Hindawi

Advances in High Energy Physics
Volume 2019, Article ID 3486805, 8 pages
https://doi.org/10.1155/2019/3486805

Research Article

Hindawi

Modeling Dark Sector in Horndeski Gravity at First-

Order Formalism

F. F. Santos,' R. M. P. Neves,! and F. A. Brito ">

"Departamento de Fisica, Universidade Federal da Paraiba, Caixa Postal 5008, 58051-970 Jodo Pessoa PB, Brazil
°Departamento de Fisica, Universidade Federal de Campina Grande, Caixa Postal 10071, 58109-970 Campina Grande PB, Brazil

Correspondence should be addressed to F. A. Brito; fabrito@df.ufcg.edu.br

Received 2 July 2019; Revised 20 August 2019; Accepted 26 November 2019; Published 17 December 2019

Guest Editor: Cesar A. Vasconcellos

Copyright © 2019 F. F. Santos et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The
publication of this article was funded by SCOAP>.

We investigate a cosmological scenario by finding solutions using first-order formalism in the Horndeski gravity that constrains the
superpotential and implies that no free choice of scalar potential is allowed. Despite this, we show that a de Sitter phase at late-time
cosmology can be realized, where the dark energy sector can be identified. The scalar field equation of state tends to the

cosmological scenario at present time and allows us to conclude that it can simulate the dark energy in the Horndeski gravity.

1. Introduction

Ever since Einstein proposed the General Relativity, it has
been supported by strong observational evidence in many
astrophysical scenarios, namely, Eddington’s measurement
of the deflection of light in 1919 and recent direct observation
of gravitational waves by the LIGO collaboration [1, 2]. How-
ever, we still have fundamental problems that are not well-
understood in General Relativity such as dark matter, dark
energy, and the inflationary phase of the Universe. In recent
years, models have been proposed involving modifications of
General Relativity [3, 4]. In such modifications, some of its
essential properties are maintained such as a second order
of the equations of motion arising from a diffeomorphism-
invariant action and keeping the Lorentz invariance. Due to
these assumptions, the additional propagating degrees of
freedom into the gravity sector consist of including addi-
tional fields (scalars, vectors, or tensors) [5]. These modifica-
tions of the gravity theory taking into account nonminimal
couplings between geometry and matter become one of the
mainstream of modified gravity theories, and the applica-
tions of the nonminimal couplings of matter with gravity
provide a way to solve the cosmological constant problem
[6, 7] and accelerated expansion of the Universe [8, 9]—see

also alternative theories, for instance, involving late-time
[10, 11] and early-time acceleration (inflation) [12] in the
context of supergravity.

Recent investigations about Einstein gravity have called
attention for the coupling of the theory to scalar fields [13].
These efforts led to the development of the well-known Gali-
leons that are scalar-tensor theories [14]. Indeed, these stud-
ies have led to the rediscovery of the Horndeski gravity.

The Horndeski gravity was originally discovered in 1974
[5, 15-18]. It is a general single scalar field-tensor theory
with second-order field equations and second-order energy-
momentum tensor. The Lagrangian-producing second-order
equations of motion as discussed in [4, 16, 18-22] include
four arbitrary functions of the scalar field and its kinetic term
[3,23]. The term that we are interested in includes a nonmi-
nimal coupling between the standard scalar kinetic term
and the Einstein tensor. Besides the cosmological interest,
recent investigation has also called attention in astrophysics,
such as the search for black hole solutions which develop
Hawking-Page phase transitions at a critical temperature
[18]. Other examples of spherically symmetric solutions in
Horndeski theory in the context of the solar system and fur-
ther astrophysical scenarios can also be found, for instance,
in the study of perihelion shift and light bending [24] and in
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the issues involving properties of spinning gyroscope and
the Gravity Probe B experiment [25]. Some applications in
astrophysical compact objects have also been considered
in [26, 27].

An interesting problem in the cosmological scenario is
the cosmological constant problem that is related to the dis-
crepancy between the natural scale and its measured value.
As discussed in [28], it is possible to address this problem
by using a self-tuning mechanism, which has been analyzed
in the original Horndeski theory for the so-called Fab Four
theory [29, 30]. However, more analyses of the cosmological
self-tuning and the local solutions in the context beyond
Horndeski theories can be found in [31].

In the cosmological scenario, the Horndeski cosmologi-
cal models are able to screen the vacuum energy coming
from any field theory in a space that should be a de Sitter
vacuum [32, 33]. In these models, we can understand that
the current accelerated expansion of the Universe is a
dynamical result evolution of a de Sitter attractor [34]. In
this sense, the Horndeski models involving a de Sitter critical
point for any kind of material content may provide a mech-
anism to alleviate the cosmological problem [35]. Thus, the
models involving nonminimal derivative couplings to grav-
ity have been explored in a variety of extended theories of
gravity [36]. These models show peculiar features, for exam-
ple, an essential mixing of scalar and tensor kinetic terms,
named kinetic braiding, and possessing a rich cosmological
phenomenology that includes a late-time asymptotic de
Sitter state that allows a phantom-divide line crossing with
neither ghost nor gradient instabilities.

