifth, the potentials obtained by
these approaches are most general, but they are not practical
since they include toomany parameters.We will find that it is
very difficult for these parameters to find direct connections
with those physical or chemical parameters.This is the reason
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why the potential parameters are relatively few for those well-
known physical and chemical potentials. Nevertheless, the
potentials obtained by this way will provide a theoretical
guidance to the physical or chemical potential models.
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