In this work, we consider the Horndeski theory in the
cosmological context by using the first-order equation for-
malism that was presented recently for Horndeski gravity
in a brane world scenario [17]. We investigate the second-
order equations through the first-order formalism because,
in general, one simplifies the study of analytical or numerical
solutions. Moreover, the first-order equation formalism is a
fundamental tool in the renormalization group (RG) flow
in holographic cosmology [37-40]. In our case, we consider
the Friedmann equations without curvature and assume dark
energy dominance. In particular, the inflationary context
was analyzed by considering a power-law potential and
using the dynamical system method to investigate the pos-
sible asymptotical regimes of the model [41]. It was shown
that for sloping potentials, there exists a quasi-de-Sitter phase
corresponding to the early inflationary Universe. In our
investigations, by considering numerical methods, we show
that kink-type solutions of first-order equations represent a
de Sitter Universe. We address several important issues in
cosmological observables, such as the Hubble function, the
deceleration parameter, and the dark energy equation of
state. We investigate their evolution at small redshifts for a
general scalar potential written in terms of a superpotential.
Furthermore, as shown in [42], the Horndeski action in the
Friedmann frame without scalar potential cannot describe
the dark matter and dark energy, due the instability, and also
by constraint of gravity waves, the scalar field on the back-
ground evolution is negligible, and the presence of this field
becomes unnecessary for explaining the dark matter and
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dark energy. In our case, however, the nature of the scalar
potential in the Horndeski gravity in the Friedmann frame
is much more satisfactory for describing dark energy.

The paper is organized as follows. In Section II, we pres-
ent the first-order formalism in Horndeski theory with a sca-
lar potential given in terms of an implicit superpotential
obtained numerically. In Section III, we use the numerical
method to find cosmological solutions that represent a de
Sitter Universe. In Section IV, we discuss the following cos-
mological observables: the Hubble function, the deceleration
parameter, and the dark energy equation of state at small
redshifts. Finally, in Section V, we present our conclusions.

2. The Horndeski Gravity with a
Scalar Potential

In our present investigation, we shall address the study
of Friedmann-Robertson-Walker (FRW) solutions in the
framework of the Horndeski gravity [13, 15-18, 43] in which
action with a scalar potential reads

1
I[gw,, ¢} = J,/—gd4x {kR— 3 (“%v
(1)
G V4T Vig)|
Note that we have a nonminimal scalar-tensor coupling

where we can define a new field ¢ = . This field has dimen-

sion of (mass)® and the parameters « and # control the
strength of the kinetic couplings; « is dimensionless and #

has dimension of (mass)>. Thus, the Einstein-Horndeski
field equations can be formally written as in the usual way:

1
Gyv = ﬁ(T“’W, (2)

where T, =aT,, —g,,V(¢) + 7Ty, with k= (167G)~", and
the scalar field equation is given by

Vil(ag™ =nG™)V g = V. (3)

We shall adopt the notation fy,.,(¢)=d"f(¢)/d¢".
In particular, V,=dV/d¢. The aforementioned energy-
momentum tensors T}W and wa take the following form:

T =V,87,6 - 5 4, V197",

T;ZW = %V,ugbvvgbR - Zv/\¢V (y(/)Rﬁ) - ngbvp(/)Ry)wp
- (Vyv/\(p) (VVVA¢) + (Vyvv(p) D¢

+ lG‘uv(ng)z - g[,w |:_% (V/\Vpgb) (thp¢)

(o) - (vmvp¢>w] .
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Here, we are interested in investigating the cosmological
implications of theories with extended nonminimal deriva-
tive couplings. Considering the flat FRW metric of the form

ds® = —dt* + a*()8 ydx'dx’, ()

the scalar field depends on the cosmic time only, and com-
puting the tt-component of the Einstein-Horndeski field
equation (2) gives

3a(t)? (4k - 3qy*(1)) - @*(6)[ay?(1) + 2V($)] =0, (6)

The Friedmann equation can be readily found from this
equation and reads as

ad’ +2V(¢)

- 3<4k - 3;7¢>2) '

(7)

Now, we use the first-order formalism by assuming [11,
44, 45]

| a (®)
B=-W,(4),

where the superpotential W(¢) plays a central role. Through
these equations and equation (7), we can write the scalar
potential as follows:

V(g) = %WZ (4k - 3;7W;) - g w2, 9)

Notice the scalar potential is similar to that found in the
brane world scenario [17]. Now, we proceed with the xx-yy
-zz-components of equation (2) which are given by

a* (1) (y (1) - 4
+4na(t)y ()i ()] +a*(t) [ay

k) +a() [a(t) (2nv? (1) - 8)

()+2V(¢)} 0. (10)

The scalar field equation (3) in the FRW background is
written in the form
611¢HH
a+ 3nH?

. . 1%
¢+3Ho + M“;(f;z =0, (11)

and for Vs = 0 reduces to the form found in [22]. Now, com-
bining equation (6) with equation (10), we can write a differ-
ential equation for the superpotential:

2WWyy+ W3 +3W> = B=0, (12)
where = (1 — «)/n. There is a family of analytical solutions

for the homogeneous case =0 given in terms of trigono-
metric functions:

wior=(coon (26) v (20))

From equation (8), we can find an approximated solution,
for C, =0 and C, = 1; e.g,, the limit of one of the functions is
very small. Here, we assume ¢ =1 for a cosmological time
around a time scale t*, to find an acceptable cosmological
solution for the accelerating Universe:

¢ =241t - ¢,

(14)
a(t) = exp (0.17t).
As we shall see below, for arbitrary values of S+ 0, we
should apply numerical methods to find exact solutions for
equations (8) and (12).

3. Numerical Solutions

The pair of first-order equations can be solved numerically
for a broader range of Horndeski parameter values as long
as we assume appropriate boundary conditions. In Figure 1,
we show the behavior of the scalar field with a “kink” pro-
file (a) and scale factor (b) associated with the FRW solu-
tions for f=23.5 with « =0.06 and #=0.04 (blue curve)
and B=15.3 with «=0.08 and #=0.06 (red curve). These
regimes of small # and a#1 are required to produce
acceptable cosmological solutions. Of course, these choices
of parameters lead to a nonhomogeneous limit of equation
(12) where no analytical solutions are known. Thus, we
shall find such cosmological solutions by using numerical
methods. In the present case, we have applied the Runge-
Kutta method to first-order equation (8) for a(t) and ¢(¢)
and second-order equation (12) for W(¢). The bound-
ary conditions we used here were the following: W(0) =1,
W'(0)=1,and ¢(0) =

4. Cosmological Observables

In this section we investigate cosmological observables in our
cosmological setup in Horndeski gravity. Several studies in
this context have already been considered and shown to pro-
duce successful models [21, 22, 46], as, for example, in the
description of dark energy [22].

We extend these earlier studies in the context of the first-
order formalism, which is in the direction of connecting
them with cosmological scenarios in fundamental theories
such as supergravity and string theory where de Sitter solu-
tions are hard to find. One of the recent approaches in
order to overcome such difficulty is the holographic renor-
malization group (RG) flow which is written in terms of
first-order equations for a given superpotential [37-40].
The first-order formalism has also been applied, e.g., in f(R)
and f(R, T) gravity [47, 48], but to the best of our knowledge,
this is the first time where it is investigated in Horndeski cos-
mology. In our study, the scalar potential cannot be arbitrary
since it depends on the superpotential that obeys a differen-
tial equation which constrains the possible cosmological sce-
narios. Despite this, as we shall see below, there exists some
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Ficure 1: The behavior of the solutions of equation (8): ¢(t) (a) for f=23.5, with & =0.06 and 7 =0.04 (blue curve), and = 15.3, with
a=0.08 and 7=0.06 (red curve); a(t) (b) for the same values of parameters. The inset shows the behavior of a(t) at smaller times.
Particularly, a(0) = 1, for $=15.3 (red curve), where ¢ = 0 does not mean the Big Bang. Instead, it means the time at which our formalism

starts to describe the present phase of the Universe.

restricted values of parameters that allow describing the cur-
rent acceleration of the Universe. Thus, we shall assume a
dark energy dominance described by the scalar field dynam-
ics at small redshifts.

Let us first focus on the equation of state.

Then, by using the energy-momentum tensor of equation
(2) defined as

_ % N
Tyv - ET‘MV _gyvV((p) + ﬂT‘uv’ (15)

the tt and xx-yy-zz-components define the effective dark
energy sector with energy density and pressure:

<2 <2
_po_ap V() 9nH$ (16)
PDE_Ttt_E-F 2k + 4k >
2
TN ()
DE — * xx 4k 2k (17)
n (1.2 5 .
"ok §¢ (3H® +2H) +2H¢¢ |,

where T, =T, =T,. To check consistency, it is interesting
to see that using equations (8) and (9), the energy density sat-
isfies ppy = 3H?, as expected. Thus, the dark energy equation
of the state is given by

Wpg = —
PpE
ag’ —2V(¢) - 21 [(1/2)¢>2 (3H? +2H) + 2H<}5§b}

o«laz +2V(¢) + 9;1H2<]>2
(18)

In terms of the dark energy density and pressure, the
scalar field equation can be written in the standard form
through the energy-momentum conservation, V,T% =0,

that implies

pPpe + 3H(Ppg + ppg) = 0. (19)

This result (19) is in agreement with [46]. We may now
compute another interesting cosmological quantity called
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FIGURE 2: The decelerate parameter q (21) (a) and dark energy equation of state wpy (25) (b) for §=23.5, with « =0.06 and # =0.04 (blue
curve), and f3=15.3, with «=0.08 and #=0.06 (red curve). The Hubble parameter H (c) and scalar field ¢ (d) with the same values of
parameters. All the cosmological observables are given as functions of the redshift z.

decelerate parameter g, which indicates how the Universe
expansion is accelerating and is given by the equation

H
q:_ 1+F .

Furthermore, combining equation (19) with pp; = 3H?,
we can write a useful relationship between the deceleration
parameter and the equation of state as follows:

(20)

—

(21)

q==(1+3wpg).

\%)

From this point, we shall make use of the dimensionless
redshift parameter z in place of time variable ¢ in our cosmo-

logical setup since it is used to compare theoretical with obser-
vational results. The redshift parameter is defined as

1
1 =—. 22
tz=— (22)
Thus, time derivatives can now be expressed as
d d
L - H)(1+2)—, 2
S =—H()(142) (23)

and the first-order equation (8) can simply be rewritten in the
new variable z in the form

(24)



The numerical results are also computed for equation (18)
given in terms of the superpotential

2 4 2
nw MmWiw,
wpp = -1+ ?W¢ +2qW + 3W§ + 3?;\/ % (25)

We summarize as follows. According to Figure 2(b) the
dark energy equation of state wpy (25) acquires values near
—0.87 (blue curve).

Notice that our cosmological observables here were cal-
culated only in the scalar-tensor sector of the Horndeski
gravity given by the action (1) with no matter contribution.
This sector alone is unable to take into account all phases
of the Universe at high redshifts. Thus, we addressed only
the dark energy (scalar) dominance at low redshifts. But
investigations considering matter contribution to extension
of this theory with several scalar potentials were already con-
sidered in [46]. Such a similar investigation in our model is
out of the scope of this paper and can be addressed elsewhere.
On the other hand, an inflationary phase can be found for a
constant superpotential W = H,, that satisfies (12). The first-
order equation (8) gives the solution a(t) = a, exp (Ht) and
¢ = const., which characterizes an exponential inflation with
equation of state w = —1.

Moreover from equation (25) and using the exact solu-
tion of the superpotential given by equation (13), we can
see that the equation of state wpy < —1, since in the assumed
limit ¢ = 1, this function is dominated by the following term:

5 1
Wpg =~ 5

8/3
5 )gb)} <-1. (26)

cos ((3/2

This is one of the advantages of the Horndeski gravity,
where a phantom-like behavior is obtained even though the
scalar field has canonical dynamics. This effect is simply
achieved due to the nonminimal coupling of the scalar field
to gravity in the gravitational extension of the Einstein-
Horndeski gravity [46]. It is important to address the phan-
tom cosmology issues since recent observational data [49]
have shown the possibility of wp < -1.

The Hubble function in Figure 2(c) develops an increas-
ing behavior between the onset at z=0.6 and z=0 (blue
curve). This fact indicates a dark energy phase dominance
starting in a relatively recent time of the cosmological evolu-
tion of the Universe. The scalar field in Figure 2(d) evolves
accordingly, approaching a constant at z=0 (blue curve
and red curve) which represents a de Sitter Universe [46].

Furthermore, as we can see from Figure 2(a) that g(0) =
—0.8 or —0.7 is consistent with supernova observations that
reveal g(0) = -0.1 + 0.4 [50].

5. Conclusions

In the present study, we have taken the advantage of the
first-order formalism in the Horndeski cosmology. This
formalism applied to Horndeski gravity as well as to f(R)
and f(R, T) theories [47, 48] is concerned in reducing the
equations of motion to first-order equations, which simplifies
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the solution of the problem from both analytical and numer-
ical perspectives. Besides, the first-order formalism plays
an important role in RG flow in holographic cosmology
[37-40]. Our numerical solutions showed a good agreement
with the current phase of the Universe, where the Hubble
parameter as a function of the redshift has a behavior similar
to the one found in [49]. By using first-order formalism
supported by a constrained superpotential in the Horn-
deski gravity for the FRW background, we have shown
by using numerical methods that late-time cosmology is well
described by the scalar field. The solutions correspond to an
accelerating Universe for small redshifts, which is in agree-
ment with the current observational data that is usually asso-
ciated with a phenomenon driven by a dark energy fluid. The
scalar field nonminimally coupled to the gravity sector pro-
duces kink-type solutions which render a de Sitter Universe
at late-time cosmology, reproducing a dark energy scenario
in Horndeski gravity at first-order formalism.
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